Notes for the course Analyse 2. Horia Cornean¹, 7/03/2012.

1 Banach's fixed point theorem

Definition 1.1. Let (X, d) be a metric space. A map $F : X \to X$ is called a contraction if there exists $\alpha \in [0, 1)$ such that:

$$d(F(x), F(y)) \le \alpha d(x, y), \quad \forall x, y \in X.$$

$$(1.1)$$

A point $x \in X$ is a fixed point for F if F(x) = x.

Theorem 1.2. Let (X, d) be a complete metric space and $F : X \to X$ a contraction. Then F has a unique fixed point.

Proof. Vi start by showing uniqueness. Assume that there exist $a, b \in X$ such that F(a) = a and F(b) = b. Then (1.1) implies that

$$0 \le d(a,b) = d(F(a),F(b)) \le \alpha d(a,b), \quad (1-\alpha)d(a,b) \le 0,$$

i.e. d(a, b) = 0 and a = b.

Now let us construct such a fixed point. Consider the sequence $\{y_n\}_{n\geq 1} \subset X$, where y_1 is arbitrary and $y_n := F(y_{n-1})$ for every $n \geq 2$. We will show two things:

(i). The sequence is Cauchy in X, thus convergent to a limit y_{∞} because we assumed X to be complete;

(ii). y_{∞} is a fixed point for F.

Let us start with (i). For every $\epsilon > 0$ we will construct $N(\epsilon) > 0$ such that for all $p \ge q \ge N(\epsilon)$ we have $d(y_q, y_p) < \epsilon$. In other words:

$$d(y_q, y_{q+k}) < \epsilon, \quad \forall k \ge 0, \quad \forall q \ge N(\epsilon).$$
(1.2)

If $k \ge 1$, the triangle inequality implies:

$$d(y_q, y_{q+k}) \leq d(y_q, y_{q+1}) + d(y_{q+1}, y_{q+k})$$

$$\leq d(y_q, y_{q+1}) + d(y_{q+1}, y_{q+2}) + d(y_{q+2}, y_{q+k})$$

$$\leq \sum_{i=0}^{k-1} d(y_{q+i}, y_{q+i+1}).$$
 (1.3)

For every $n \ge 1$ we have:

$$d(y_n, y_{n+1}) = d(F(y_{n-1}), F(y_n)) \le \alpha d(y_{n-1}, y_n) \le \dots \le \alpha^{n-1} d(y_1, y_2), \quad \forall n \ge 1.$$

Thus $d(y_{q+i}, y_{q+i+1}) \leq \alpha^{q+i-1} d(y_1, y_2)$ for all $q \geq 1$ and $i \geq 0$. Together with (1.3), this implies:

$$d(y_q, y_{q+k}) \le \alpha^{q-1} d(y_1, y_2) (1 + \dots + \alpha^{k-1}) \le \frac{\alpha^{q-1}}{1 - \alpha} d(y_1, y_2), \quad \forall k \ge 1$$

Because $\alpha < 1$, then $\lim_{q\to\infty} \alpha^q = 0$ and (1.2) follows. We conclude that there exists $y_\infty \in X$ such that

$$\lim_{n \to \infty} d(y_n, y_\infty) = 0. \tag{1.4}$$

Now we prove (ii). For every $n \ge 1$ we have:

$$d(F(y_{\infty}), y_{\infty}) \le d(F(y_{\infty}), F(y_n)) + d(F(y_n), y_{\infty}).$$

But $d(F(y_{\infty}), F(y_n)) \leq \alpha d(y_{\infty}, y_n) \to 0$ and $d(F(y_n), y_{\infty}) = d(y_{n+1}, y_{\infty}) \to 0$ when $n \to \infty$, thus $d(F(y_{\infty}), y_{\infty}) = 0$ and $F(y_{\infty}) = y_{\infty}$.

¹These notes are strongly inspired by the book *Principles of Mathematical Analysis* by Walter Rudin.

2 Local existence and uniqueness for first order ODE's

We start with some general facts about functional spaces.

2.1 Spaces of bounded/continuous functions

Proposition 2.1. Let (A, d) be a metric space, $(Y, || \cdot ||)$ a normed space, and H an arbitrary non-empty subset of A. We define

$$B(H;Y):=\{f:H\to Y: \ \sup_{x\in H}||f(x)||<\infty\}.$$

Define the map $||\cdot||_{\infty} : B(H;Y) \to \mathbb{R}_+, \quad ||f||_{\infty} := \sup_{x \in H} ||f(x)||.$ Then the space $(B(H;Y), ||\cdot||_{\infty})$ is a normed space, and the map $d_{\infty}(f,g) := ||f-g||_{\infty}$ defines a metric.

Proof. Clearly, $||f||_{\infty} = 0$ if and only if f(x) = 0 for all $x \in H$. Moreover,

$$||\lambda f||_{\infty} = \sup_{x \in H} ||\lambda f(x)|| = |\lambda| \sup_{x \in H} ||f(x)|| = |\lambda| ||f||_{\infty}.$$

Finally, let us prove the triangle inequality. Take $f, g \in B(H; Y)$; then for every $x \in H$ we apply the triangle inequality in $(Y, || \cdot ||)$:

$$||f(x) + g(x)|| \le ||f(x)|| + ||g(x)|| \le ||f||_{\infty} + ||g||_{\infty}.$$

Thus $||f||_{\infty} + ||g||_{\infty}$ is an upper bound for the set $\{||f(x) + g(x)|| : x \in H\}$, hence

$$\sup_{x \in H} ||f(x) + g(x)|| = ||f + g||_{\infty} \le ||f||_{\infty} + ||g||_{\infty}.$$

Note that $d_{\infty}(f,g) := ||f - g||_{\infty}$ is the metric induced by the norm.

Proposition 2.2. Denote by C(H;Y) the subset of B(H;Y) where the functions are also continuous. Assume that $(Y, || \cdot ||)$ is a Banach space (a complete normed space). Then $(C(H;Y), || \cdot ||_{\infty})$ is a Banach space, too.

Proof. We need to prove that every Cauchy sequence is convergent. Assume that $\{f_n\}_{n\geq 1} \subset C(H;Y)$ is Cauchy, i.e. for every $\epsilon > 0$ one can find $N_C(\epsilon) > 0$ such that $||f_p - f_q||_{\infty} < \epsilon$ if $p, q > N_C(\epsilon)$. We have to show that the sequence has a limit f which belongs to C(H;Y).

We first construct f. For every $x_0 \in H$ we consider the sequence $\{f_n(x_0)\}_{n\geq 1} \subset Y$. Note the difference between $\{f_n(x_0)\}_{n\geq 1}$ (a sequence of vectors from Y) and $\{f_n\}_{n\geq 1}$ (a sequence of functions from C(H;Y)). It is easy to see that $\{f_n(x_0)\}_{n\geq 1}$ is Cauchy in Y (exercise), and because Y is complete, then $\{f_n(x_0)\}_{n\geq 1}$ has a limit in Y. We denote it with $f(x_0)$. Moreover, since $\{f_n\}_{n\geq 1}$ is Cauchy it must be bounded, i.e. $||f_n||_{\infty} \leq M < \infty$ for all $n \geq 1$. Thus we have:

$$||f(x)|| = \lim_{n \to \infty} ||f_n(x)|| \le M, \quad \forall x \in H,$$

therefore $||f||_{\infty} < \infty$.

Second, we prove the "uniform convergence" part, or the convergence in the norm $||\cdot||_{\infty}$. More precisely, it means that for every $\epsilon > 0$ we must construct $N_1(\epsilon) > 0$ so that:

$$\sup_{x \in H} ||f(x) - f_n(x)|| < \epsilon \quad \text{whenever} \quad n > N_1(\epsilon).$$
(2.1)

In order to do that, take an arbitrary point $x \in H$. For every $p, n \geq 1$ we have

$$\begin{aligned} ||f(x) - f_n(x)|| &\leq ||f(x) - f_p(x)|| + ||f_p(x) - f_n(x)|| \\ &\leq ||f(x) - f_p(x)|| + ||f_p - f_n||_{\infty}. \end{aligned}$$
(2.2)

-	-	٦	
_		J	

If we choose $n, p > N_C(\epsilon/2)$, then we have $||f_p - f_n||_{\infty} < \epsilon/2$ and

$$||f(x) - f_n(x)|| \le ||f(x) - f_p(x)|| + \epsilon/2, \quad n, p > N_C(\epsilon/2).$$

But the above left hand side does not depend on p, thus if we take $p \to \infty$ on the right hand side, we get:

$$||f(x) - f_n(x)|| \le \epsilon/2 < \epsilon, \quad n > N_C(\epsilon/2).$$

$$(2.3)$$

Note that this inequality holds true for every x. This means that $\epsilon/2$ is an upper bound for the set $\{||f(x) - f_n(x)|| : x \in H\}$, hence (2.1) holds true with $N_1(\epsilon) = N_C(\epsilon/2)$.

Third, we must prove that f is a continuous function on H. Fix some point $a \in H$. Choose $\epsilon > 0$. Since $\lim_{n\to\infty} f_n(a) = f(a)$, we can find $N_2(\epsilon, a) > 0$ such that $||f_n(a) - f(a)|| < \epsilon$ whenever $n > N_2$. We define $n_1 := \max\{N_1(\epsilon/3), N_2(\epsilon/3, a)\}$. Because f_{n_1} is continuous at a, we can find $\delta(\epsilon, a) > 0$ so that for every $x \in H$ with $d(x, a) < \delta$ we have $||f_{n_1}(x) - f_{n_1}(a)|| < \epsilon/3$. Thus if $x \in H$ with $d(x, a) < \delta$ we have:

$$||f(x) - f(a)|| \le ||f(x) - f_{n_1}(x)|| + ||f_{n_1}(x) - f_{n_1}(a)|| + ||f_{n_1}(a) - f(a)|| < 2||f - f_{n_1}||_{\infty} + ||f_{n_1}(x) - f_{n_1}(a)|| < \epsilon.$$
(2.4)

Since a is arbitrary, we can conclude that f is continuous on H, thus belongs to C(H;Y). Therefore we can rewrite (2.1) as:

$$||f - f_n||_{\infty} < \epsilon \quad \text{whenever} \quad n > N_1(\epsilon), \tag{2.5}$$

and the proof is over.

Remark 2.3. The "ordinary" convergence in the functional space $(C(H;Y), || \cdot ||_{\infty})$ (given in (2.5)) is nothing but the uniform convergence of a sequence of functions defined on the set H (see (2.1)). One can find more details in Wade, exercise 10.6.6 in Chapter 10.6 (page 376).

2.2 The main theorem

Let U be an open set in \mathbb{R}^d , $d \ge 1$, and $I \subset \mathbb{R}$ an open interval. Assume that there exist $\mathbf{y}_0 \in U$ and $r_0, \delta_0 > 0$ such that $\overline{B_{r_0}(\mathbf{y}_0)} \subset U$ and $[t_0 - \delta_0, t_0 + \delta_0] \subset I$.

We consider a continuous function $\mathbf{f}: I \times U \to \mathbb{R}^d$ for which there exists L > 0 such that

$$\|\mathbf{f}(t,\mathbf{x}) - \mathbf{f}(t,\mathbf{y})\| \le L \|\mathbf{x} - \mathbf{y}\|, \quad \forall t \in [t_0 - \delta_0, t_0 + \delta_0], \quad \forall \mathbf{x}, \mathbf{y} \in \overline{B_{r_0}(\mathbf{y}_0)}.$$
 (2.6)

We define the compact set $H_0 := [t_0 - \delta_0, t_0 + \delta_0] \times \overline{B_{r_0}(\mathbf{y}_0)} \subset \mathbb{R}^{n+1}$. Because **f** is continuous, the set $\mathbf{f}(H_0)$ is also compact (see Theorem 10.61 in Wade), hence bounded. Thus we can find $M < \infty$ such that

$$\sup_{(t,\mathbf{x})\in H_0} \|\mathbf{f}(t,\mathbf{x})\| =: M < \infty.$$
(2.7)

Consider the initial value problem:

$$\mathbf{y}'(t) = \mathbf{f}(t, \mathbf{y}), \quad y(t_0) = \mathbf{y}_0. \tag{2.8}$$

Theorem 2.4. Define

$$\delta_1 := \min\{\delta_0, r_0/M, 1/L\}.$$

Then the equation (2.8) has a unique solution for $t \in]t_0 - \delta_1, t_0 + \delta_1[$.

Proof. Take some $0 < \delta < \delta_1$ and define the compact interval $K := [t_0 - \delta, t_0 + \delta] \subset \mathbb{R}$. Then any continuous function $\phi : K \to \mathbb{R}^d$ is automatically bounded, and since the Euclidian space $Y = \mathbb{R}^d$ is a Banach space, we can conclude from Proposition 2.2 that the space $(C(K; \mathbb{R}^d), d_\infty)$ of continuous functions defined on the compact K with values in \mathbb{R}^d is a complete metric space. Define

 $X := \{ g \in C(K; \mathbb{R}^d) : g(t) \in \overline{B_{r_0}(\mathbf{y}_0)}, \ \forall t \in K \}.$ (2.9)

Lemma 2.5. The metric space (X, d_{∞}) is complete.

Proof. Consider a Cauchy sequence $\{f_n\}_{n\geq 1} \subset X$. Because $(C(K; \mathbb{R}^d), d_{\infty})$ is complete, we can find $f_{\infty} \in C(H; \mathbb{R}^d)$ such that $\lim_{n\to\infty} d_{\infty}(f_n, f_{\infty}) = 0$. Thus for every $t \in H$ we have

$$f_{\infty}(t) = \lim_{n \to \infty} f_n(t), \quad \lim_{n \to \infty} \|f_n(t) - f_{\infty}(t)\| = 0.$$

Since by assumption $||f_n(t) - \mathbf{y}_0|| \le r_0$ for all t and n, we have

$$\|f_{\infty}(t) - \mathbf{y}_0\| = \lim_{n \to \infty} \|f_n(t) - \mathbf{y}_0\| \le r_0, \quad \forall t \in K,$$

which implies that $f_{\infty} \in X$.

Lemma 2.6. Define the map $F: X \to C(K; \mathbb{R}^d)$

$$[F(g)](t) := \mathbf{y}_0 + \int_{t_0}^t \mathbf{f}(s, g(s)) ds, \quad \forall t \in K,$$

where \mathbf{f} is given in (2.6). Then:

(i). The range of F belongs to X;

(ii). $F: X \to X$ is a contraction.

Proof. (i). Because $g(s) \in \overline{B_{r_0}(\mathbf{y}_0)}$ for all $s \in K$, we have that $(s, g(s)) \in H_0$ for all $s \in K$. Thus (see (2.7)) $\sup_{s \in K} \|\mathbf{f}(s, g(s))\| \leq M$ and

$$\left\| [F(g)](t) - \mathbf{y}_0 \right\| \le \left\| \int_{t_0}^t \mathbf{f}(s, g(s)) ds \right\| \le M\delta < r_0, \quad \forall t \in K,$$

which means that $[F(g)](t) \in \overline{B_{r_0}(\mathbf{y}_0)}$ for all $t \in K$.

(ii). Consider two functions $g, h \in X$. We have

$$d_{\infty}(F(g), F(h)) = \sup_{t \in K} \| [F(g)](t) - [F(h)](t) \|.$$

But the Lipschitz condition from (2.6) implies:

$$|F(g)](t) - [F(h)](t)| = \left| \int_{t_0}^t [\mathbf{f}(s, g(s)) - \mathbf{f}(s, h(s))] ds \right| \le (\delta L) \sup_{s \in K} ||g(s) - h(s)|| \le (\delta L) d_{\infty}(g, h), \quad \forall t \in K.$$
(2.10)

It means that $d_{\infty}(F(g), F(h)) \leq (\delta L) d_{\infty}(g, h)$ for all $g, h \in X$, and remember that $\delta L < 1$. Thus F is a contraction.

Finishing the proof of Theorem 2.4. Vi have seen that F is a contraction on X. Then Theorem 1.2 implies that there exists a continuous function $\mathbf{y}: K \to \overline{B_{r_0}(\mathbf{y}_0)}$ such that

$$\mathbf{y}(t) = [F(\mathbf{y})](t) = \mathbf{y}_0 + \int_{t_0}^t \mathbf{f}(s, \mathbf{y}(s)) ds, \quad t \in [t_0 - \delta, t_0 + \delta]$$

It means that **y** is differentiable for $t \in]t_0 - \delta, t_0 + \delta[$ and (2.8) is satisfied.

Remark 2.7. Choose $0 < \delta < \delta_1$. Define the sequence of functions $\mathbf{y}_k : [t_0 - \delta, t_0 + \delta] \to \mathbb{R}^d$, $k \ge 1$, where $\mathbf{y}_1(t) = \mathbf{y}_0$ and

$$\mathbf{y}_{k+1}(t) = \mathbf{y}_0 + \int_{t_0}^t \mathbf{f}(s, \mathbf{y}_k(s)) ds, \quad k \ge 1.$$

We see that $\mathbf{y}_{k+1} = F(\mathbf{y}_k)$, where F is given by Lemma 2.6. A direct use of Lemma 2.6 (ii) implies that $\{\mathbf{y}_k\}_{k\geq 1}$ converges uniformly on the interval $[t_0 - \delta, t_0 + \delta]$ towards a continuous function \mathbf{y}_{∞} which obeys the fixed point equation

$$\mathbf{y}_{\infty}(t) = \mathbf{y}_0 + \int_{t_0}^t \mathbf{f}(s, \mathbf{y}_{\infty}(s)) ds,$$

thus solving (2.8). This is Picard's iteration method.

3 The inverse function theorem

In this section we only work with the Euclidian space \mathbb{R}^d , whose norm is defined by $||\mathbf{x}|| = \sqrt{\sum_{j=1}^d |x_j|^2}$.

Lemma 3.1. Let A be a $d \times d$ matrix with real components $\{a_{jk}\}$. Define the quantity $||A||_{\text{HS}} := \sqrt{\sum_{j=1}^{d} \sum_{k=1}^{d} |a_{jk}|^2}$. Then

$$||A\mathbf{x}|| \le ||A||_{\mathrm{HS}} ||x||, \qquad \forall \mathbf{x} \in \mathbb{R}^d.$$
(3.1)

Proof. From the Cauchy-Schwarz inequality we have:

$$|(A\mathbf{x})_j|^2 = \left(\sum_{k=1}^d a_{jk} x_k\right)^2 \le \sum_{m=1}^d |a_{jm}|^2 \sum_{n=1}^d |x_n|^2 = \sum_{m=1}^d |a_{jm}|^2 ||\mathbf{x}||^2,$$

and the lemma follows after summation with respect to j.

Lemma 3.2. Let $K := \overline{B_{\delta}(\mathbf{x}_0)} = \{\mathbf{y} \in \mathbb{R}^d : ||\mathbf{y} - \mathbf{x}_0|| \leq \delta\}$ be a closed ball in \mathbb{R}^d . Let $\phi : \mathbb{R}^d \mapsto \mathbb{R}$ be a $C^1(K)$ map (which means that $\partial_j \phi$ exist for all j and are continuous functions on K). Denote by $||\partial_j \phi||_{\infty} = \sup_{\mathbf{x} \in K} |\partial_j \phi(\mathbf{x})| < \infty$. Then for every $\mathbf{u}, \mathbf{w} \in K$ we have:

$$|\phi(\mathbf{u}) - \phi(\mathbf{w})| \le \sqrt{\sum_{j=1}^{d} ||\partial_j \phi||_{\infty}^2} ||\mathbf{u} - \mathbf{w}||.$$
(3.2)

Proof. Define the real valued map $f(t) = \phi((1-t)\mathbf{w} + t\mathbf{u}), 0 \le t \le 1$. Applying the chain rule we obtain:

$$f'(t) = \sum_{j=1}^{a} (u_j - w_j)(\partial_j \phi)((1-t)\mathbf{w} + t\mathbf{u}),$$

thus the Cauchy-Schwarz inequality implies:

$$|f'(t)| \le \sqrt{\sum_{j=1}^{d} |\partial_j \phi| ((1-t)\mathbf{w} + t\mathbf{u})|^2} ||\mathbf{u} - \mathbf{w}|| \le \sqrt{\sum_{j=1}^{d} ||\partial_j \phi||_{\infty}^2} ||\mathbf{u} - \mathbf{w}||, \quad \forall 0 < t < 1.$$

Since $\phi(\mathbf{u}) - \phi(\mathbf{w}) = f(1) - f(0) = \int_0^1 f'(t) dt$, we obtain:

$$|\phi(\mathbf{u}) - \phi(\mathbf{w})| \le \int_0^1 |f'(t)| dt \le \sqrt{\sum_{j=1}^d ||\partial_j \phi||_\infty^2} ||\mathbf{u} - \mathbf{w}||$$

which proves (3.2).

Lemma 3.3. Let K be as above. Let $\mathbf{f} : \mathbb{R}^d \mapsto \mathbb{R}^d$ a vector valued map which is $C^1(K)$ (which means that $\partial_j f_k$ exist and are continuous functions on K). Define

$$||\Delta \mathbf{f}||_{\infty,K} := \sqrt{\sum_{k=1}^d \sum_{j=1}^d ||\partial_j f_k||_\infty^2}$$

Then we have:

$$||\mathbf{f}(\mathbf{u}) - \mathbf{f}(\mathbf{w})|| \le ||\Delta \mathbf{f}||_{\infty, K} ||\mathbf{u} - \mathbf{w}||, \quad \forall \mathbf{u}, \mathbf{w} \in K.$$
(3.3)

Proof. Use (3.2) with ϕ replaced by f_k . We have:

$$|f_k(\mathbf{u}) - f_k(\mathbf{w})|^2 \le \sum_{j=1}^d ||\partial_j f_k||_{\infty}^2 ||\mathbf{u} - \mathbf{w}||^2$$

and then sum over k.

Lemma 3.4. Using the above notation, define $\mathbf{g}(\mathbf{x}) = \mathbf{f}(\mathbf{x}) - [D\mathbf{f}(\mathbf{x}_0)]\mathbf{x}$, where $[D\mathbf{f}(\mathbf{x}_0)]$ is the Jacobi matrix with elements $[D\mathbf{f}(\mathbf{x}_0)]_{kj} = (\partial_j f_k)(\mathbf{x}_0)$. Then for every $\beta > 0$ there exists a $\delta_\beta > 0$ such that for every $0 < \delta < \delta_\beta$ we have:

$$||\mathbf{g}(\mathbf{u}) - \mathbf{g}(\mathbf{w})|| \le \beta ||\mathbf{u} - \mathbf{w}||, \quad \forall \mathbf{u}, \mathbf{w} \in K.$$
(3.4)

Proof. A straightforward computation gives $\partial_j g_k(\mathbf{x}) = \partial_j f_k(\mathbf{x}) - \partial_j f_k(\mathbf{x}_0)$. Thus $||\partial_j g_k||_{\infty}$ can be made arbitrarily small when δ gets smaller, because \mathbf{f} has continuous partial derivatives. It follows that $||\Delta \mathbf{g}||_{\infty,K} \leq \beta$ whenever δ gets smaller than some small enough δ_{β} , and then we can use (3.3) with \mathbf{g} instead of \mathbf{f} .

Lemma 3.5. Let $\mathbf{a} \in \mathbb{R}^d$ and let $U \subset \mathbb{R}^d$ be an open set with $\mathbf{a} \in U$. Let \mathbf{f} be a $C^1(U)$ vector valued function, such that $[D\mathbf{f}(\mathbf{a})]$ is an invertible matrix. Then there exists r > 0 small enough such that the restriction of \mathbf{f} to $B_r(\mathbf{a})$ is injective.

Proof. Assume the contrary: for every r > 0 we can find two different points $\mathbf{x}_r \neq \mathbf{y}_r$ in $B_r(\mathbf{a})$ such that $\mathbf{f}(\mathbf{x}_r) = \mathbf{f}(\mathbf{y}_r)$. Define $\mathbf{g}(\mathbf{x}) = \mathbf{f}(\mathbf{x}) - [D\mathbf{f}(\mathbf{a})]\mathbf{x}$ on $B_r(\mathbf{a})$. Then we have $\mathbf{g}(\mathbf{x}_r) - \mathbf{g}(\mathbf{y}_r) = [D\mathbf{f}(\mathbf{a})](\mathbf{y}_r - \mathbf{x}_r)$ or:

$$\mathbf{y}_r - \mathbf{x}_r = [D\mathbf{f}(\mathbf{a})]^{-1} (\mathbf{g}(\mathbf{x}_r) - \mathbf{g}(\mathbf{y}_r)), \quad \forall r > 0.$$

Now using (3.1) we have:

$$||\mathbf{y}_r - \mathbf{x}_r|| = ||[D\mathbf{f}(\mathbf{a})]^{-1}||_{\mathrm{HS}} ||\mathbf{g}(\mathbf{x}_r) - \mathbf{g}(\mathbf{y}_r)||, \quad \forall r > 0.$$

Choosing $\beta = \frac{1}{1+||[D\mathbf{f}(\mathbf{a})]^{-1}||_{\mathrm{HS}}}$, then (3.4) claims that there exists some $r_{\beta} > 0$ sufficiently small such that for every $r \leq r_{\beta}$ we have $||\mathbf{g}(\mathbf{x}_{r}) - \mathbf{g}(\mathbf{y}_{r})|| \leq \beta ||\mathbf{y}_{r} - \mathbf{x}_{r}||$. It follows that:

$$||\mathbf{y}_r - \mathbf{x}_r|| \le \frac{||[D\mathbf{f}(\mathbf{a})]^{-1}||_{\mathrm{HS}}}{1 + ||[D\mathbf{f}(\mathbf{a})]^{-1}||_{\mathrm{HS}}} ||\mathbf{y}_r - \mathbf{x}_r|| < ||\mathbf{y}_r - \mathbf{x}_r||, \quad \forall 0 < r < r_{\beta},$$

which contradicts the assumption $||\mathbf{y}_r - \mathbf{x}_r|| \neq 0$.

Lemma 3.6. Let \mathbf{f} be as in Lemma 3.5, and consider the injective restriction of f to $B_r(\mathbf{a})$. Then by eventually making r even smaller we have that the Jacobi matrix $[D\mathbf{f}(\mathbf{x})]$ is invertible for every $\mathbf{x} \in B_r(\mathbf{a})$.

Proof. The matrix $[D\mathbf{f}(\mathbf{x})]$ is invertible if and only if its determinant det $[D\mathbf{f}(\mathbf{x})] \neq 0$. But the determinant is a continuous function of \mathbf{x} since \mathbf{f} is C^1 . Because $[D\mathbf{f}(\mathbf{a})]$ is invertible, it follows that $|\det[D\mathbf{f}(\mathbf{a})]| > 0$. Being continuous at \mathbf{a} , the determinant has the property that $|\det[D\mathbf{f}(\mathbf{x})]| \geq |\det[D\mathbf{f}(\mathbf{a})]|/2 > 0$ on a small ball around \mathbf{a} . Thus $[D\mathbf{f}(\mathbf{x})]$ is invertible there. \Box

Theorem 3.7. Let \mathbf{f} be C^1 on an open set containing $\mathbf{a} \in \mathbb{R}^d$, such that $[D\mathbf{f}(\mathbf{a})]$ is invertible. Then there exists r > 0 small enough such that the restriction of f to $B_r(\mathbf{a})$ is injective, and $[D\mathbf{f}(\mathbf{x})]$ is invertible for every $\mathbf{x} \in B_r(\mathbf{a})$. Moreover, if $V := f(B_r(\mathbf{a}))$, the following facts hold true:

(i). The set V is open in \mathbb{R}^d ;

(ii). The inverse $\mathbf{f}^{-1}: V \mapsto B_r(\mathbf{a})$ is a $C^1(V)$ function, and we have:

$$[D\mathbf{f}^{-1}(\mathbf{y})] = [D\mathbf{f}(\mathbf{f}^{-1}(\mathbf{y}))]^{-1}.$$

Proof. The ball $B_r(\mathbf{a})$ has already been constructed in Lemma 3.6, hence we only need to prove (i) and (ii).

We start with (i). Assume that $\mathbf{y}_0 \in V$, thus equal to $\mathbf{f}(\mathbf{x}_0)$ for some $\mathbf{x}_0 \in B_r(\mathbf{a})$. We will show that \mathbf{y}_0 is an interior point of V. This means that we must show the existence of a small ball $B_{\epsilon}(\mathbf{y}_0)$ which is completely contained in V. In other words, we have to prove that there exists a sufficiently small $\epsilon > 0$ such that for every $\mathbf{y} \in \mathbb{R}^d$ with $||\mathbf{y} - \mathbf{y}_0|| < \epsilon$ we can find a point $\mathbf{x}_{\mathbf{y}} \in B_r(\mathbf{a})$ such that $\mathbf{f}(\mathbf{x}_q) = \mathbf{y} \in V$, hence $B_{\epsilon}(\mathbf{y}_0) \subset V$.

So the main question we need to answer is the solvability of the equation $\mathbf{f}(\mathbf{x}) = \mathbf{y}$. This equation is equivalent with:

$$0 = \mathbf{f}(\mathbf{x}) - \mathbf{y} = \mathbf{f}(\mathbf{x}) - \mathbf{f}(\mathbf{x}_0) - [D\mathbf{f}(\mathbf{x}_0)](\mathbf{x} - \mathbf{x}_0) + [D\mathbf{f}(\mathbf{x}_0)](\mathbf{x} - \mathbf{x}_0) + \mathbf{y}_0 - \mathbf{y}.$$

Denote by $\mathbf{g}(\mathbf{x}) = \mathbf{f}(\mathbf{x}) - [D\mathbf{f}(\mathbf{x}_0)]\mathbf{x}$. Then we have the equivalence between $0 = \mathbf{f}(\mathbf{x}) - \mathbf{y}$ and the equation

$$\mathbf{g}(\mathbf{x}) - \mathbf{g}(\mathbf{x}_0) + [D\mathbf{f}(\mathbf{x}_0)](\mathbf{x} - \mathbf{x}_0) + \mathbf{y}_0 - \mathbf{y} = 0$$

Since $[D\mathbf{f}(\mathbf{x}_0)]$ is invertible, we can isolate \mathbf{x} and write another equivalent equation:

$$\mathbf{x} = \mathbf{x}_0 + [D\mathbf{f}(\mathbf{x}_0)]^{-1}(\mathbf{y} - \mathbf{y}_0) - [D\mathbf{f}(\mathbf{x}_0)]^{-1}(\mathbf{g}(\mathbf{x}) - \mathbf{g}(\mathbf{x}_0)).$$

This looks like a fixed point equation. Indeed, let us denote by

$$F_{\mathbf{y}}(\mathbf{x}) := \mathbf{x}_0 + [D\mathbf{f}(\mathbf{x}_0)]^{-1}(\mathbf{y} - \mathbf{y}_0) - [D\mathbf{f}(\mathbf{x}_0)]^{-1}(\mathbf{g}(\mathbf{x}) - \mathbf{g}(\mathbf{x}_0)).$$
(3.5)

It follows that if we can find a fixed point for $F_{\mathbf{y}}$, it will also solve the equation $\mathbf{f}(\mathbf{x}) = \mathbf{y}$.

We note first that using (3.1) we have:

$$||F_{\mathbf{y}}(\mathbf{x}) - \mathbf{x}_{0}|| \le ||[D\mathbf{f}(\mathbf{x}_{0})]^{-1}||_{\mathrm{HS}}(||\mathbf{y} - \mathbf{y}_{0}|| + ||\mathbf{g}(\mathbf{x}) - \mathbf{g}(\mathbf{x}_{0})||).$$
(3.6)

Choosing $\beta = \beta_1 = \frac{1}{3(1+||[D\mathbf{f}(\mathbf{x}_0)]^{-1}||_{\mathrm{HS}})}$ in (3.4), it follows that there exists a $\delta_1 > 0$ small enough, in any case smaller than $r - ||\mathbf{x}_0 - \mathbf{a}||$, such that for every $\delta < \delta_1$ and $||\mathbf{x} - \mathbf{x}_0|| < \delta$, we have $||\mathbf{g}(\mathbf{x}) - \mathbf{g}(\mathbf{x}_0)|| \leq \beta_1 ||\mathbf{x} - \mathbf{x}_0||$, thus:

$$||F_{\mathbf{y}}(\mathbf{x}) - \mathbf{x}_0|| \le ||[D\mathbf{f}(\mathbf{x}_0)]^{-1}||_{\mathrm{HS}}||\mathbf{y} - \mathbf{y}_0|| + \frac{\delta}{3}, \quad \forall \mathbf{x} \in \overline{B_{\delta}(\mathbf{x}_0)} \subset B_r(\mathbf{a}).$$
(3.7)

In particular, if

$$||\mathbf{y} - \mathbf{y}_0|| < \frac{\delta}{3(1 + ||[D\mathbf{f}(\mathbf{x}_0)]^{-1}||_{\mathrm{HS}})} =: \epsilon_\delta$$
(3.8)

then (3.7) states that

$$||F_{\mathbf{y}}(\mathbf{x}) - \mathbf{x}_0|| \le \frac{2\delta}{3} \le \delta, \quad \forall \mathbf{x} \in \overline{B_{\delta}(\mathbf{x}_0)} \subset B_r(\mathbf{a}).$$
(3.9)

This proves that if δ is smaller than some critical value δ_1 and $||\mathbf{y} - \mathbf{y}_0|| < \epsilon_{\delta}$, then the map $F_{\mathbf{y}}$ invariates any closed ball $K := \overline{B_{\delta}(\mathbf{x}_0)}$, i.e. $F_{\mathbf{y}}(K) \subset K$.

Now we want to show that choosing δ even smaller, the map $F_{\mathbf{y}}$ becomes a contraction. Indeed, from its definition in (3.5) we have:

$$F_{\mathbf{y}}(\mathbf{u}) - F_{\mathbf{y}}(\mathbf{w}) = -[D\mathbf{f}(\mathbf{x}_0)]^{-1}(\mathbf{g}(\mathbf{u}) - \mathbf{g}(\mathbf{w})),$$

or

$$||F_{\mathbf{y}}(\mathbf{u}) - F_{\mathbf{y}}(\mathbf{w})|| \le ||[D\mathbf{f}(\mathbf{x}_0)]^{-1}||_{\mathrm{HS}} ||\mathbf{g}(\mathbf{u}) - \mathbf{g}(\mathbf{w})||, \quad \forall \mathbf{u}, \mathbf{w} \in \overline{B_{\delta}(\mathbf{x}_0)}.$$

Use again (3.4) with $\beta = \frac{1}{2(1+||[D\mathbf{f}(\mathbf{x}_0)]^{-1}||_{\mathrm{HS}})}$: we obtain some $\delta_2 < \delta_1$ such that $F_{\mathbf{y}}(\overline{B_{\delta_2}(\mathbf{x}_0)}) \subset \overline{B_{\delta_2}(\mathbf{x}_0)}$ and

$$||F_{\mathbf{y}}(\mathbf{u}) - F_{\mathbf{y}}(\mathbf{w})|| \leq \frac{1}{2} ||\mathbf{u} - \mathbf{w}||, \quad \forall \mathbf{u}, \mathbf{w} \in \overline{B_{\delta_2}(\mathbf{x}_0)}.$$

Banach's fixed point theorem states that there exists a unique solution $\mathbf{x}_y \in \overline{B_{\delta_2}(\mathbf{x}_0)}$ which solves the equation $F_{\mathbf{y}}(\mathbf{x}) = \mathbf{x}$. Going back to (3.9) we conclude that if $||\mathbf{y} - \mathbf{f}(x_0)|| < \epsilon_{\delta_2}$, then there exists a solution $\mathbf{x}_y \in \overline{B_{\delta_2}(\mathbf{x}_0)}$ which solves the equation $\mathbf{f}(\mathbf{x}_y) = \mathbf{y}$. Since \mathbf{f} is injective on its domain, this solution is also unique. Moreover, $B_{\epsilon_{\delta_2}}(\mathbf{y}_0) \subset V$. Since \mathbf{y}_0 was arbitrary, V is open.

Let us now prove (ii). For any $\mathbf{y} \in V$ we constructed $\mathbf{x}_y = \mathbf{f}^{-1}(\mathbf{y})$ which solves $\mathbf{f}(\mathbf{x}_y) = \mathbf{y}$ and $F_{\mathbf{y}}(\mathbf{x}_y) = \mathbf{x}_y$. The fixed point equation rewrites as:

$$\mathbf{x}_{\mathbf{y}} - \mathbf{x}_0 = [D\mathbf{f}(\mathbf{x}_0)]^{-1}(\mathbf{y} - \mathbf{y}_0) - [D\mathbf{f}(\mathbf{x}_0)]^{-1}(\mathbf{g}(\mathbf{x}_{\mathbf{y}}) - \mathbf{g}(\mathbf{x}_0)).$$
(3.10)

We know that as soon as $||\mathbf{y} - \mathbf{y}_0|| < \epsilon_{\delta_2}$, the point $\mathbf{x}_{\mathbf{y}}$ belongs to the ball around \mathbf{x}_0 where $||\mathbf{g}(\mathbf{x}_{\mathbf{y}}) - \mathbf{g}(\mathbf{x}_0)|| \le \frac{1}{2(1+||[D\mathbf{f}(\mathbf{x}_0)]^{-1}||_{\mathrm{HS}})} ||\mathbf{x}_{\mathbf{y}} - \mathbf{x}_0||$. Using this in (3.10) we get:

$$||\mathbf{x}_{\mathbf{y}} - \mathbf{x}_{0}|| \le ||[D\mathbf{f}(\mathbf{x}_{0})]^{-1}||_{\mathrm{HS}} ||\mathbf{y} - \mathbf{y}_{0}|| + \frac{1}{2}||\mathbf{x}_{\mathbf{y}} - \mathbf{x}_{0}||,$$

or $||\mathbf{x}_{\mathbf{y}} - \mathbf{x}_{0}|| \leq 2||[D\mathbf{f}(\mathbf{x}_{0})]^{-1}||_{\mathrm{HS}} ||\mathbf{y} - \mathbf{y}_{0}||$ for $||\mathbf{y} - \mathbf{y}_{0}||$ smaller than some critical value $\epsilon_{\delta_{2}}$. In other words, it means that

$$\lim_{\mathbf{y}\to\mathbf{y}_0} \mathbf{f}^{-1}(\mathbf{y}) = \mathbf{f}^{-1}(\mathbf{y}_0), \quad ||\mathbf{f}^{-1}(\mathbf{y}) - \mathbf{f}^{-1}(\mathbf{y}_0)|| \le C ||\mathbf{y} - \mathbf{y}_0||,$$

which shows that \mathbf{f}^{-1} is continuous on V. Moreover, (3.4) and the above estimate show that

$$\lim_{\mathbf{y}\to\mathbf{y}_0}\frac{||\mathbf{g}(\mathbf{x}_{\mathbf{y}})-\mathbf{g}(\mathbf{x}_0)||}{||\mathbf{y}-\mathbf{y}_0||}=0.$$

Finally, we conclude from (3.10) that

$$\lim_{\mathbf{y} \to \mathbf{y}_0} \frac{||\mathbf{f}^{-1}(\mathbf{y}) - \mathbf{f}^{-1}(\mathbf{y}_0) - [D\mathbf{f}(\mathbf{x}_0)]^{-1}(\mathbf{y} - \mathbf{y}_0)||}{||\mathbf{y} - \mathbf{y}_0||} = 0$$

which shows that $[D\mathbf{f}^{-1}(\mathbf{y}_0)] = [D\mathbf{f}(\mathbf{x}_0)]^{-1}$ for every pair $\mathbf{f}(\mathbf{x}_0) = \mathbf{y}_0$, and we are done.

4 The implicit function theorem

In this section d = m + n with $1 \le m, n < d$. A vector $\mathbf{x} \in \mathbb{R}^d$ can be uniquely decomposed as $\mathbf{x} = [\mathbf{u}, \mathbf{w}]$ with $\mathbf{u} \in \mathbb{R}^m$ and $\mathbf{w} \in \mathbb{R}^n$.

Lemma 4.1. Assume that D is a $d \times d$ matrix which has the following triangular form:

$$D = \left[\begin{array}{cc} A & B \\ 0_{n \times m} & 1_{n \times n} \end{array} \right],$$

where A is an $m \times m$ matrix and B is an arbitrary $n \times m$ matrix. Then D is invertible if and only if A is invertible and

$$D^{-1} = \begin{bmatrix} A^{-1} & -A^{-1}B \\ 0_{n \times m} & 1_{n \times n} \end{bmatrix}.$$
 (4.1)

Proof. We check by direct computation that $DD^{-1} = D^{-1}D = 1_{d \times d}$.

Lemma 4.2. Let $U \in \mathbb{R}^d$ be an open set and $\mathbf{h} : U \mapsto \mathbb{R}^m$ be a $C^1(U; \mathbb{R}^m)$ function. Denote by $[D_{\mathbf{u}}h](\mathbf{x})$ the partial $m \times m$ Jacobi matrix when \mathbf{w} is kept fixed, and by $[D_{\mathbf{w}}h](\mathbf{x})$ the partial $m \times n$ Jacobi matrix when **u** is kept fixed. Define the function $\mathbf{f} : U \mapsto \mathbb{R}^d$ by the formula $\mathbf{f}([\mathbf{u},\mathbf{w}]) = [\mathbf{h}([\mathbf{u},\mathbf{w}]),\mathbf{w}]$. Then $\mathbf{f} \in C^1(U;\mathbb{R}^d)$ and

$$[D\mathbf{f}](\mathbf{x}) = \begin{bmatrix} [D_{\mathbf{u}}h](\mathbf{x}) & [D_{\mathbf{w}}h](\mathbf{x}) \\ 0_{n \times m} & 1_{n \times n} \end{bmatrix}.$$
(4.2)

Proof. Direct computation.

We can now formulate the implicit function theorem.

Theorem 4.3. Let $U \in \mathbb{R}^d$ be an open set and $\mathbf{h}: U \mapsto \mathbb{R}^m$ be a $C^1(U; \mathbb{R}^m)$ function. Assume that there exists a point $\mathbf{a} = [\mathbf{u}_{\mathbf{a}}, \mathbf{w}_{\mathbf{a}}] \in U$ such that $\mathbf{h}(\mathbf{a}) = 0$ and the $m \times m$ partial Jacobi matrix $[D_{\mathbf{u}}h](\mathbf{a})$ is invertible. Then there exists an open set $E \in \mathbb{R}^n$ containing $\mathbf{w}_{\mathbf{a}}$, and a map $\mathbf{g}: E \mapsto \mathbb{R}^m$ in $C^1(E; \mathbb{R}^m)$, such that $\mathbf{g}(\mathbf{w}_{\mathbf{a}}) = \mathbf{u}_{\mathbf{a}}$ and $\mathbf{h}([\mathbf{g}(\mathbf{w}), \mathbf{w}]) = 0$ for all $\mathbf{w} \in E$. Moreover, $[D_{\mathbf{u}}h]([\mathbf{g}(\mathbf{w}),\mathbf{w}])$ is invertible for all $\mathbf{w} \in E$ and

$$[D\mathbf{g}](\mathbf{w}) = -[D_{\mathbf{u}}h]^{-1}([\mathbf{g}(\mathbf{w}),\mathbf{w}]) \ [D_{\mathbf{w}}h]([\mathbf{g}(\mathbf{w}),\mathbf{w}]).$$
(4.3)

Proof. As in Lemma 4.2 we define $\mathbf{f}([\mathbf{u},\mathbf{w}]) = [\mathbf{h}([\mathbf{u},\mathbf{w}]),\mathbf{w}])$ on U. From Lemma 4.1 and (4.2) we conclude that $[D\mathbf{f}](\mathbf{a})$ is invertible. The inverse function theorem 3.7 provides us with a ball $B_r(\mathbf{a})$ where **f** is injective, $[D\mathbf{f}](\mathbf{x})$ is invertible on $B_r(\mathbf{a})$, and the set $V = \mathbf{f}(B_r(\mathbf{a}))$ is open in \mathbb{R}^d . Of course, the vector $[0, \mathbf{w}_{\mathbf{a}}] = \mathbf{f}(\mathbf{a}) \in V$. Since V is open, there exists $\epsilon > 0$ such that the d dimensional ball $B_{\epsilon}(\mathbf{f}(\mathbf{a})) = \{\mathbf{y} \in \mathbb{R}^d : ||\mathbf{y} - [0, \mathbf{w}_{\mathbf{a}}]|| < \epsilon\} \subset V.$ In general, if $[\mathbf{u}, \mathbf{w}] \in V$, assume that $\mathbf{f}^{-1}([\mathbf{u}, \mathbf{w}]) = [\mathbf{u}', \mathbf{w}'] \in B_r(\mathbf{a})$. Then we must have:

$$[\mathbf{u},\mathbf{w}] = \mathbf{f}(\mathbf{f}^{-1}([\mathbf{u},\mathbf{w}])) = [\mathbf{h}(([\mathbf{u}',\mathbf{w}'])),\mathbf{w}']$$

which shows that $\mathbf{w} = \mathbf{w}'$ and $\mathbf{u} = \mathbf{h}([\mathbf{u}', \mathbf{w}])$. This proves that $\mathbf{f}^{-1}([\mathbf{u}, \mathbf{w}])$ is also of the form $[\mathbf{u}', \mathbf{w}].$

Let us define $E := \{ \mathbf{w} \in \mathbb{R}^n : [0, \mathbf{w}] \in B_{\epsilon}(\mathbf{f}(\mathbf{a})) \}$, which is nothing but the *n* dimensional open ball $B_{\epsilon}(\mathbf{w}_{\mathbf{a}}) \subset \mathbb{R}^n$. Then for every $\mathbf{w} \in E$ we have that $[0, \mathbf{w}] \in V$ and

$$[0, \mathbf{w}] = \mathbf{f}(\mathbf{f}^{-1}([0, \mathbf{w}])) = [h(\mathbf{f}^{-1}([0, \mathbf{w}])), \mathbf{w}].$$
(4.4)

We already know that $\mathbf{f}^{-1}([0, \mathbf{w}])$ must be a vector of the form $[\mathbf{u}', \mathbf{w}]$, where \mathbf{u}' is nothing but the vector obtained from the first m components of $\mathbf{f}^{-1}([0, \mathbf{w}])$. Denote it by $\mathbf{g}(\mathbf{w})$. Then (4.4) implies that $h([\mathbf{g}(\mathbf{w}), \mathbf{w}]) = 0$ on *E*. Moreover,

$$[\mathbf{g}(\mathbf{w}_{\mathbf{a}}), \mathbf{w}_{\mathbf{a}}] = \mathbf{f}^{-1}([0, \mathbf{w}_{\mathbf{a}}]) = \mathbf{a} = [\mathbf{u}_{\mathbf{a}}, \mathbf{w}_{\mathbf{a}}]$$

which implies $\mathbf{g}(\mathbf{w}_{\mathbf{a}}) = \mathbf{u}_{\mathbf{a}}$. Finally, since $(\mathbf{g}(\mathbf{w}))_j = (\mathbf{f}^{-1}([0,\mathbf{w}]))_j$ for $1 \le j \le m$ and $\mathbf{f}^{-1}([0,\mathbf{w}])$ is a $C^1(E; \mathbb{R}^d)$ map, then **g** is $C^1(E; \mathbb{R}^m)$. The formula (4.3) can be easily obtained by applying the chain rule to the equality $\mathbf{h}(\mathbf{g}(\mathbf{w}), \mathbf{w}) = 0$.

