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Fig. 4.1 Graphical representation of three four-dimensional points. (a) Glyphs. (b) STARS.
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Fig. 42 Graphical representation of four-dimensional data.
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Fig. 43 Chernoff’s faces for measurements on permanent first lower premolar of various groups
of humans and apes. From Fienberg [1979].



2 he
.‘5 /..——-_"“0
a
e
[ ]
] | ] |
1 2 3 4

Variable )
Fig. 4.4 Proiiles for two four-dimensional observations.

Graphical and Data-Oriented Technigues

TABLE 4.1 Percentage of Republican Votes in United States Presidential
Elections in 6 Southern States, 1932-1940, 1960-1968¢

State 1932 1936 1940 1960 1964 1968
Missouri 35 38 48 50 36 45
Maryland 36 37 41 46 35 42
Kentucky 40 40 42 54 36 44
Louisiana 7 11 14 29 57 23
Mississippi 4 3 4 25 87 14
South Carolina 2 1 4 49 59 39

“From Kleiner and Hartigan [1981: Table 1].

MISSOURI MARYLAND KENTUCKY LOUISIANA MISSISSIPPI S.C.

1001 36 60 68

~ 3 a1

STARS

GLYPHS

FACES

T P A Ty L B

0 0 0

Fig. 45 Profiles, STARS, glyphs, and faces for the data in Table 4.1. The circles in the STARS
are drawn at 50%. The assignment of the variables to facial features is: 1932 —shape of face; 1936
—length of nose; 1940—curvature of mouth; 1960—width of mouth; 1964—slant of eyes;
1968 —length of eyebrows. From Kleiner and Hartigan [1981].
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Fig. 4.6 Andrews’ Fourier plot for five seven-dimensional observations.

The Fourier plot method consists of representing a d-dimensional vector
x’ = (x,, X,,...,%4) by the finite Fourier series

f(1) = x;/V2 + x,5in ¢ + x5c081 + x,sin2t + xc082¢ + -+

and plotting f (1) for a grid of t-values in the range -7 <r < (pr else
replacing 7 by 2#¢ and using the range 0 < ¢ < 1). An e?(ample §how1_ng the
corresponding curves for five seven-dimensional observations is given in Fig.
4.6. Andrews [1972] gives the following properties for such plots.

1. The function preserves means. We have

AOEEINA0

i=1

so that the curve representing the mean looks like an “ avcrage?’ curve.
2. The function preserves distance. A natural measure of distance between
two functions is the L, norm. From Exercise 4.1 we have

d
[ a0 -f,0) d =L (x,-3)

= i=1

= 7ilx - y|?, (4.1)

so that points x and y that are close together lead to curves which are close
together.

3. The function preserves linear relationships. If y lies on the line joining x
and z, then f, (1) lies between f, () and f,(r) for all ¢.

4. The representation yields one-dimensional projections. For a particular
value of 1 = 1,, the function value f,(¢,) is proportional to the length of the
projection of the vector x on the vector

a9 = (1/v2,sin 5, cos 10, 5in 24, cos 21,....),

since f,(¢y) = x'a,. This projection onto a one-dimensional space may show
up clusterings or any data peculiarities that occur in this subspace and which
may be otherwise obscured by other dimensions. The plot, therefore, provides
a continuum of such one-dimensional projections all on the one graph. We
note that a,/||a,|| represents a point on the d-dimensional sphere of unit radius
and one would hope that, in the course of the plot, as many of these points as
possible were covered as 1, ranged from —# to 7. Andrews [1972] demon-
strated that a better coverage can be achieved using more complex functions of
1o 1n &, above, but at the expense of having a curve with more “ wiggles.”



5. The representation preserves variances. If the components of x are
uncorrelated with common variance o2, then

Vaf[fx('}] =g2(} + sin? ¢ + cos?1 + sin® 21 + cos® 21 + ).

If 4 is odd, this reduces to a constant, } do?; if d is even, the variance lies
between 1(d — 1)o2 and 1(d + 1)e?. For all d the variance is therefore either
independent of 1, or else the relative dependence on ¢ is slight and decreases as
d increases. This implies that the variance of f, (1) is almost constant along the
graph. Unfortunately, the components of x are invariably correlated with
unequal variances. However, the above conditions can be approximately
satisfied by transforming x to its vector of standardized principal components
(Section 5.2.1).

Ao
/

Fig. 4.7 Andrews’ curves for a cluster of 86 people. From Morgan [1981].

4.2 TRANSFORMING TO NORMALITY

As the multivariate normal (MVN) distribution has played such a central role
in multivariate analysis, it is appropriate that we should consider transforma-
tions that help to normalize the data. However, there are some pitfalls
associated with the transformations discussed below (see Hernandez and
Johnson [1980], Bickel and Doksum {1981], Box and Cox [1982]). Also, the
parameters associated with the transformed data may not be as meaningful as
those associated with the original data; for example, p, — p, may be more
appropriate than log(p,;/s,). To set the scene we consider the univariate case
first.

4.2.1 Univariate Transformations

A useful family of transformations is the following:

0,
- (4.2)

O
and x> 0.

A
log x, A

This particular family, studied in detail by Tukey [1957] for |A] < 1, contains
the well-known log, square root, and inverse transformations. To avoid a

discontinuity at A = 0, Box and Cox [1964] considered the modification
x* -1

W={ 3 A*0 (4.3)
log x, A=0 and x>0.




Using this modification, if we assume that the transformed observations x{*)
are i.i.d. Ny(p, 02), the likelihood function for the untransformed data is

(zmz)"'ﬂ[exp{— » Q—“—”)—}][HI] (4.4)

i=1 202 i=1

Since the last term in square brackets, the Jacobian of the transformation, does
not contain g or o2, the maximum likelihood estimates of p and o2 for given A
are

n XN _ M~ gy
(A) = Z ~ and 6= N, (——t——————)— (4.5)
i=1 i=1 i
If X [= (x,x; - -+ x,)/"] is the geometric mean of the x,, then the maximum
value of the log likelihood is (apart from a constant)
Lo (M) = —1inlogé? + nlogx?~ D (4.6)
= —inlogd/, (4.7)

where z™ = x» /x*~1, Box and Cox [1964] then suggested choosing A = A,
where A maximizes L_, (A). The maximization can be carried out directly
using a standard numerical procedure such as solving dL,,,(A)/dA =0
iteratively, or by simply plotting L. (A) against A. A plot is always useful, as
the local behavior of L, (A) in the neighborhood of A can be considered. For
example, if A = 0.2, it may be quite reasonable, for a fairly flat likelihood
function,” to set A =0, that is, a log transformation. More formally, an
approximate 100(1 — a)% confidence region for the true value of A is the set of
all A satisfying

Lmax(x) - LM(A) = %Xf,a,

where prix? > x? ] = a. To test Hy:A = A, we simply treat 2[L,,(A) -
L_..(Ay)] as being approximately distributed as x{. Andrews [1971] proposed
an “exact” more robust test for H,, though the empirical study of Atkinson
[1973] suggests that the test is less powerful than the likelihood ratio test.

If some of the x, are negative, we can add a positive constant £ to all the
observations to make them positive. Alternatively, we can include £ in the
above likelihood function, now written L_, (£, A) to indicate that x, is
replaced by x, + £, and find the maximum likelihood estimates of £ and A (Box
and Cox [1964]).

John and Draper [1980] provided an alternative family of transformations

LN = S'En[ Y o and, (4.8)
sign[log(|x| + 1)], A=0,

where the sign of x® is that associated with the observation x, called the
modulus transformation. The power transformation (4.3) is effective in making
skewed distributions more symmetrical and, hopefully, more normal. For
example, the effect of a logarithmic or square root transformation is to pull in
one tail of the distribution. John and Draper [1980] noted that the “modulus
transformation, on the other hand, is effective on a distribution that already
possesses approximate symmetry about some central point and alters each half
of the distribution through the same power transformation in an attempt to
make the shape more normal.” If all the data are positive, the modulus and
power transformations are equivalent. However, an alternative is still provided
by the modulus family, since data of the form x — 4, for some constant a such
as a robust estimator of location, can be transformed. The maximum likelihood
method described above also applies to the modulus family: Equation (4.7) still
holds with % in z™® now being the geometric mean of the |x,| + 1. John and
Draper [1980] gave an example where the best power transformation is
inadequate (the normal plot is S shaped), while the best modulus transforma-
tion gives a linear residual plot. This might have been expected, as the residual
plot for the untransformed data was S shaped but symmetric, indicating that a
modulus transformation, which treats the tails symmetrically, would be better
than a skew-correcting power transformation.



53
w8y | LT |
60.5
B
2.8 .
c
(a) (b)

Fig. 48 (a) Hierarchical clustering by complete linkage for the data in Table 4.1. (b) Tree
representation of data in Table 4.1 for Missouri. From Kleiner and Hartigan [1981].
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Fig. 49 Tree representation of the data in Table 4.1. From Kleiner and Hartigan [1981].
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Fig. 4.10 Castle representation of the data in Table 4.1. From Kleiner and Hartigan [1981).
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Fig. 4.11 (a) Hierarchical clustering for yields of 15 transport companies over 25 years by
complete linkage. (b) Tapered castle representing yields in 1953. From Kleiner and Hartigan
[1981].
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Fig. 4.12 Profiles with clustered coordinates.

TABLE 4.2 Adults Who “Really Like to Watch”; Correlations to 4 Decimal Places
(Programs Ordered Alphabetically with Channel)® '

PzB TawW Tod  Wos Grs LoU  MoD  Pan Rgs 24H

ITV PrB 1,0000 0.1064 0.0653 0,5054 0.4741 0.0915 0.4732 0.1681 0.3091 0,1242

ThW 0.1064 1,0000 0,2701 0.1424 0,1321 0,1885 0.0815 0.3520 0.0637 0.3945

Tod 0.0653 0.2701 1.0000 ~ J926 0.0704 0,1546 0,0392 0,2004¢ 0.0512 0.2437

WoS  0.5054 0.1474 0,0926 1,0000 0,6217 0,0785 0.5806 0.1867 0,293 0.1403
0.4741 0.1321 0.0704 0.6217 1.0000 0.0849 0,5932 0.1813 0,3412 0,1420
LaU 0,0915 0.1885 0.1546 0.0785 0.0849 1.0000 0.0487 0.1973 0.0969 0,2661
MoD 0.4732 0.0815 0,0392 0,5806 0,5932 0.0487 1.0000 0.1314 0,3267 0.1221
Pan  0.1681 0.3520 0,2004 0.1867 0.1813 0,1973 0,1314 1.0000 0,1469 0.5237
Rgs 0.3091 0.0637 0.0512 0.293 0,3412 0.09%69 0.3261 0.1469 1,0000 0,1212
24H  0.1242 0.3946 0,2432 0,1403 0.1420 0.2661 0.1211 0, 5237 _0.1212 .1.0000

=====E=:=
[a]
th

“From Ehrenberg [1977: Table 4].

TABLE 4.3 The Correlations in Table 4.2 Rounded and Reordered®

Programs WoS MoD .GrS PrB RgS 24H Pan ThW Tod LaU
World of Sport  ITV 6 .6 5 .3 o1 .2 1 .1 L1
Match of the Day BBC .6 .6 .5 .3 1 -1 0 0
er BBC -6 -6 os 03 |1 12 ll W1 cl
PNLW ITV -s -5 -5 .3 ol e Wl wl .1
Rugby Speclal BBC | .8 .3 .3 .3 il ol 5) ol o
24 Hours BBC 1 41 .1 .1 ,1 S .4 .2 L2
Panorama BBC 2 @l 2 «2 .l oS 4 .2 ,2
‘This Week TV 1 W1 1 .1 L1 T 3 L2
Today MY 1.2 0 2 o4 2 .2 .8 .2
Line-Up BBC o1 0 .1 .1 .1 2 2 .2 .2

“From Ehrenberg [1977: Table 5].



4.2.2 Multivariate Transformations

For multivariate data, the above univariate procedures can be applied to each
dimension with a separate A or separate pair (¢, A) for each of the d variables.
However, Andrews et al. [1971] have given the following multivariate generali-
zation of Box and Cox’s technique. We now have a vector of parameters
N =(AnL A ... ,A,), one A, for each dimension, and the transformed vectors
xM = (x{M,...,x{}9)" are assumed to be iid. N,(, =). Corresponding to
(4.6), the likelihood function for N is [see (3.6)]

d n
Lo (N)= —1inlog|®| + ZI(AJ -1) % logx,, (4.9)
: j= i=1
where x,; is the jth element of x; and
= ;1; L (x™ = xM)(xM -z’ (4.10)

i=]

We now choose N = A, where \ maximizes Lo (N). To test Hy: N = N, we
calculate 2[ L. (N) = L ..(No)), which is approximately x2 when H, is true.
This statistic can also be used for constructing a confidence region for \.

Andrews et al. [1971] give a transformation procedure for improving nor-
mality in certain directions. Some interesting plots demonstrating the transfor-
mations described above and in the previous section are given in Gnanadesi-
kan [1977: pp. 144-150].

S X

Fig. 414 Minimum spanning tree for 10 two-dimensional observations.

A number of graphical methods based on the scaled differences y, =
§~Y?*(x, - X) are available. Under the null hypothesis H, of multivariate
normality, the z, = 2~'?(x, — p) are iid. N,(0,I;) and z/z, = (x, -
p)Z7'(x, — p) ~ x5 {Theorem 2.1(vi)]. Clearly the y, will have similar proper-
ties and the Mahalanobis distances squared (Section 1.5), J

D,‘z =yy = (x; - i)’s_](xr ~ X (4.25)

will be approximately i.i.d. x} under H,. We note that D} is unchanged if we
work with the correlation matrix R instead of S, as D} is invariant under linear
transformations of the x,.



7.2.2  Similarities

Similarity coefficients have a long history and in the early literature were
usually known as association coefficients. For example, suppose the d variables
or characteristics are dichotomous, indicating the presence (+) or absence (=)
of each characteristic. Then, for each pair of the n objects, we can form the
usual two-way contingency table given by Table 7.1, where, for example, B is
the number of characteristics present in object r but absent in object s.
Numerous measures of association ¢,;, satisfying 0 < ¢, < 1, have been pro-
posed and Clifford and Stephenson [1975: pp. 54-55] list 11 (see also Ander-
berg [1973: Table 4.53]). The most popular measures are Jaccard’s [1908)]
coefficient a/(a + B + y), Czekanowski’s [1913] coefficient 2a/(2a + 8 + ),
and the simple matching proportion (a + 8)/d. The choice of a coefficient
depends very much on the relative weights given to positive matches (a) and
negative matches (8). Clearly there are situations, in numerical taxonomy, for
example, where the joint absence of a characteristic would carry little or no
weight in comparison with the joint presence, and the matching coefficient,
with equal emphasis on both categories, would not be appropriate. However,
the matching coefficient would be appropriate if the variables were all nominal
with two states, the states simply being alternatives with equal weight. The
above measures of association can be extended to nominal variables with more
than two states (Anderberg [1973: Section 5.4]). For example, we can calculate
the matching coefficient as the proportion of the nominal variables that match
for two objects.

With quantitative variables, one measure of similarity between x, and X,
the observations on objects r and s, is the correlation of the pairs (x,, X;;)
j=1,2,...,d, namely,

€, = 2 (7.7)

TABLE 7.1 Number of Characteristics Occurring in, or Absent from, Two Objects:
« Common to Both Objects; B and y Occurring in Only One Object; § Absent
from Both

Object s
Present (+) Absent (—) Sum
Present (+) a B a+ B
Object r
Absent (—) Y é Y+ 86

Sum a+y B+8 a+B+y+8=d




and -1 < ¢, s 1. Apart from not satisfying axiom (1) below, this measure,
however, has certain disadvantages. For example, if ¢, = 1, it does not follow
that x, = X, only that the elements of x, are linearly related to those of x, (see
Exercise 7.9). Also, what meaning can we give X, the mean over the different
yariables for object r? For these and other reasons, the correlation coefficient
has been criticized by 2 aumber of authors (e.g., Fleiss and Zubin [1969)).
Although there is some difference of opinion, the evidence would suggest that
dissimilarities based on metrics are better proximity measures than correla-
tions. Cormack [1971] states that the “ use of the correlation coefficient must be
restricted to situations in which variables are uncoded, comparable measure-
ments or counts, it is not invariant under scaling of variables, or even under
alterations in the direction of coding of some variables (Minkoff [1965]).”

A large number of similarity measures have been proposed in the literature
and they can be categorized mathematically in several ways (e.g., using trees in
Hartigan [1967]; see also Duran and Odell [1974: Chapter 4)). If 2 is the
population of objects, then we can define a similarity as a function that maps
# x Pinto R and satisfies the following axioms:

1) O$C(r,s)slforaﬂr,sin9’.
(2a) C(r,r)= 1.

2v) C(r,s)= 1 only if r = 5.

3 C(r,s)= C(s,r)-

We shall write ¢,, = C(r, s) and use the notation C(x,,X;) for vector data.
The Jaccard and Czekanowski coefficients satisfy the above axioms.
Gower [1971a]) has proposed an all-purpose measure of similarity

Crs = ( i Crs;)/ i wrsj’ (78)
j=1

j=1

where c,,; is a measure of similarity between objects 7 and s for variable j. Here
W,y 1S unity except when a comparison is not possible, as with missing
observations Or negative matches of dichotomous variables, in which case we
et €y = Wysj = 0. In Table 7.2 we have the appropriate coefficients for a
dichotomous variable or a two-state qualitative variable. With a multistate
variable (ordinal or nominal) of more than two states, we set ¢, = 1 if objects
r and s agree in variable , andc,; =0 otherwise: In both cases w,;; = 1. Fora
quantitative variable, w,;; = 1 and

Crsj =1- !xrj - iji/RJ,—

= 1 - tx:j - x;}l’

where R; 1s the range of variable j and x;; = X, R;. Thus if we have d,
quantitative variables, d, dichotomous variables, and d; multistate variables,



then

4,
(- 1x-x,) +ay+my
J=1
Crs= *
(4, +(d, = §,) + dy]

where a, and §, are the number of positive and negative matches, respectively,
for the dichotomous variables, and m, are the number of matches for the
multistate variables. If all the variables are dichotomous, then c,, reduces to
Jaccard’s coefficient, whereas if all the variables are two-state, then ¢, reduces
to the matching coefficient. Williams and Lance [1977] do not recommend its
use if the continuous data are highly skewed, as the range is very sensitive to
skewness.

Gower [1971a] showed that [(c,,)] is positive semidefinite for his coefficient.
From (5.73), d,, = (2 - 2¢,,)"/? satisfies the triangle inequality, being the
Euclidean distance measure for some configuration of points (the factor 2 may
be omitted).

A dissimilarity coefficient can always be obtained from a similarity by
setting d,, = 1 — c,,, though d,, will not be a metric unless c,, satisfies Axiom
(2b) above and 4, satisfies the triangle inequality. For example, if we apply the
scaled Euclidean metric ||x, — x || /d or the Canberra metric (7.6) to binary
0-1 data, we get (B + y)/d, the “one-complement” of the matching coefficient
¢y, 80 that 1 — ¢, is a metric. Similarly, we find that the one-complements of
the Jaccard and Czekanowski coefficients satisfy the triangle inequality (Ihm
[1965]) so that they are also metrics.

TABLE 7.2 Gower's Similarity Coefficients for
(a) Dichotomous and (b) Two State Qualitative
Variables [see Equation (7.8)]

{a) Presence/absence of dichotomous variable J

Object r + + = -
Object 5 + - + -
Cryj 1 0 0 0
W) 1 1 1 0
(b) Two state qualitative variable j

Object r 1 1 2 2
Object 5 1 2 1 2
Crs; 1 0 0 1
w 1 1 1 1

rsj




If we are interested in clustering variables rather than objects, the correla-
tion coefficient for variables j and k is

Z(XU - —?A;)(x:k = Bl
T = : 12 (7:9)

{}:(x,j = i.j)z);(x,k - f.k)z}

1

=2 X%k (7.10)

where %, is x,; suitably “ standardized.” If we define the Euclidean distance d ;
between standardized variables j and k by

dﬁt = E(iu - "";k)z
i
= Ziﬁ + E-‘.‘:Zk - 225{.,5:,*
i i i

=2(1 - "jk)s

then we can use d,, = [2(1 — r;)]'/? to transform the similarity measure 7,
into a distance; the factor 2 can be dropped. However, there are problems with
using a correlation coefficient if one or both of the variables j and k are
nominal (disordered multistate) variables. One solution has been proposed by
Lance and Williams [1968] (see also Anderberg [1973: pp. 96-97]). Dichoto-
mous variables can be handled using the values 0 and 1 (see Exercise 7.12).
Some measures of association between nominal and ordinal variables are
described by Agresti [1981}. Methods for estimating missing values are dis-
cussed by Wishart [1978b] and Gordon [1981: Section 2.4.3].

7.3 HIERARCHICAL CLUSTERING: AGGLOMERATIVE
TECHNIQUES

The agglomerative methods all begin with n clusters each containing just one
object, a proximity matrix for the n objects (we assume, for the moment, that
this is an n X n matrix D = [(d,,)] of dissimilarities), and a measure of
distance between two clusters, where each cluster contains one or more objects.
The first step is to fuse the two nearest objects into a single cluster so that we
now have n — 2 clusters containing one object each and a single cluster of two
objects. The second step is to fuse the two nearest of the n — 1 clusters to form
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Fig. 7.1 Three types of clustering. (a) Spherical clusters. (b) Two or four clusters. (¢) Chaining.
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Fig. 74 Two similar well-separated spherical clusters.



a SINGLE LINKAGE (NEAREST NEIGHBOR) METHOD

If C, and C, are two clusters, then the distance between them is defined to be
the smallest dissimilarity between a member of C, and a member of C, (Sneath
[1957), Sokal and Sneath [1963], Johnson [1967]), namely,

dicyep=min{d,;:r € C;,s € G}, (7.11)

where r denotes “object r.” We demonstrate the fusion process with the
following simple example. Let

1 2 3 4 5
0 70 10 90 80
70 0 60 3.0 5.0
10 60 0 80 7.0 | (7.12)
90 30 80 0 40
80 50 70 40 0

wh B Lo b

The minimum 4, is a, = d,; = 1.0 so that objects 1 and 3 are joined and our
clusters are (1, 3), (2), {4), and (5). Now

d iy 5 = min{dy,, d.} =dyp =60,

diayy. 3= min{dy, dy} = dgy = 8.0,

disa.3 = min{ds;, dsy } = ds3 = 7.0,
and the distance matrix for the clusters is

1,3) 2 4 5

1,3)[ 0 60 80 70
2 |60 0 30 50
4 | 80 30 0 40
5 |70 50 40 0

D,

The smallest entry is @, = d,, = 3.0, so that objects 2 and 4 are joined and our
clusters become (1, 3), (2,4), and (5), with

do e = mi“{du)u.s)’ d(a)(l.a)} = 6.0,

d(sy2.4) = min{ds, dsy}) =dsy =40

and
(1.3) (2.4) 5
p. o L3f0 6.0 7.0
17 (2,4)| 6.0 0 40 |
5 7.0 40 0

The smallest entry is ay = d 5, 4, = 4.0, 50 that object 5 is joined to cluster
(2,4) and .the clust_crs are now (1, 3) and (2, 4, 5). Finally, these two clusters are
fused to give the single cluster (1,2, 3,4, 5). We note that

A1 345 = mm{ 40 3y2.4) d(l,])(S)}

=dy,; =60 (=a4,say)_

3

The above process can be described diagrammatically in the form of a
dendrogram as shown in Fig. 7.5. The vertical scale gives a measure of the size
of a cluster; tight clusters tend to have lower values. In constructing dendro-
grams, some relabeling is generally needed so that each cluster is a contiguous
sequence of objects, for example, the interchange of 2 and 3 as in Fig. 7.5 (for
algorithms, see Exercises 7.13 and 7.19). Although the above technique of
spelling out D,D;,D,, and so on, is a general one and can be applied to other
agglomerative methods, it can be simplified for single linkage using the ordered
d,, as in Table 7.3.



TABLE 7.3 Single-Linkage Clustering for Dis- 1

similarity Matrix (7.12) Gt
Ordered Distances Clusters
dy3 = 10 (1,3), (). (4). (5)
dy =30 (1.3), 2,4, 9 NP . T
d45 = 40 (1} 3)9 (2$41 5)
d,s =50 (1,3),(2,4,5)
dy; = 6.0 (1,2,3,4,5 @=30———————
dys =10 (1,2,3,4,5)
dis = 80 (1,2,3,4,9)
dis =90 (1,2.3.4.5
a = 1.0——
a = 0.0 r_l 4

1 3 2 4 5
Fig. 7.5 Single linkage dendrogram for dissimilarity matrix (7.12).

g LANCE AND WILLIAMS FLEXIBLE METHOD

Lance and Williams [1967a) showed that the preceding methods labeled a—c, ¢,
and f (with P(X,,X,) = ||X; — X,||* in the centroid method) are special cases of
the following formula for the distance between clusters C; and C; U G;:

dieye,uen = Micyey T % ceny T Bdcyen T Y exnen ~ dicsieyl-
(7.19)

Wishart [1969a] then showed that the incremental sum of squares method also
satisfies the above formula (see Exercise 7.17), and the values of the parameters
are given in Table 7.4; n, is the number of objects in cluster C; (i = 1,2,3),
Lance and Williams [1967a] suggested using a fiexible scheme satisfying the
constraints &, + @, + B =1, &y = a,, 8 <1, and y = 0, and recommended a
small negative value of 8 such as B = —0.25. Sibson [1971] noted that (7.19) is
symmetric with regard to C; and C, for all the methods in Table 7.4 so that
these methods are independent of labeling.

TABLE 7.4 Parameters for Lance and Williams [1967] Recurrence

Formula (7.19)
Parameter
Q; B Y
1. Nearest neighbor 3 0 -1
2. Farthest neighbor 1 0 i
3. Centroid ! A 0
T (ny +n,)
n,+n —-n
4. i 3 3
Incremental PR T 0
5. Median 1 -1 0
n!
6. Group average e s 0 0
7. Flexible i1-8 B(<1) 0




