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1 Some preparatory results

In this section we only work with the Euclidian space Rd, whose norm is defined by ||x|| =√∑d
j=1 |xj |2. The scalar product between two vectors x and y is denoted by 〈x,y〉 =

∑d
j=1 xjyj .

Lemma 1.1. Let A be a d× d matrix with real components {ajk}. Define the quantity ||A||HS :=√∑d
j=1

∑d
k=1 |ajk|2. Then

||Ax|| ≤ ||A||HS ||x||, ∀x ∈ Rd. (1.1)

Proof. From the Cauchy-Schwarz inequality we have:

|(Ax)j |2 =

(
d∑
k=1

ajkxk

)2

≤
d∑

m=1

|ajm|2
d∑

n=1

|xn|2 =

d∑
m=1

|ajm|2||x||2,

and after summation over j we have:

||Ax||2 =

d∑
j=1

|(Ax)j |2 ≤

 d∑
j=1

d∑
m=1

|ajm|2
 ||x||2.

Lemma 1.2. Let K := Bδ(a) = {y ∈ Rd : ||y − a|| < δ} be an open ball in Rd. Let φ : K 7→ R
be a C1(K) map (which means that ∂jφ exist for all j and are continuous functions on K). Fix
x ∈ Bδ(a). Define the real valued function f(t) = φ(a + t(x − a)), 0 ≤ t ≤ 1. The function f is
continuous on [0, 1], differentiable on (0, 1), and we have the formula:

f ′(t) =

d∑
j=1

(xj − aj)(∂jφ)(a + t(x− a)). (1.2)

Proof. Without loss of generality, we assume that d = 2. Define x(t) = a1 + t(x1 − a1) and
y(t) = a2 + t(x2 − a2). With this notation we have f(t) = φ(x(t), y(t)). Fix t0 ∈ (0, 1). We may
write:

f(t)− f(t0) = φ(x(t), y(t))− φ(x(t0), y(t0))

= φ(x(t), y(t))− φ(x(t0), y(t)) + φ(x(t0), y(t))− φ(x(t0), y(t0)). (1.3)

For a fixed t, let us define the real valued function v(s) := φ(s, y(t)) on the largest interval which
is compatible with the condition that the vector with components [s, y(t)] belongs to K. If |t− t0|
is small enough, then both x(t) and x(t0) will belong to this interval. We then can apply the mean
value theorem for v: there exists some s̃ situated between x(t0) and x(t) such that

v(x(t))− v(x(t0)) = v′(s̃)(x(t)− x(t0)) = (∂1φ)(s̃, y(t))(x1 − a1)(t− t0).
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Thus we constructed some s̃ situated between x(t0) and x(t) such that

φ(x(t), y(t))− φ(x(t0), y(t)) = (∂1φ)(s̃, y(t))(x1 − a1)(t− t0).

Reasoning in a similar way with the function v(s) = φ(x(t0), s), there exists some ŝ between y(t)
and y(t0) such that

φ(x(t0), y(t))− φ(x(t0), y(t0)) = (∂2φ)(x(t0), ŝ)(x2 − a2)(t− t0).

Introducing the last two identities in (1.3), if t 6= t0 but |t− t0| small enough we obtain:

f(t)− f(t0)

t− t0
= (x1 − a1)(∂1φ)(s̃, y(t)) + (x2 − a2)(∂2φ)(x(t0), ŝ). (1.4)

The distance between the point [s̃, y(t)] and the point [x(t0), y(t0)] tends to zero when t tends
to t0. The same thing happens with the distance between [x(t0), ŝ] and [x(t0), y(t0)]. Thus the
continuity of the partial derivatives of φ at [x(t0), y(t0)] allows us to write:

f ′(t0) = lim
t→t0

f(t)− f(t0)

t− t0
= (x1 − a1)(∂1φ)(x(t0), y(t0)) + (x2 − a2)(∂2φ)(x(t0), y(t0))

=

2∑
j=1

(xj − aj)(∂jφ)(a + t0(x− a)). (1.5)

This proves the lemma if d = 2. The general case is similar.

Lemma 1.3. Assume that the previous function φ is C2(K) (i.e. the second order partial deriva-
tives exist and are continuous on K). Then ∂j∂kφ = ∂k∂jφ on K, for all 1 ≤ j, k ≤ d.

Proof. Without loss of generality, assume that d = 2, j = 1 and k = 2. We will only prove the
equality of ∂1(∂2φ)(a) and ∂2(∂1φ)(a); the proof is similar for all the other points of K.

If x is sufficiently close to a, the points with coordinates [x1, a2] and [a1, x2] belong to K and
we can define:

g(x) := φ(x1, x2)− φ(x1, a2)− φ(a1, x2) + φ(a1, a2).

Denote by v(s) = φ(s, x2)−φ(s, a2) the function defined on the maximal interval compatible with
the condition that the points [s, x2] and [s, a2] belong to K. If x is sufficiently close to a, then all
the real numbers between a1 and x1 belong to this interval. We observe that g(x) = v(x1)−v(a1).
The mean value theorem applied for v gives us some s̃ between a1 and x1 such that:

g(x) = v′(s̃)(x1 − a1) = (x1 − a1)[(∂1φ)(s̃, x2)− (∂1φ)(s̃, a2)].

Now define the function u(t) := (∂1φ)(s̃, t) where t varies between a2 and x2. We have:

g(x) = (x1 − a1)[u(x2)− u(a2)] = (x1 − a1)(x2 − a2)u′(t̃) = (x1 − a1)(x2 − a2)∂2∂1φ(s̃, t̃), (1.6)

where t̃ lies between a2 and x2.
We will now express g in a different way, using the other mixed second order partial derivative.

Define the function w(t) = φ(x1, t)− φ(a1, t). We have:

g(x) = w(x2)− w(a2) = w′(t̂)(x2 − a2) = (x2 − a2)[∂2φ(x1, t̂)− ∂2φ(a1, t̂)]

where t̂ is between a2 and x2. Applying once again the mean value theorem for the function
∂2φ(s, t̂), we obtain some ŝ between a1 and x1 such that:

g(x) = (x1 − a1)(x2 − a2)∂1∂2φ(ŝ, t̂). (1.7)
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Comparing (1.6) and (1.7), we see that if x is close enough to a but x1 6= a1 and x2 6= a2, we must
have

∂2∂1φ(s̃, t̃) = ∂1∂2φ(ŝ, t̂),

where both points [s̃, t̃] and [ŝ, t̂] converge to a if ||x − a|| converges to zero. The continuity of
both partial derivatives at a finishes the proof.

If φ ∈ C2(K) and x ∈ K, we define the Hessian matrix H(x) as the d × d matrix having
the components Hjk(x) := ∂j∂kφ(x). Because of the previous lemma, we have that the Hessian
matrix is self-adjoint.

Lemma 1.4. Assume that the function φ in Lemma 1.1 is C2(K). Then for every x ∈ K there
exists some cx ∈ (0, 1) such that:

φ(x)− φ(a) = 〈x− a,∇φ(a)〉+
1

2
〈x− a, H(a + cx(x− a))(x− a)〉 . (1.8)

Proof. For a fixed j, the function ∂jφ is C1 on K. Define the function f̃j(t) = ∂jφ(a + t(x− a)),

where t ∈ [0, 1]. The function f̃j is differentiable and we can apply formula (1.2) in order to write:

f̃ ′j(t) =

d∑
k=1

(xk − ak)∂k∂jφ(a + t(x− a)).

Consider the function f(t) = φ(a + t(x − a)) as in Lemma 1.1. We see from (1.2) that f ′ is
differentiable and we can write:

f ′′(t) =

d∑
j=1

(xj − aj)f̃ ′j(t) =

d∑
j=1

d∑
k=1

(xj − aj)(xk − ak)∂k∂jφ(a + t(x− a))

= 〈x− a, H(a + t(x− a))(x− a)〉 . (1.9)

Moreover, f ′(0) =
∑d
j=1(xj − aj)∂jφ(a) = 〈x− a,∇φ(a)〉. Now we can apply the Taylor formula

with remainder, which provides the existence of some number cx ∈ (0, 1) such that f(1)− f(0) =

f ′(0)+ f ′′(cx)
2 . The subscript x in the notation of cx underlines the important fact that this number

can change if x changes. Now since f(1) = φ(x) and f(0) = φ(a), the proof is over.

Lemma 1.5. Let φ ∈ C1(K). If a is either a local minimum or maximum, then ∇φ(a) = 0.

Proof. Consider the function u(t) = φ(t, a2, . . . , ad) defined on the maximal interval I ⊂ R which
is compatible with the condition that [t, a2, . . . , an] ∈ K. This interval contains a1, and a1 is an
interior point of I. Thus a1 is a local extremum for u, which implies that u′(a1) = ∂1φ(a) = 0. A
similar argument shows that all other partial derivatives must be zero at a.

2 The main results

Theorem 2.1. Let φ ∈ C2(K) and assume that a is a critical point (i.e. ∇φ(a) = 0). If all
the eigenvalues of the Hessian matrix H(a) are positive (negative), then a is a local minimum
(maximum).

Proof. Using ∇φ(a) = 0 in (1.8) we have:

φ(x) = φ(a) +
1

2
〈x− a, H(a + cx(x− a))(x− a)〉 . (2.10)

3



Add and substract 1
2 〈x− a, H(a)(x− a)〉 on the right hand side:

φ(x) = φ(a) +
1

2
〈x− a, H(a)(x− a)〉+

1

2
〈x− a, [H(a + cx(x− a))−H(a)](x− a)〉 . (2.11)

Since H(a) is a self-adjoint matrix, the (complex) spectral theorem insures the existence of an
orthonormal basis {Ψj}dj=1 which consists of eigenvectors of H(a). That is, there exist some real

eigenvalues {λj}dj=1 such that H(a)Ψj = λjΨj for all j. Moreover, because all the entries of H(a)
are real, the eigenvectors can also be chosen to have real components.

An arbitrary vector y ∈ Rd can be uniquely expressed as y =
∑d
j=1〈y,Ψj〉Ψj . Using the

linearity of H(a), we have H(a)y =
∑d
j=1〈y,Ψj〉H(a)Ψj =

∑d
j=1〈y,Ψj〉λjΨj . Using the linearity

of the scalar product, we have that for every vector y we can write:

〈y, H(a)y〉 =

d∑
j=1

|〈y,Ψj〉|2λj . (2.12)

Now assume that all the eigenvalues are positive. Denote by m > 0 the smallest of them. Then
the above equality becomes:

〈y, H(a)y〉 ≥ m
d∑
j=1

|〈y,Ψj〉|2 = m||y||2, (2.13)

where the last identity is due to the fact that the basis is orthonormal. Replacing y with x − a
we have:

〈x− a, H(a)(x− a)〉 ≥ m||x− a||2. (2.14)

Introducing this inequality in (2.11) we obtain the inequality:

φ(x) ≥ φ(a) +
m

2
||x− a||2 +

1

2
〈x− a, [H(a + cx(x− a))−H(a)](x− a)〉 , (2.15)

which holds for every x ∈ K.
Denote by Ax the matrix given by H(a + cx(x − a)) − H(a). Using the Cauchy-Schwarz

inequality we have:

|〈x− a, [H(a + cx(x− a))−H(a)](x− a)〉| = |〈x− a, Ax(x− a)〉| ≤ ||x− a|| ||Ax(x− a)||.

Now using Lemma 1.1, we have:

|〈x− a, [H(a + cx(x− a))−H(a)](x− a)〉| ≤ ||x− a||2||Ax||HS.

Introducing this in (2.15) we have:

φ(x) ≥ φ(a) +
1

2
||x− a||2(m− ||Ax||HS), (2.16)

which holds true on K. Now when ||x− a|| converges to zero, the components ajk of Ax given by

ajk = ∂j∂kφ(a + cx(x− a))− ∂j∂kφ(a)

will all go to zero independently of the value of cx ∈ (0, 1) because the second order partial
derivatives of φ are continuous at a. It means that if ||x−a|| is smaller than some ε, then ||Ax||HS

can be made smaller than m/2. Using this in (2.16), we obtain:

φ(x) ≥ φ(a) +
m

4
||x− a||2 ≥ φ(a), ∀x ∈ Bε(a) ⊂ K.
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This shows that a is a local minimum for φ.
If all the eigenvalues are negative, denote by −m < 0 the largest of them. Then (2.12) implies

〈y, H(a)y〉 ≤ −m||y||2 for all y. Using this in (2.11) we obtain:

φ(x) ≤ φ(a)− m

2
||x− a||2 +

1

2
〈x− a, [H(a + cx(x− a))−H(a)](x− a)〉

≤ φ(a)− m− ||Ax||HS

2
||x− a||2,

inequality which holds on K. As before, if ε is small enough, then for all x ∈ Bε(a) ⊂ K we
have that ||Ax||HS < m/2 which shows that φ(x) ≤ φ(a) on that small ball, hence a is a local
maximum.

Theorem 2.2. Let φ ∈ C2(K) and assume that a is a critical point (i.e. ∇φ(a) = 0). If the
Hessian matrix H(a) has at least one positive eigenvalue λ+ > 0 and on the same time at least
one negative eigenvalue λ− < 0, then a is a saddle point.

Proof. Denote by Ψ± two real eigenvectors with norm ||Ψ±|| = 1 corresponding to λ±. We define
the maps x±(t) := a + tΨ± on the maximal intervals I± ⊂ R compatible with the condition
x±(t) ∈ K. Clearly, 0 is an interior point for both I+ and I−.

Define on I+ the real valued map φ+(t) := φ(x+(t)). Replacing x with x+(t) in (2.11) we
obtain:

φ+(t) = φ(a) +
λ+t

2

2
+
t2

2
〈Ψ+, [H(a + cttΨ+)−H(a)]Ψ+〉 ,

where the number cx ∈ (0, 1) got a subscript t in order to explicitly show that it only depends on t.
As before, if |t| is smaller than some ε+ > 0, the continuity of the second order partial derivatives
of φ at a insure that ||H(a + cttΨ+) − H(a)||HS can be made smaller than λ+/2. This implies

φ+(t) ≥ φ(a) + λ+t
2

4 , for all |t| < ε+. In other words, we have constructed points x ∈ K which lie
arbitrarily close to a and φ(x) > φ(a).

Now consider φ−(t) = φ(x−(t)). As above, we obtain:

φ−(t) = φ(a) +
λ−t

2

2
+
t2

2
〈Ψ−, [H(a + cttΨ−)−H(a)]Ψ−〉 ,

where again ct lies somewhere between 0 and 1. Since |λ−| = −λ− > 0, there exists ε− > 0 small
enough such that if |t| < ε− we have that ||H(a+ cttΨ−)−H(a)||HS becomes smaller than |λ−|/2.

It follows that we have φ−(t) ≤ φ(a)− |λ−|t
2

4 , for all |t| < ε−. Thus we constructed points y ∈ K
which lie arbitrary close to a such that φ(y) < φ(a).

We conclude that a is a saddle point.
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