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1 Some preparatory results

In this section we only work with the Euclidian space R?, whose norm is defined by |[x|| =

2?21 |z;|2. The scalar product between two vectors x and y is denoted by (x,y) = 2?21 z;Y;.

Lemma 1.1. Let A be a d X d matriz with real components {a;x}. Define the quantity || A||lus :=

d d
\/Zj:l > k=1 lajk®. Then
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Proof. From the Cauchy-Schwarz inequality we have:
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and after summation over j we have:
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Lemma 1.2. Let K := Bs(a) = {y € R?: ||y — a|| < 6} be an open ball in R:. Let ¢ : K — R
be a CY(K) map (which means that ;¢ exist for all j and are continuous functions on K ). Fix
x € Bs(a). Define the real valued function f(t) = ¢(a+t(x —a)), 0 <t < 1. The function f is
continuous on [0, 1], differentiable on (0,1), and we have the formula:

d
=> (z; (9;0)(a+t(x — a)). (1.2)

Jj=1

Proof. Without loss of generality, we assume that d = 2. Define z(t) = a1 + t(z1 — a1) and
y(t) = as + t(ze — az). With this notation we have f(t) = ¢(z(t),y(¢)). Fix to € (0,1). We may
write:

f(t) = f(to) = ¢(2(t), y(t)) — d(x(to), y(to))

oz (), y(t)) — ¢(x(to), y(t)) + d(x(to), y(t)) — ¢(x(to), y(to))- (1.3)
For a fixed t, let us define the real valued function v(s) := ¢(s,y(t)) on the largest interval which
is compatible with the condition that the vector with components [s, ()] belongs to K. If |t — tg]

is small enough, then both () and z(tq) will belong to this interval. We then can apply the mean
value theorem for v: there exists some § situated between x(t) and z(t) such that

o(@(t)) — v(e(to)) = ' (3)(@(t) - 2(to)) = (B16)(5, y(t)) (21 — ar)(t — to).



Thus we constructed some § situated between z(tg) and z(¢) such that

P(z(1),y(t) — ¢(x(to), y(1)) = (619)(5,y (1)) (z1 — ar)(t = to).

Reasoning in a similar way with the function v(s) = ¢(x(to), s), there exists some § between y(¢)
and y(to) such that

¢(2(t0), y(1)) — d(x(to), y(to)) = (920)(z(to), 3)(x2 — az)(t — to).

Introducing the last two identities in (1.3), if ¢ # ¢y but |¢ — ¢o| small enough we obtain:

f(t) = f(to)

— = (21— a1)(019)(3,y(t)) + (22 — a2)(D20)(z(to), 8). (1.4)

The distance between the point [3,y(¢)] and the point [z(tg), y(to)] tends to zero when ¢ tends
to to. The same thing happens with the distance between [z(to), 5] and [z(to),y(t9)]. Thus the
continuity of the partial derivatives of ¢ at [x(to), y(to)] allows us to write:

7(t0) = g TOZTI) () — a0 @16)alt0), 00 + (2 = ) @20 000). (1)
2
Z (9;0)(a+to(x — a)). (1.5)

This proves the lemma if d = 2. The general case is similar.

Lemma 1.3. Assume that the previous function ¢ is C*(K) (i.e. the second order partial deriva-
tives exist and are continuous on K ). Then 0;0,¢ = 0x0;¢ on K, for all1 < 5,k < d.

Proof. Without loss of generality, assume that d = 2, 7 = 1 and k = 2. We will only prove the
equality of 01(02¢)(a) and 02(01¢)(a); the proof is similar for all the other points of K.

If x is sufficiently close to a, the points with coordinates [z1, as] and [a;, z2] belong to K and
we can define:

9(x) = ¢(x1,72) — d(21,02) — P(ar, x2) + (a1, az).

Denote by v(s) = ¢(s,x2) — ¢(s, as) the function defined on the maximal interval compatible with
the condition that the points [s, x2] and [s, as] belong to K. If x is sufficiently close to a, then all
the real numbers between a; and z; belong to this interval. We observe that g(x) = v(z1) —v(aq).
The mean value theorem applied for v gives us some § between a1 and z; such that:

9(x) =v'(3) (21 — 1) = (21 — @1)[(019)(5, w2) — (010)(5, a2)].

Now define the function u(t) := (01¢)(8,t) where t varies between as and z5. We have:

9(x) = (z1 — ar)[u(z2) — ulaz)] = (1 — a1)(z2 — ax)u'(t) = (21 — a1)(2 — a2)02019(5, 1), (1.6)

where 7 lies between ay and 5.
We will now express g in a different way, using the other mixed second order partial derivative.
Define the function w(t) = ¢(z1,t) — ¢(a1,t). We have:

9(x) = w(zs) — wlaz) = w'({)(z2 — a2) = (x2 — a2)[D2d(21, ) — Oadp(ay, t)]

where £ is between as and z». Applying once again the mean value theorem for the function
O20(s,t), we obtain some § between a; and z; such that:

g(X) = (xl — al)(l“g — a2)8182¢(§,f). (17)



Comparing (1.6) and (1.7), we see that if x is close enough to a but z1 # a1 and x5 # as, we must
have

92016(3,1) = 91026(5, 1),

where both points [3,7] and [3,#] converge to a if ||x — a|| converges to zero. The continuity of
both partial derivatives at a finishes the proof. O

If ¢ € C*(K) and x € K, we define the Hessian matrix H(x) as the d x d matrix having
the components Hjx(x) := 0;0r¢(x). Because of the previous lemma, we have that the Hessian
matrix is self-adjoint.

Lemma 1.4. Assume that the function ¢ in Lemma 1.1 is C*(K). Then for every x € K there
exists some ¢, € (0,1) such that:

Bx) — 0la) = {x — 8, V() + 5 (x —a, Hla+ calx — a)(x - a)). (18)

Proof. For a fixed j, the function ;¢ is C' on K. Define the function f;(t) = d;6(a + t(x — a)),
where t € [0, 1]. The function f; is differentiable and we can apply formula (1.2) in order to write:

d
Z Ty — Qg 8k8]¢(a + t(X — a))
k=1

Consider the function f(t) = ¢(a + t(x — a)) as in Lemma 1.1. We see from (1.2) that f’ is
differentiable and we can write:

d d d
Z a;) f;(¢) ZZ )(xk — ar)00jP(a+ t(x — a))

j=1 j=1k=1
x—a,Ha+t(x—a))(x—a)). (1.9)

\

Moreover, f'(0) = Z?Zl(mj —a;)0;0(a) = (x —a, V¢(a)). Now we can apply the Taylor formula
with remainder, which provides the existence of some number ¢, € (0,1) such that f(1) — f(0) =

o)+ % The subscript = in the notation of ¢, underlines the important fact that this number
can change if x changes. Now since f(1) = ¢(x) and f(0) = ¢(a), the proof is over. O

Lemma 1.5. Let ¢ € CY(K). If a is either a local minimum or maximum, then Vé(a) = 0.

Proof. Consider the function u(t) = ¢(t,as,...,aq) defined on the maximal interval I C R which

is compatible with the condition that [t,as,...,a,] € K. This interval contains a;, and a; is an
interior point of I. Thus a; is a local extremum for u, which implies that u'(a;) = 01¢(a) = 0. A
similar argument shows that all other partial derivatives must be zero at a. O

2 The main results

Theorem 2.1. Let ¢ € C*(K) and assume that a is a critical point (i.e. Vé(a) = 0). If all
the eigenvalues of the Hessian matriz H(a) are positive (negative), then a is a local minimum
(mazimum,).

Proof. Using V¢(a) =0 in (1.8) we have:

$(x) =¢(a)+%<X—avH(a+Cx(X—a))(X—a)>o (2.10)



Add and substract 3 (x —a, H(a)(x — a)) on the right hand side:
¢(x) = ¢(a) + 5 (x —a, H(a)(x — a)) + % (x—a [H(a+c(x—a)) - H(a)](x —a)). (2.11)

Since H(a) is a self-adjoint matrix, the (complex) spectral theorem insures the existence of an
orthonormal basis {¥; }?:1 which consists of eigenvectors of H(a). That is, there exist some real

eigenvalues {\; }?:1 such that H(a)¥,; = A\;¥; for all j. Moreover, because all the entries of H(a)
are real, the eigenvectors can also be chosen to have real components.
An arbitrary vector y € R? can be uniquely expressed as y = Z?:1<y,\llj>\lfj. Using the

linearity of H(a), we have H(a)y = Z?ﬂ(y, Ui H(a)¥; = Z?=1<y, Ui)A;¥;. Using the linearity
of the scalar product, we have that for every vector y we can write:

d
(v, H(@)y) =Y [y, ¥;)]*A;. (2.12)

Jj=1

Now assume that all the eigenvalues are positive. Denote by m > 0 the smallest of them. Then
the above equality becomes:

d
(v, H@)y) >mY_|(y,¥;)|* = mllyl]*, (2.13)
j=1
where the last identity is due to the fact that the basis is orthonormal. Replacing y with x —a
we have:
(x —a, H(a)(x —a)) > m||x — a||*. (2.14)

Introducing this inequality in (2.11) we obtain the inequality:

600 2 0(a) + Tl —all? + 3 - a [Hate,(x—a) - H@)x-a),  (21)

2

which holds for every x € K.
Denote by A, the matrix given by H(a + ¢,(x — a)) — H(a). Using the Cauchy-Schwarz
inequality we have:

[ — a, [H(a+ e (x — a)) — H(a))(x — a))| = [(x - a, A,(x — a))| < [|x — al [[4.(x - a)|.
Now using Lemma 1.1, we have:
|(x —a, [H(a+ c:(x — a)) — H(a)l(x — a))| < |Ix - al|?||As||ns.
Introducing this in (2.15) we have:
$(x) > 6(a) + 5|x — al*(m — | ] Ins), (2.16)
which holds true on K. Now when ||x — al| converges to zero, the components a,, of A, given by
ajr = 0;0r0(a+ cx(x —a)) — 0;0r0(a)
will all go to zero independently of the value of ¢, € (0,1) because the second order partial

derivatives of ¢ are continuous at a. It means that if ||x —al| is smaller than some ¢, then || A, ||us
can be made smaller than m/2. Using this in (2.16), we obtain:

6(x) > ¢la) + llx —all? > ¢(a), Vx € B.(a) C K.



This shows that a is a local minimum for ¢.
If all the eigenvalues are negative, denote by —m < 0 the largest of them. Then (2.12) implies
(y,H(a)y) < —m]||y]||? for all y. Using this in (2.11) we obtain:

Bx) < bla) — T lx —al + 3 {x—a [H(at ea(x —a) - Hla)](x — a)

m — || Az||ns

S — a2,

< ¢(a) -
inequality which holds on K. As before, if € is small enough, then for all x € B.(a) C K we
have that ||A;|lus < m/2 which shows that ¢(x) < ¢(a) on that small ball, hence a is a local
maximum.

O

Theorem 2.2. Let ¢ € C*(K) and assume that a is a critical point (i.e. V(a) = 0). If the
Hessian matriz H(a) has at least one positive eigenvalue Ay > 0 and on the same time at least
one negative etgenvalue A_ < 0, then a is a saddle point.

Proof. Denote by ¥ two real eigenvectors with norm ||¥1|| = 1 corresponding to Ay. We define
the maps x4 (t) := a+ t¥4 on the maximal intervals Ix C R compatible with the condition
x4 (t) € K. Clearly, 0 is an interior point for both I and I_.

Define on I the real valued map ¢4 (t) := ¢(x4(t)). Replacing x with x(¢) in (2.11) we

obtain:
At? t?
O+ (1) = 6la) + “5 + S (U [H(a+ ct¥y) - H@))Ty),

where the number ¢,, € (0,1) got a subscript ¢ in order to explicitly show that it only depends on .

As before, if |¢| is smaller than some €4 > 0, the continuity of the second order partial derivatives
of ¢ at a insure that ||[H(a + ¢:t¥y) — H(a)||us can be made smaller than Ay /2. This implies

2
o1 (t) > ¢(a) + /\Jth, for all || < e4. In other words, we have constructed points x € K which lie

arbitrarily close to a and ¢(x) > ¢(a).
Now consider ¢_(t) = ¢(x_(t)). As above, we obtain:

A_t? 2
o_(t) = p(a) + 5 +§<\P,,[H(a+6tt\lf,) — H(a)]w_),
where again ¢; lies somewhere between 0 and 1. Since |A_| = —A_ > 0, there exists e_ > 0 small

enough such that if |¢t| < e_ we have that ||H(a+ ¢,tV_) — H(a)||us becomes smaller than |A_|/2.

It follows that we have ¢_(t) < ¢(a) — ¥7 for all |t| < e—. Thus we constructed points y € K
which lie arbitrary close to a such that ¢(y) < ¢(a).

We conclude that a is a saddle point.



