Remarks on L^p -boundedness of wave operators for Schrödinger operators with threshold singularities

K. Yajima*

Abstract

The continuity property in Lebesgue spaces $L^p(\mathbb{R}^m)$ of wave operators W_{\pm} for Schrödinger operator $H = -\Delta + V$ on \mathbb{R}^m is considered when H is of exceptional type, i.e. $\mathcal{N} = \{u \in \langle x \rangle^{-s} L^2(\mathbb{R}^m) \colon (1 + (-\Delta)^{-1}V)u = 0\} \neq \{0\}$. It has recently been proved by Goldbereg and Green for $m \geq 5$ that W_{\pm} are bounded in $L^p(\mathbb{R}^m)$ for $1 \leq p < m/2$, the same holds for $1 \leq p < m$ if all $\phi \in \mathcal{N}$ satisfy $\int_{\mathbb{R}^m} V\phi dx = 0$ and, for $1 \leq p < \infty$ if in addition $\int_{\mathbb{R}^m} x_i V\phi dx = 0$, $i = 1, \ldots, m$. We make the results for p > m/2 more precise and prove in particular that these conditions are also necessary for the stated properties of W_{\pm} . We also prove that, for m = 3, W_{\pm} are bounded in $L^p(\mathbb{R}^3)$ for 1 and that the same holds for <math>1 $if and only if all <math>\phi \in \mathcal{N}$ satisfy $\int_{\mathbb{R}^3} V\phi dx = 0$ and $\int_{\mathbb{R}^3} x_i V\phi dx = 0$, $i = 1, \ldots, 3$, simultaneously.

^{*}Department of Mathematics, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan. Supported by JSPS grant in aid for scientific research No. 22340029