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1 Banach’s fixed point theorem

Definition 1.1. Let (X, d) be a metric space. A map F : X — X is called a contraction if there
exists o € [0,1) such that:

d(F(z), F(y)) < ad(z,y), Vz,yeX. (L.1)
A point x € X is a fized point for F if F(x) = x.

Theorem 1.2. Let (X,d) be a complete metric space and F : X — X a contraction. Then F has
a unique fixed point.

Proof. Vi start by showing uniqueness. Assume that there exist a,b € X such that F(a) = a and
F(b) =b. Then (1.1) implies that

0 <d(a,b) = d(F(a),F(b)) < ad(a,b), (1-a)d(a,b) <0,

i.e. d(a,b) =0 and a = b.

Now let us construct such a fixed point. Consider the sequence {y,}n,>1 C X, where y; is
arbitrary and y,, := F(y,—1) for every n > 2. We will show two things:

(i). The sequence is Cauchy in X, thus convergent to a limit y., because we assumed X to be
complete;

(ii). Yoo is a fixed point for F.

Let us start with (i). For every € > 0 we will construct N(e) > 0 such that for all p > g > N(e)
we have d(yq, yp) < €. In other words:

d(Yq, Yg+x) <€, Yk >0, Vg> N(e). (1.2)
If kK > 1, the triangle inequality implies:

Yq> yq+1) + d(yq+17 yq+k)

Ygr Ygr1) T A(Ygr1, Ygr2) + d(Ygr2, Ygik)
k—1

< AYqtis Yg+i+1)- (1.3)

For every n > 1 we have:
A(Yns Yn+1) = AEF(Yn-1), F(yn)) < ad(Yn—1,yn) < -+ < a" 'd(y1,y2), Vn > 1.

Thus d(Ygtis Ygrit1) < @77 1d(y1,y0) for all ¢ > 1 and ¢ > 0. Together with (1.3), this implies:

A(Ygs Ygrr) < ¥V d(y1, y2)(1 + -+ +a*71) < 1

d(y17y2)7 vk 2 1.
—

Because a < 1, then lim,_,.c a? = 0 and (1.2) follows. We conclude that there exists yoo € X
such that

nh_)ngo A(YnyYoo) = 0. (1.4)
Now we prove (ii). For every n > 1 we have:
A(F (Yoo ), Yoo) < d(F(Yoo), F(yn)) + d(F (yn), Yoo)-

But d(F(yOO),F(yn)) < ad(yomyn) — 0 and d(F(yn)ayw) = d(yn+1ay00> — 0 when n — oo, thus
A(F (Yoo )s Yoo) = 0 and F(yoo) = Yoo- O

IThese notes are strongly inspired by the book Principles of Mathematical Analysis by Walter Rudin.




2 Local existence and uniqueness for first order ODE’s

We start with some general facts about functional spaces.

2.1 Spaces of bounded/continuous functions

Proposition 2.1. Let (A,d) be a metric space, (Y,||-||) a normed space, and H an arbitrary
non-empty subset of A. We define

BH;Y):={f:H—-Y: sug||f(m)|| < 00}
faS
Define the map || - ||oc : B(H;Y) = Ry, ||flloo :=sup,epq ||f(z)||. Then the space (B(H;Y),|| -
lloo) is @ normed space, and the map doo(f,g) :=||f — 9lloo defines a metric.

Proof. Clearly, ||f||cc =0 if and only if f(z) =0 for all « € H. Moreover,

A flloe = sup [[Af(2)]] = [Al sup |[f(@)[] = [A] [[f]]oc-
r€H xeH

Finally, let us prove the triangle inequality. Take f,g € B(H;Y); then for every x € H we
apply the triangle inequality in (Y] - ||):

1 (@) + g(@)[] < |[F (@) + lg(@)]] < [ flloc + [glloc-

Thus ||f]|so + ||9]lec is an upper bound for the set {||f(z) + g(x)|| : * € H}, hence

sup [|f(z) + g(2)[| = [|f + gllec < [[flloo + l1gllco-
zeH

Note that doo (f, 9) := ||f — 9|00 is the metric induced by the norm. O

Proposition 2.2. Denote by C(H;Y') the subset of B(H;Y') where the functions are also contin-
uous. Assume that (Y,||-||) is a Banach space (a complete normed space). Then (C(H;Y),||-||s0)
is a Banach space, too.

Proof. We need to prove that every Cauchy sequence is convergent. Assume that {f,}n>1 C
C(H;Y) is Cauchy, i.e. for every e > 0 one can find N¢(e) > 0 such that ||fp, — fylleo < € if
p,q > Nc(e). We have to show that the sequence has a limit f which belongs to C(H;Y).

We first construct f. For every xy € H we consider the sequence {f,(zo)}n>1 C Y. Note
the difference between {f,(zo)}n>1 (a sequence of vectors from Y) and {f,}n>1 (a sequence
of functions from C(H;Y)). It is easy to see that {f,(x¢)}n>1 is Cauchy in Y (exercise), and
because Y is complete, then {f,(x¢)},>1 has a limit in Y. We denote it with f(zo). Moreover,
since {f,}n>1 is Cauchy it must be bounded, i.e. ||fn]lcc < M < oo for all n > 1. Thus we have:

7@l = lim [|fu@)ll < M, Ve e H,

therefore || f||o < o0.
Second, we prove the "uniform convergence” part, or the convergence in the norm || ||oo. More
precisely, it means that for every € > 0 we must construct Ny(e) > 0 so that:

sup ||f(x) — fu(x)|| <€ whenever n > Ni(e). (2.1)
rcH

In order to do that, take an arbitrary point x € H. For every p,n > 1 we have

1F (@) = fu(@)l < [[f(2) = fo@)| + 1|/ (x) = fu(2)]]
1f (@) = fo(@)[] + [1fp = Falloo- (2.2)

IA



If we choose n,p > N¢(€/2), then we have ||f, — fulloo < €/2 and

f (@) = fa(@)[] < |If(2) = fp(a)ll +€/2, n,p > Neo(ef2).

But the above left hand side does not depend on p, thus if we take p — oo on the right hand side,
we get:
1f(z) = fa(@)l| < €/2 <&, n>No(e/2). (2.3)

Note that this inequality holds true for every x. This means that €/2 is an upper bound for the
set {||f(x) — fu(x)|| : * € H}, hence (2.1) holds true with Ny (e¢) = Ne(e/2).

Third, we must prove that f is a continuous function on H. Fix some point a € H. Choose
€ > 0. Since lim,,_,o fn(a) = f(a), we can find Na(e,a) > 0 such that || f,,(a) — f(a)|| < € whenever
n > Ny. We define n; := max{Ny(e/3), Na(e/3,a)}. Because f,, is continuous at a, we can find
d(e,a) > 0 so that for every x € H with d(z,a) < 6 we have ||fn, () — fn,(a)|| < €/3. Thus if
x € H with d(z,a) < § we have:

1f (@) = F(@)l] < |[f(2) = fry @] + [y () = fri (@] + [ fn, (@) = f(a)]
<2/[f = flloo + |Ifni (2) = fur (a)]] <& (2.4)

Since a is arbitrary, we can conclude that f is continuous on H, thus belongs to C(H;Y'). Therefore
we can rewrite (2.1) as:

[|f — falloo < € whenever n > Njp(e), (2.5)
and the proof is over. O
Remark 2.3. The “ordinary” convergence in the functional space (C(H;Y),|| - |lco) (given in

(2.5)) is nothing but the uniform convergence of a sequence of functions defined on the set H (see
(2.1)). One can find more details in Wade, exercise 10.6.6 in Chapter 10.6 (page 376).

2.2 The main theorem

Let U be an open set in R?, d > 1, and I C R an open interval. Assume that there exist y, € U
and rg, dp > 0 such that B, (yo) C U and [to — do,to + o] C I.
We consider a continuous function f : I x U — R? for which there exists L > 0 such that

1£(t, %) — £t y)ll < Llx = yl, V€ [to—do,to+dol, VX, y € Bry(yo)- (2.6)

We define the compact set Hy := [to — 0o, to + o] X By, (yo) C R™"L. Because f is continuous,
the set f(Hy) is also compact (see Theorem 10.61 in Wade), hence bounded. Thus we can find
M < oo such that

sup ||f(t,x)|| =: M < o0. (2.7)
(t,x)€EHo
Consider the initial value problem:
y'(t) =£(t,y), y(to) = yo. (2.8)

Theorem 2.4. Define
61 = min{(S(),’l”o/M, I/L}

Then the equation (2.8) has a unique solution fort €]ty — d1,t0 + d1].

Proof. Take some 0 < ¢ < ¢; and define the compact interval K := [tg — d,%9 + 6] C R. Then

any continuous function ¢ : K — R? is automatically bounded, and since the Euclidian space

Y = R? is a Banach space, we can conclude from Proposition 2.2 that the space (C(K;R?),dy,)

of continuous functions defined on the compact K with values in R¢ is a complete metric space.
Define

X :={ge€C(K;RY): g(t) € By(yo0), Vt € K}. (2.9)



Lemma 2.5. The metric space (X, ds) is complete.

Proof. Consider a Cauchy sequence {f,}n,>1 C X. Because (C(K;R%),d,) is complete, we can
find foo € C(H;RY) such that lim,, o0 deo(fn, foo) = 0. Thus for every t € H we have

foolt) = T fu(8), T [[£u(8) ~ faolt)] = 0.
Since by assumption || f,,(t) — yo|| < 7o for all ¢ and n, we have
foel®) — yoll = Y [1fa(8) ~ yoll <70, VEEK,
which implies that f., € X. O
Lemma 2.6. Define the map F : X — C(K;R?)

t
F@)0) =vo+ [ fs.g6)ds, Vee K,
to
where f is given in (2.6). Then:
(i). The range of F belongs to X ;
(ii). F: X — X is a contraction.

Proof. (i). Because g(s) € B,,(yo) for all s € K, we have that (s, g(s)) € Hp for all s € K. Thus
(see (2.7)) sup,cc [I£(5, ()| < M and

/ E(s g(s)ds

to

IFE@I() - yoll < \ < Mi<ry, WeK,

which means that [F(¢)](t) € By, (yo) for all ¢t € K.
(ii). Consider two functions g, h € X. We have

doo (F(g), F'(h)) = sup IE(@)I() = [FRI@)]-

But the Lipschitz condition from (2.6) implies:

[F(g)I(t) = [F())(8)] = /[f(sag(S))—f(Syh(S))]dS < (6 L) sup [lg(s) — h(s)]]

to seEK
< (6 L)dw(g,h), VieK. (2.10)
It means that de (F(g), F'(h)) < (6 L)d(g, h) for all g,h € X, and remember that 6L < 1. Thus
F' is a contraction. O

Finishing the proof of Theorem 2.4. Vi have seen that F' is a contraction on X. Then
Theorem 1.2 implies that there exists a continuous function y : K — B,,(yo) such that

y(t) = [F)I) = yo + / £(s,y(s))ds, € [to— 0,0 +3].

to
It means that y is differentiable for ¢ €]ty — §,tg + [ and (2.8) is satisfied. O

Remark 2.7. Choose 0 < § < 0. Define the sequence of functions yy, : [to — 6,to + 6] — RY,
k > 1, where y1(t) = yo and

t
Ye+1(t) = yo +/ f(s,yr(s))ds, k>1.

to

We see that yx+1 = F(yx), where F is given by Lemma 2.6. A direct use of Lemma 2.6 (ii) implies
that {yr}trk>1 converges uniformly on the interval [to — 6,19+ 6] towards a continuous function yoo
which obeys the fixed point equation

Yoo(t) = ¥o +/ f(s,y50(s))ds,

to

thus solving (2.8). This is Picard’s iteration method.



3 The inverse function theorem

In this section we only work with the Euclidian space RY, whose norm is defined by ||x|| =
d
Zj:l |;5]2.
Lemma 3.1. Let A be a d X d matriz with real components {a;x}. Define the quantity || A||lus :=

d d
\/Zj:l > k=1 lajkl®. Then

14x]| < [|Allss l|lzll,  vx € R (3.1)

Proof. From the Cauchy-Schwarz inequality we have:

d 2 d d d
[(Ax);[* = (Z %*kxk) <D g Y el =Y lagm PlIxI1
k=1 m=1 n=1 m=1
and the lemma follows after summation with respect to j. O

Lemma 3.2. Let K := Bs(xo) = {y € R%: ||y —x0|| < §} be a closed ball in RY. Let ¢ : R — R
be a CY(K) map (which means that d;¢ exist for all j and are continuous functions on K ). Denote
by [|0;0||oc = supxex |0;6(x)| < co. Then for every u,w € K we have:

[¢(u) — p(w)| <

d
> 11959112 [Ju = wil. (3.2)

j=1
Proof. Define the real valued map f(t) = ¢((1 —t)w +tu), 0 < ¢t < 1. Applying the chain rule we
obtain:
d
F1(#) = (u; —w;)(9;0)((1 — )w + tu),
j=1

thus the Cauchy-Schwarz inequality implies:

d

/@01 < ([ D 10;0)((1 = )w + tu)[2 [Ju —w]| <

j=1

d
D 1058112 [u—wl|, ¥0<t<1.
j=1
Since ¢(u) — ¢(w) = f(1) — f(0) = [, f'(t)dt, we obtain:

1
6(w) — p(w)] < / 1 ()ldt <

d
> 11056112 [Ja—wl]
j=1

which proves (3.2). O

Lemma 3.3. Let K be as above. Let £ : R? +— RY a vector valued map which is C1(K) (which
means that 0; fi, exist and are continuous functions on K ). Define

d d
1A Joo,re := | D D 1105f1l%.

k=1j=1

Then we have:
[£(u) — f(w)|| < [|Af]|o,k[[u— W], Vu,we K. (3.3)



Proof. Use (3.2) with ¢ replaced by fr. We have:
d
() = fe(wW)1? <1105 ful 2 llu = wi|?
j=1

and then sum over k. O

Lemma 3.4. Using the above notation, define g(x) = f(x) — [Df(xo)]x, where [Df(xg)] is the
Jacobi matriz with elements [Df(x0)x; = (05 fx)(X0). Then for every B > 0 there exists a 63 >0
such that for every 0 < 6 < dg we have:

lg(u) —g(wW)|| < Bllu—wl[, Vu,weK. (3.4)

Proof. A straightforward computation gives 9;gx(x) = 0, fr(x) — 0} fr(x0). Thus ||0;9x|/cc can
be made arbitrarily small when § gets smaller, because f has continuous partial derivatives. It
follows that ||Ag||eo,x < § whenever § gets smaller than some small enough dg, and then we can
use (3.3) with g instead of f. O

Lemma 3.5. Let a € R? and let U C R be an open set with a € U. Let £ be a C1(U) vector
valued function, such that [Df(a)] is an invertible matriz. Then there exists v > 0 small enough
such that the restriction of f to B.(a) is injective.

Proof. Assume the contrary: for every r > 0 we can find two different points x, # y, in B,.(a)
such that f(x,) = f(y,). Define g(x) = f(x) — [Df(a)]x on B,.(a). Then we have g(x,) — g(y,) =
[Df(a)](y, — x,) or:

yr =% = [Df(a)] N (g(x,) —g(y,), ¥r>0.

Now using (3.1) we have:

lyr = x|l = [I[DE()] " |lns lg(xr) — gy, ¥r>0.

Choosing 8 = m, then (3.4) claims that there exists some rg > 0 sufficiently small

such that for every r < rg we have ||g(x,) — g(y»)|| < B|ly» — x,||. It follows that:

[|[Df ()]s
+ [[[Df(2)]~H[us

llyr — x| < 1 lyr =%l < lyr = %[, YO<7 <78,

which contradicts the assumption ||y, — x,|| # 0. O

Lemma 3.6. Let f be as in Lemma 3.5, and consider the injective restriction of f to B,.(a). Then
by eventually making r even smaller we have that the Jacobi matriz [Df(x)] is invertible for every
x € B,(a).

Proof. The matrix [Df(x)] is invertible if and only if its determinant det[Df(x)] # 0. But the
determinant is a continuous function of x since f is C'*. Because [Df(a)] is invertible, it follows that
|det[Df(a)]| > 0. Being continuous at a, the determinant has the property that |det[Df(x)]| >
|det[Df(a)]|/2 > 0 on a small ball around a. Thus [Df(x)] is invertible there. O



Theorem 3.7. Let f be C' on an open set containing a € R, such that [Df(a)] is invertible.
Then there exists r > 0 small enough such that the restriction of f to B,.(a) is injective, and
[Df(x)] is invertible for every x € By(a). Moreover, if V := f(B,(a)), the following facts hold
true:

(i). The set V is open in RY;

(ii). The inverse f=1: V +— B.(a) is a CY(V) function, and we have:

[Df ! (y)] = [DE(E " (y))] "

Proof. The ball B,.(a) has already been constructed in Lemma 3.6, hence we only need to prove
(i) and (ii).

We start with (i). Assume that yo € V, thus equal to f(x¢) for some x¢ € B,.(a). We will
show that yg is an interior point of V. This means that we must show the existence of a small
ball B(yo) which is completely contained in V. In other words, we have to prove that there exists
a sufficiently small € > 0 such that for every y € R? with ||y — yo|| < € we can find a point
Xy € B.(a) such that f(x,) =y € V, hence B.(yo) C V.

So the main question we need to answer is the solvability of the equation f(x) = y. This
equation is equivalent with:

0 =f(x) —y = f(x) — f(x0) — [Df(x0)](x — %0) + [Df (x0)](x —%0) +y0 —¥-

Denote by g(x) = f(x) — [Df (x0)]x. Then we have the equivalence between 0 = f(x) —y and the
equation
g(x) — g(x0) + [Df(x0)](x = x0) +y0 =y = 0.

Since [Df(x¢)] is invertible, we can isolate x and write another equivalent equation:
x = xo + [Df(x0)] 7' (¥ — y0) — [Df(x0)] " (8(x) — g(x0))-
This looks like a fixed point equation. Indeed, let us denote by

Fy(x) == xo + [Df(x0)] 7 (y — yo) — [DEf(x0)] ™" (g(x) — &(x0))- (3.5)

It follows that if we can find a fixed point for Fy, it will also solve the equation f(x) =y.
We note first that using (3.1) we have:

[|1Fy (x) = xol| < [|[DF(x0)]H[ms (Ily = yoll + [lg(x) — g(x0)]])- (3.6)

Choosing 3 = 3, = 3(1+|\[Df(1<n)]*1||Hs) in (3.4), it follows that there exists a 4; > 0 small enough,
in any case smaller than r — ||xo — al|, such that for every § < §; and ||x — x¢|| < d, we have
|lg(x) — g(x0)l| < Billx — xol|, thus:

[1Ey (x) = xol| < [|[Df(x0)] ™ lmsly — yol| + g, Vx € Bs(xo) C By (a). (3.7)

In particular, if

]

I =0l < S DR e i) — 5)

then (3.7) states that

26 —-—
[|Fy(x) —x0]| < 3 <4, Vx € Bs(xg) C B.(a). (3.9)

This proves that if § is smaller than some critical value d; and ||y — yo|| < €5, then the map F},

invariates any closed ball K := Bs(xo) , i.e. Fy(K) C K.



Now we want to show that choosing § even smaller, the map Fy, becomes a contraction. Indeed,
from its definition in (3.5) we have:

Fy(u) — Fy(w) = —[Df(x0)] "' (g(u) — g(w)),

or

1Fy () = Fy(w)[| < [|[[DFf(x0)] ™ [[ms [lg(w) — g(w)ll, Vu,w € Bs(xo)-
Use again (3.4) with g =
m and

2(1+|I[Df(1co)]*1HHs): we obtain some d2 < d1 such that Fy(Bs,(x0)) C

1 JE—
£y (u) = Fy (W)l < gllu—wl,  Vu,w & Bs, (xo)-

Banach’s fixed point theorem states that there exists a unique solution x, € Bs,(xo) which solves
the equation Fy(x) = x. Going back to (3.9) we conclude that if ||y — f(z0)|| < €s,, then there
exists a solution x, € By,(xo) which solves the equation f(x,) = y. Since f is injective on its
domain, this solution is also unique. Moreover, B, (yo) C V. Since yo was arbitrary, V is open.

Let us now prove (ii). For any y € V we constructed x, = f~!(y) which solves f(xy) =y and
Fy(xy) = xy. The fixed point equation rewrites as:

xy — x0 = [Df(x0)] " (y — yo) — [Df(x0)] " (g8(xy) — g(x0))- (3.10)

We know that as soon as ||y — yo|| < €5,, the point xy belongs to the ball around x, where
l|g(xy) — g(x0)]| < 2(1+H[Df(ico)]*1||Hs) ||xy — xo||. Using this in (3.10) we get:

- 1
[y = xol| < [[[DEF(x0)] " [luss [ly = yoll + 5 1%y = xoll,

or ||xy — xo|| < 2||[Df(x0)]"*|us |ly — yol| for [ly — yo|| smaller than some critical value €5,. In
other words, it means that

lim £ (y) =f"(yo), [If "(y)— £ "(yo)ll < Clly — yoll,
Y—Yo

which shows that f~! is continuous on V. Moreover, (3.4) and the above estimate show that

Lo leGs) —ge)ll

y=oyo |y = yoll

Finally, we conclude from (3.10) that

I~ (y) — £~ (yo) — [Df(x0)] " (y — o)l

lim =0
y=yo [y = yoll
which shows that [Df~1(yq)] = [Df(x0)] ™! for every pair f(xg) = yo, and we are done. O

4 The implicit function theorem

In this section d = m +n with 1 < m,n < d. A vector x € R? can be uniquely decomposed as
x = [u, w] with u € R”™ and w € R".

Lemma 4.1. Assume that D is a d X d matriz which has the following triangular form:
A B
b= { O Luxn ]
where A is an m X m matriz and B is an arbitrary n X m matriz. Then D is invertible if and
only if A is invertible and
-1 _gp-1
Dl—[ A A B] (4.1)

OTLX”TL 11’L><7l



Proof. We check by direct computation that DD~! = D7D = 14.4. O

Lemma 4.2. Let U € R? be an open set and h : U + R™ be a CY(U;R™) function. Denote
by [Duh](x) the partial m x m Jacobi matriz when w is kept fized, and by [Dwh](x) the partial
m x n Jacobi matriz when u is kept fized. Define the function £ : U + R? by the formula
f([u,w]) = [h([u, w]),w]. Then f € C1(U;R%) and

[Duh](x)  [Dwh](x)

O’I’LXm 1TL><TL

[Df](x) = (4.2)

Proof. Direct computation. O

We can now formulate the implicit function theorem.

Theorem 4.3. Let U € RY be an open set and h : U + R™ be a C*(U;R™) function. Assume
that there exists a point a = [Ua, Wa] € U such that h(a) = 0 and the m x m partial Jacobi
matriz [Dyh](a) is invertible. Then there exists an open set E € R™ containing wa, and a map
g: E— R™ in CY(E;R™), such that g(wa) = ua and h([g(w),w]) =0 for all w € E. Moreover,
[Duh]([g(w),w]) is invertible for all w € E and

[Dg](w) = ~[Duh] ™ ([g(w), W]) [Dwh]([g(w), W]). (4.3)

Proof. As in Lemma 4.2 we define f([u,w]) = [h([u,w]),w]) on U. From Lemma 4.1 and (4.2)
we conclude that [Df](a) is invertible. The inverse function theorem 3.7 provides us with a ball
B,.(a) where f is injective, [Df](x) is invertible on B, (a), and the set V = f(B,(a)) is open in
R<. Of course, the vector [0, w,] = f(a) € V. Since V is open, there exists ¢ > 0 such that the d
dimensional ball B.(f(a)) = {y € R?: ||y — [0, wa]|| <€} C V.

In general, if [u, w] € V, assume that f~!([u, w]) = [0, w] € B,.(a). Then we must have:

[, w] = £(£7" ([u, w])) = [h(([w', w'])), W]

which shows that w = w’ and u = h([u’,w]). This proves that f=!([u, w]) is also of the form
[0, w].

Let us define E := {w € R": [0,w] € B.(f(a))}, which is nothing but the n dimensional open
ball B.(w,) C R™. Then for every w € E we have that [0, w] € V' and

[0, w] = £(£7([0, w])) = [h(£7"([0, w])), w]. (4.4)

We already know that £~1([0, w]) must be a vector of the form [u’, w], where u’ is nothing but
the vector obtained from the first m components of f~1([0, w]). Denote it by g(w). Then (4.4)
implies that h([g(w),w]) = 0 on E. Moreover,

[g(Wa), Wa] = fﬁl([oawa]) = a = [Ua, Wa

which implies g(w,) = u,. Finally, since (g(w)); = (£71([0,w])); for 1 < j < m and £71([0, w])
is a C1(E;RY) map, then g is C1(FE;R™). The formula (4.3) can be easily obtained by applying
the chain rule to the equality h(g(w), w) = 0.
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