
A quick introduction to Markov chains and
Markov chain Monte Carlo (revised version)

Rasmus Waagepetersen
Institute of Mathematical Sciences

Aalborg University

1 Introduction

These notes are intended to provide the reader with knowledge of basic con-
cepts of Markov chain Monte Carlo (MCMC) and hopefully also some intu-
ition about how MCMC works. For more thorough accounts of MCMC the
reader is referred to e.g. Gilks et al. (1996), Gamerman (1997), or Robert
and Casella (1999).

Suppose that we are interested in generating samples from a target prob-
ability distribution π on R

n and that π is so complex that we can not use
direct methods for simulation. Using Markov chain Monte Carlo methods it
is, however, often feasible to generate an ergodic Markov chain X1, X2, . . .
which has π as equilibrium distribution, i.e. after a suitable burn-in period
m, Xm+1, Xm+2, . . . provides a (correlated) sample from π which can be used
e.g. for Monte Carlo computations.

Before we turn to MCMC methods we briefly consider in the next section
the concepts of Markov chains and equilibrium distributions.

2 Examples of Markov chains and convergence

to a stationary distribution

A Markov chain X is a sequence X0, X1, X2, . . . of stochastic variables (in
short notation X = (Xl)l≥0) which for all n > 0 and all events A0, A1, . . . , An
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satisfies the following conditional independence property:

P (Xn ∈ An|Xn−1 ∈ An−1, Xn−2 ∈ An−2, . . . , X0 ∈ A0) =

P (Xn ∈ An|Xn−1 ∈ An−1). (1)

That is, the value of the nth variable depends on the past variables only
through the immediate predecessor one timestep ahead. The variable Xl, l ≥
0 could e.g. designate the average temperature in Denmark on the lth day in
1998, and Al could be the event that Xl is greater than a temperature T , so
that A = {x ∈ R|x ≥ T}.

An independent sequence is one example of a Markov chain since in this
case

P (Xn ∈ An|Xn−1 ∈ An−1, Xn−2 ∈ An−2, . . . , X0 ∈ A0) = P (Xn ∈ An) (2)

which does not depend on the past at all, due to the independence.
As a first specific example we consider a Markov chain on the discrete

state space E = {0, 1}.

Example 1 A Markov chain X on E = {0, 1} is determined by the initial
distribution given by

po = P (X0 = 0) and p1 = P (X0 = 1),

and the one-step transition probabilities given by

p00 = P (Xn+1 = 0|Xn = 0), p10 = P (Xn+1 = 0|Xn = 1),

p01 = 1 − p00 and p11 = 1 − p10.

Often the one-step transition probabilities are gathered in a matrix

P =

[

p00 p10

p10 p11

]

.

2

The next example is a Markov chain with the continuous state space E = R,
the real numbers.

Example 2 In this example we consider an autoregressive Markov chain of
order 1 (an AR(1)). The chain is given by
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a) X0 = µ0 (a fixed value).

b) Xl = βXl−1 + ǫl, l ≥ 1,

where (ǫl)l≥1 is a sequence of independent and normally distributed “innova-
tions” with ǫ ∼ N(0, σ2). That is, X1 = βX0 + ǫ1, X2 = βX1 + ǫ2 etc. It is
clear that (Xl)l≥0 forms a Markov chain, since in order to compute Xn the
only knowledge required about the past is the value of the predecessor Xn−1.

It is easy to calculate the distribution of the variables Xl, l ≥ 0. They
are given as sums of the normal variables ǫl:

Xn = βXn−1 + ǫn = β2Xn−2 + βǫn−1 + ǫn = · · · =

βnµ0 + βn−1ǫ1 + · · ·+ βǫn−1 + ǫn = βnµ0 +

n
∑

l=1

βn−lǫl, (3)

and are therefore normal themselves. It thus only remains to calculate the
means and variances:

EXn = βnµ0 +

n
∑

l=1

βn−lEǫl = βnµ0 (4)

V arXn =

n
∑

l=1

(βn−l)2V arǫl =

n
∑

l=1

(β2)n−lσ2 = σ2 (β2)n − 1

β2 − 1
. (5)

(it is here required that β2 6= 1). For the calculation of the variance the
formula

∑n

l=0 zl = (zn+1 − 1)/(z − 1), z 6= 1 was used.
From these expressions we see that an AR(1) behaves very differently

depending on whether −1 < β < 1 or |β| > 1. If |β| < 1 then EXn tends
to 0 and V ar(Xn) tends to σ2/(1 − β2) as n tends to infinity. For large n,
Xn thus approaches an N(0, σ2/(1 − β2)) distribution. If on the other hand
β > 1, then both EXn and V ar(Xn) tends to infinity as n tends to infinity.
This behaviour is reflected by the simulations in Figure 1.

For −1 < β < 1 the normal distribution N(0, σ2/(1 − β2)) is a socalled
invariant or stationary distribution. That is, if Xn−1 is N(0, σ2/(1 − β2))
then this implies that also Xn is normal distributed with mean 0 and variance
σ2/(1 − β2). This is seen as follows:

E(Xn) = βE(Xn−1) = 0 = E(Xn),
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Figure 1: Simulations of AR(1)-chains. For all simulations, µ0 = 5 and
σ2 = 0.25. The values of β are, from top to bottom, 0.4, 0.9, 1.0, and 1.0025.
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and

V ar(Xn) = β2V ar(Xn−1) + V ar(ǫn) =
β2σ2

1 − β2
+ σ2 =

σ2(
β2

1 − β2
+

1 − β2

1 − β2
) = σ2 1

1 − β2
= V ar(Xn−1).

An AR(1) with |β| < 1 thus illustrates the important properties of “lack
of memory” and stochastic stability since the chain converges to an uniquely
determined stationary distribution, regardless of the chosen initial value. 2

The idea of MCMC is that for an arbitrary distribution π of interest,
one can generate a Markov chain whose invariant distribution is given by π,
which have the “lack of memory” property as for the AR(1) in Example 2,
and which converges to the invariant distribution, so that samples of π can
be obtained from the Markov chain.

3 Some theoretical concepts for Markov chains

Let X = (Xl)l≥0 denote a Markov chain with state space E and let π denote
a probability distribution on E. Then

• π is an invariant distribution for X if

Xl ∼ π ⇒ Xl+1 ∼ π, l ≥ 0

• X is aperiodic if there does not exist a disjoint subdivision of E into
subsets A0, . . . , Ad−1, d ≥ 2, such that

P (Xl ∈ A(k+1) mod d|Xl−1 ∈ Ak) = 1, k = 0, . . . , d − 1, l ≥ 1

• X is irreducible if for all x ∈ E and all events A with π(A) > 0 there
exist an n ≥ 1 such that P (Xn ∈ A|X0 = x) > 0.

• X is Harris recurrent if

P (∃n : Xn ∈ A | X0 = x) = 1

for all x ∈ E and all events A with π(A) > 0.
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Example 1 continued Suppose that π is a distribution on {0, 1} given by
probabilities π0 and π1. Suppose that P (Xn−1 = 0) = π0. Then π is an
invariant distribution for the Markov chain given by the one-step transition
probabilities p00 and p10 provided P (Xn−1 = 0) = π0 implies P (Xn = 0) =
π0, i.e.

π0 = P (Xn = 0) = P (Xn = 0|Xn−1 = 0)π0 + P (Xn = 0|Xn−1 = 1)π1 =

p00π0 + p10π1 ⇔ π0 =
p10

p10 + p01
.

In matrix form the condition is

π = Pπ.

where π =
(

π0

π1

)

. The Markov chain is periodic if p01 = p10 = 1. 2

Example 2 cntd. Let π = N(0, σ2/(1 − β2)). An AR(1) is then π-
irreducible: if X0 = x then X1 ∼ N(βx, σ2) so that P (X1 ∈ A|X0 = x) > 0
for any event A with π(A) > 0. It is also aperiodic: assume first that the
Markov chain is periodic and that Xn = x ∈ Ak (where Ak is one of the sub-
sets in the “periodic” splitting of E above). But P (Xn ∈ Ak|Xn−1 ∈ Ak−1) =
1 > 0 implies P (Xn+1 ∈ Ak|Xn = x) > 0 so that P (Xn+1 ∈ Ak+1 mod d|Xn ∈
Ak) < 1. 2

3.1 Convergence towards a stationary distribution

Suppose now that π is an invariant distribution for X, and that X is π-
irreducible and aperiodic. Then under the further assumption of Harris re-
currency, Xn converges in distribution to π for any chosen starting condition
for X0. This means, that for any event A,

P (Xn ∈ A) → π(A),

so that Xn can be considered a simulation from the distribution π for large
n. Harris recurrence holds under mild conditions for the Metropolis-Hastings
samplers described in section 4, provided that irreducibility is fulfilled, see
Tierney (1994) and Chan and Geyer (1994).

It is intuitively clear that irreducibility is required for convergence to the
stationary distribution, since the chain must be able to reach all parts A of
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the state space for which π(A) > 0. If the chain is periodic and started in
A0, say, then P (Xn ∈ Ak) = 1 whenever n = 0, k, 2k, . . . , and zero otherwise,
so that the distribution of Xn can never converge to π.

Convergence to a stationary distribution can e.g. be observed in the two
upper plots in Figure 1.

3.2 Convergence of Markov chain Monte Carlo esti-

mates

Let g be a function on E where we wish to estimate E(g(Z)), where Z ∼ π.
If X is Harris recurrent (irreducible) with stationary distribution π then the
empirical average

∑n

l=0 g(Xl)/n converges:

1

n

n
∑

l=0

g(Xl) → E(g(Z)), with probability one,

as n tends to infinity, regardless of the chosen initial value for X0. Expec-
tations can thus be approximated by empirical averages just as for ordinary
Monte Carlo. The correlation in the Markov chain however implies that the
size n of the Markov chain sample needs to be greater than when indepen-
dent simulations are used in ordinary Monte Carlo, in order to obtain a given
level of accuracy.

4 The Metropolis-Hastings algorithm

Let π denote a complex, multivariate target distribution for a stochastic
vector Z = (Z1, . . . , Zm), m ≥ 1, and let f be the density of π. We shall
now consider how one constructs a Markov chain X = (Xl)l≥0 for which π is
the invariant distribution. The constructed chain will then produce samples
of π provided that the chain is irreducible and aperiodic. Note that the
statespace of X is multidimensional, so that a state Xl = (X l

1, . . . , X
l
m), l ≥ 0

of the Markov chain has components X l
1, . . . , X

l
m. The initial state X0 can

be chosen rather arbitrarily, but it is advantageous if it belongs to the center
of the target distribution π since convergence to the stationary distribution
is then faster.
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4.1 Metropolis-Hastings algorithm with simultaneous
updating of all components

The Metropolis-Hastings algorithm (Hastings, 1971) is given in terms of a
proposal kernel q. That is, for any x ∈ E, q(x, ·) is a probability density on
E. The Metropolis-Hastings algorithm now iterates the following steps:

1. Let Xl = x = (x1, . . . , xm) be the current state of the chain and gener-
ate a proposal Y from the proposal density q(x, ·).

2. Generate a uniform number U on [0, 1].

3. If

U < a(x, Y ) = min

{

1,
f(Y )q(Y, x)

f(x)q(x, Y )

}

then Xl+1 = Y . Otherwise Xl+1 = Xl.

Note that all components in the current state Xl are updated if the proposal
Y is accepted. Note also that if the density f(Y ) is small compared to the
density f(x) of the current state, then Y will tend to be rejected, so that the
chain stays in the stationary distribution.

This is perhaps clearer if one considers the Metropolis algorithm (Metropo-
lis et al., 1953) which is the special case where q is symmetric (i.e. q(x, z) =
q(z, x)) so that a(x, y) = min{1, f(y)/f(x)}

Example 2 cntd. Remember that the AR(1) chain was not convergent
when |β| > 1. We will now “Metropolize” the chain corresponding to the
bottom plot in Figure 1. Given the current state Xl = x, the next state for
the AR(1)-chain was generated from N(βx, σ2) with density

q(x, z) =
1√

2πσ2
exp(− 1

2σ2
(z − βx)2).

Let π = N(−5, 1) with density f(z) = exp(−(z − (−5))2/2)/
√

2π. Instead
of just accepting Xl+1 = Y where Y is generated from N(βx, σ2) we now
accept or reject Y according to the acceptance probability a(x, Y ) (this is of
course not exactly a natural way to simulate N(−5, 1)). A simulation of the
“Metropolized” chain is given in Figure 2. 2
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Figure 2: Simulation of “Metropolized” AR(1) chain with stationary distri-
bution given by N(−5, 1).

4.2 Single-site updating Metropolis-Hastings

We now assume that m > 1. For a single-site updating Metropolis-Hastings
algorithm, the components X l

1, . . . , X
l
m are updated individually in a ran-

dom or systematic order. Often a systematic scheme is chosen so that the
components are updated in turn starting with X l

1, then X l
2, and so forth.

Assume that the current state is Xl = (X l
1, . . . , X

l
m) = x and that the

jth component is to be updated. Then the next state Xl+1 of the chain only
differs from Xl on the jth component, i.e. X l+1

i = X l
i , i 6= j, and Xl+1 is

generated as follows:

1. A proposal Yj is generated from a proposal density qj(x, ·). Let Y =
(X l

1, . . . , X
l
j−1, Yj, X

l
j+1, . . . , X

l
m)

2. A uniform variable U on [0, 1] is generated.

3. If

U < aj(x, Y ) = min

{

1,
f(Y )qj(Y, xj)

f(x)qj(x, Yj)

}

then Xl+1 = Y . Otherwise Xl+1 = Xl.

Example (Gibbs sampler) The Gibbs sampler is an important example
of the single-site Metropolis-Hastings sampler. In this case, qj(x, ·) is simply
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the conditional density of Zj given Zi, i 6= j, i.e.

qj(x, yj) = fj(yj|xi, i 6= j) =
f(x1, . . . , xj−1, yj, xj+1, . . . , xm)

f−j(x1, . . . , xj−1, xj+1, . . . , xn)
,

where f−j(x1, . . . , xj−1, xj+1, . . . , xn) is the marginal density of Zj, j 6= i. It
is easy to realize that in this case, aj(x, yj) = 1 so that the proposals are
always accepted. 2

4.3 Choice of proposal kernel

The target distribution π may be very complex and impossible to sample
directly. The advantage of the Metropolis-Hastings algorithm is that it is only
required to sample from the proposal kernel Q and we are free to choose any
proposal kernel which is easy to sample from, as long as the resulting chain
becomes irreducible and aperiodic. Aperiodicity is usually not a problem.
It is e.g. enough that there is a positive probability of rejecting generated
proposals.

When irreducibility cause problems, it is usually in cases where f , the
density of π, is not positive everywhere. Consider e.g. a distribution on
{0, 1}7, say, where π(x) = 0 if

∑8
i=1 xi = 4. Then a single-site updating

algorithm is reducible because it can not move from an x with
∑8

i=1 xi < 4
to an x′ with

∑8
i=1 x′

i > 4.
On R

2 one may consider a π whose density is zero outside the balls
b
(

(1, 1), 0.5
)

and b
(

(2, 2), 0.5
)

. In this case the Gibbs sampler becomes re-
ducible (make a drawing) .

5 Some practical issues

The theory of MCMC tells us that the Markov chain eventually will produce
samples from the target distribution if we run the chain for sufficiently long
time. The difficult question is how long is enough. A hot research topic is
“perfect simulation” which in fact answers this question in some cases, but
perfect simulation is still a technique for specialists.

A useful way to assess whether convergence is achieved is to consider
timeseries of various statistics derived from the Markov chain. Figure 2 e.g.
shows a timeseries given by the “Metropolized” AR(1) itself. It seems that
convergence has been reached after a burn-in of approximately 100 iterations.
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In the Monte Carlo calculations one may feel inclined to discard the first steps
of the Markov chain where the chain still have not reached the stationary
distribution.

Ordinary timeseries methods are useful for analyzing output from Markov
chains. Figure 3 shows autocorrelations estimated from the simulated chain
in Figure 2. The chain is in fact highly autocorrelated and the estimate of
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Figure 3: Autocorrelations calculated from the simulation in Figure 2.

the mean (-5) of the stationary distribution accordingly converges slowly,
see Figure 4. Compare also with the convergence of the estimate based on
independent simulations in Figure 5.

If the MCMC sample is highly autocorrelated, and a way to improve the
sampler can not be found, then one may may sometimes wish to subsample
the chain, i.e. to create a less correlated sample by retaining only every 10th,
say, observation in the original sample. Subsampling throws information
away and should in general not be used, but other factors may sometimes
render subsampling advantageous. This may e.g. be the case if storage space
in the computer is a problem or if the expense of calculating g(Xl) is high,
where g(·) is the function whose mean E(g(Z)) is to be estimated.
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