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1 Banach’s fixed point theorem

Definition 1.1. Let (X, d) be a metric space. A map F : X → X is called a contraction if there
exists α ∈ [0, 1) such that:

d(F (x), F (y)) ≤ αd(x, y), ∀x, y ∈ X. (1.1)

A point x ∈ X is a fixed point for F if F (x) = x.

Theorem 1.2. Let (X, d) be a complete metric space and F : X → X a contraction. Then F has
a unique fixed point.

Proof. Vi start by showing uniqueness. Assume that there exist a, b ∈ X such that F (a) = a and
F (b) = b. Then (1.1) implies that

0 ≤ d(a, b) = d(F (a), F (b)) ≤ αd(a, b), (1− α)d(a, b) ≤ 0,

i.e. d(a, b) = 0 and a = b.
Now let us construct such a fixed point. Consider the sequence {yn}n≥1 ⊂ X, where y1 is

arbitrary and yn := F (yn−1) for every n ≥ 2. We will show two things:
(i). The sequence is Cauchy in X, thus convergent to a limit y∞ because we assumed X to be

complete;
(ii). y∞ is a fixed point for F .
Let us start with (i). For every ε > 0 we will construct N(ε) > 0 such that for all p ≥ q ≥ N(ε)

we have d(yq, yp) < ε. In other words:

d(yq, yq+k) < ε, ∀k ≥ 0, ∀q ≥ N(ε). (1.2)

If k ≥ 1, the triangle inequality implies:

d(yq, yq+k) ≤ d(yq, yq+1) + d(yq+1, yq+k)

≤ d(yq, yq+1) + d(yq+1, yq+2) + d(yq+2, yq+k)

≤
k−1∑
i=0

d(yq+i, yq+i+1). (1.3)

For every n ≥ 1 we have:

d(yn, yn+1) = d(F (yn−1), F (yn)) ≤ αd(yn−1, yn) ≤ · · · ≤ αn−1d(y1, y2), ∀n ≥ 1.

Thus d(yq+i, yq+i+1) ≤ αq+i−1d(y1, y2) for all q ≥ 1 and i ≥ 0. Together with (1.3), this implies:

d(yq, yq+k) ≤ αq−1d(y1, y2)(1 + · · ·+ αk−1) ≤ αq−1

1− α
d(y1, y2), ∀k ≥ 1.

Because α < 1, then limq→∞ αq = 0 and (1.2) follows. We conclude that there exists y∞ ∈ X
such that

lim
n→∞

d(yn, y∞) = 0. (1.4)

Now we prove (ii). For every n ≥ 1 we have:

d(F (y∞), y∞) ≤ d(F (y∞), F (yn)) + d(F (yn), y∞).

But d(F (y∞), F (yn)) ≤ αd(y∞, yn) → 0 and d(F (yn), y∞) = d(yn+1, y∞) → 0 when n → ∞, thus
d(F (y∞), y∞) = 0 and F (y∞) = y∞.

1These notes are strongly inspired by the book Principles of Mathematical Analysis by Walter Rudin.
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2 Local existence and uniqueness for first order ODE’s

We start with some general facts about functional spaces.

2.1 Spaces of bounded/continuous functions

Proposition 2.1. Let (A, d) be a metric space, (Y, || · ||) a normed space, and H an arbitrary
non-empty subset of A. We define

B(H;Y ) := {f : H → Y : sup
x∈H

||f(x)|| < ∞}.

Define the map || · ||∞ : B(H;Y ) → R+, ||f ||∞ := supx∈H ||f(x)||. Then the space (B(H;Y ), || ·
||∞) is a normed space, and the map d∞(f, g) := ||f − g||∞ defines a metric.

Proof. Clearly, ||f ||∞ = 0 if and only if f(x) = 0 for all x ∈ H. Moreover,

||λf ||∞ = sup
x∈H

||λf(x)|| = |λ| sup
x∈H

||f(x)|| = |λ| ||f ||∞.

Finally, let us prove the triangle inequality. Take f, g ∈ B(H;Y ); then for every x ∈ H we
apply the triangle inequality in (Y, || · ||):

||f(x) + g(x)|| ≤ ||f(x)||+ ||g(x)|| ≤ ||f ||∞ + ||g||∞.

Thus ||f ||∞ + ||g||∞ is an upper bound for the set {||f(x) + g(x)|| : x ∈ H}, hence

sup
x∈H

||f(x) + g(x)|| = ||f + g||∞ ≤ ||f ||∞ + ||g||∞.

Note that d∞(f, g) := ||f − g||∞ is the metric induced by the norm.

Proposition 2.2. Denote by C(H;Y ) the subset of B(H;Y ) where the functions are also contin-
uous. Assume that (Y, || · ||) is a Banach space (a complete normed space). Then (C(H;Y ), || · ||∞)
is a Banach space, too.

Proof. We need to prove that every Cauchy sequence is convergent. Assume that {fn}n≥1 ⊂
C(H;Y ) is Cauchy, i.e. for every ε > 0 one can find NC(ε) > 0 such that ||fp − fq||∞ < ε if
p, q > NC(ε). We have to show that the sequence has a limit f which belongs to C(H;Y ).

We first construct f . For every x0 ∈ H we consider the sequence {fn(x0)}n≥1 ⊂ Y . Note
the difference between {fn(x0)}n≥1 (a sequence of vectors from Y ) and {fn}n≥1 (a sequence
of functions from C(H;Y )). It is easy to see that {fn(x0)}n≥1 is Cauchy in Y (exercise), and
because Y is complete, then {fn(x0)}n≥1 has a limit in Y . We denote it with f(x0). Moreover,
since {fn}n≥1 is Cauchy it must be bounded, i.e. ||fn||∞ ≤ M < ∞ for all n ≥ 1. Thus we have:

||f(x)|| = lim
n→∞

||fn(x)|| ≤ M, ∀x ∈ H,

therefore ||f ||∞ < ∞.
Second, we prove the ”uniform convergence” part, or the convergence in the norm || · ||∞. More

precisely, it means that for every ε > 0 we must construct N1(ε) > 0 so that:

sup
x∈H

||f(x)− fn(x)|| < ε whenever n > N1(ε). (2.1)

In order to do that, take an arbitrary point x ∈ H. For every p, n ≥ 1 we have

||f(x)− fn(x)|| ≤ ||f(x)− fp(x)||+ ||fp(x)− fn(x)||
≤ ||f(x)− fp(x)||+ ||fp − fn||∞. (2.2)
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If we choose n, p > NC(ε/2), then we have ||fp − fn||∞ < ε/2 and

||f(x)− fn(x)|| ≤ ||f(x)− fp(x)||+ ε/2, n, p > NC(ε/2).

But the above left hand side does not depend on p, thus if we take p → ∞ on the right hand side,
we get:

||f(x)− fn(x)|| ≤ ε/2 < ε, n > NC(ε/2). (2.3)

Note that this inequality holds true for every x. This means that ε/2 is an upper bound for the
set {||f(x)− fn(x)|| : x ∈ H}, hence (2.1) holds true with N1(ε) = NC(ε/2).

Third, we must prove that f is a continuous function on H. Fix some point a ∈ H. Choose
ε > 0. Since limn→∞ fn(a) = f(a), we can find N2(ε, a) > 0 such that ||fn(a)−f(a)|| < ε whenever
n > N2. We define n1 := max{N1(ε/3), N2(ε/3, a)}. Because fn1 is continuous at a, we can find
δ(ε, a) > 0 so that for every x ∈ H with d(x, a) < δ we have ||fn1(x) − fn1(a)|| < ε/3. Thus if
x ∈ H with d(x, a) < δ we have:

||f(x)− f(a)|| ≤ ||f(x)− fn1(x)||+ ||fn1(x)− fn1(a)||+ ||fn1(a)− f(a)||
< 2||f − fn1 ||∞ + ||fn1(x)− fn1(a)|| < ε. (2.4)

Since a is arbitrary, we can conclude that f is continuous onH, thus belongs to C(H;Y ). Therefore
we can rewrite (2.1) as:

||f − fn||∞ < ε whenever n > N1(ε), (2.5)

and the proof is over.

Remark 2.3. The ”ordinary” convergence in the functional space (C(H;Y ), || · ||∞) (given in
(2.5)) is nothing but the uniform convergence of a sequence of functions defined on the set H (see
(2.1)). One can find more details in Wade, exercise 10.6.6 in Chapter 10.6 (page 376).

2.2 The main theorem

Let U be an open set in Rd, d ≥ 1, and I ⊂ R an open interval. Assume that there exist y0 ∈ U
and r0, δ0 > 0 such that Br0(y0) ⊂ U and [t0 − δ0, t0 + δ0] ⊂ I.

We consider a continuous function f : I × U → Rd for which there exists L > 0 such that

‖f(t,x)− f(t,y)‖ ≤ L‖x− y‖, ∀t ∈ [t0 − δ0, t0 + δ0], ∀x,y ∈ Br0(y0). (2.6)

We define the compact set H0 := [t0 − δ0, t0 + δ0] × Br0(y0) ⊂ Rn+1. Because f is continuous,
the set f(H0) is also compact (see Theorem 10.61 in Wade), hence bounded. Thus we can find
M < ∞ such that

sup
(t,x)∈H0

‖f(t,x)‖ =: M < ∞. (2.7)

Consider the initial value problem:

y′(t) = f(t,y), y(t0) = y0. (2.8)

Theorem 2.4. Define
δ1 := min{δ0, r0/M, 1/L}.

Then the equation (2.8) has a unique solution for t ∈]t0 − δ1, t0 + δ1[.

Proof. Take some 0 < δ < δ1 and define the compact interval K := [t0 − δ, t0 + δ] ⊂ R. Then
any continuous function φ : K → Rd is automatically bounded, and since the Euclidian space
Y = Rd is a Banach space, we can conclude from Proposition 2.2 that the space (C(K;Rd), d∞)
of continuous functions defined on the compact K with values in Rd is a complete metric space.

Define
X := {g ∈ C(K;Rd) : g(t) ∈ Br0(y0), ∀t ∈ K}. (2.9)
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Lemma 2.5. The metric space (X, d∞) is complete.

Proof. Consider a Cauchy sequence {fn}n≥1 ⊂ X. Because (C(K;Rd), d∞) is complete, we can
find f∞ ∈ C(H;Rd) such that limn→∞ d∞(fn, f∞) = 0. Thus for every t ∈ H we have

f∞(t) = lim
n→∞

fn(t), lim
n→∞

‖fn(t)− f∞(t)‖ = 0.

Since by assumption ‖fn(t)− y0‖ ≤ r0 for all t and n, we have

‖f∞(t)− y0‖ = lim
n→∞

‖fn(t)− y0‖ ≤ r0, ∀t ∈ K,

which implies that f∞ ∈ X.

Lemma 2.6. Define the map F : X → C(K;Rd)

[F (g)](t) := y0 +

∫ t

t0

f(s, g(s))ds, ∀t ∈ K,

where f is given in (2.6). Then:
(i). The range of F belongs to X;
(ii). F : X → X is a contraction.

Proof. (i). Because g(s) ∈ Br0(y0) for all s ∈ K, we have that (s, g(s)) ∈ H0 for all s ∈ K. Thus
(see (2.7)) sups∈K ‖f(s, g(s))‖ ≤ M and

‖[F (g)](t)− y0‖ ≤
∥∥∥∥∫ t

t0

f(s, g(s))ds

∥∥∥∥ ≤ Mδ < r0, ∀t ∈ K,

which means that [F (g)](t) ∈ Br0(y0) for all t ∈ K.
(ii). Consider two functions g, h ∈ X. We have

d∞(F (g), F (h)) = sup
t∈K

‖[F (g)](t)− [F (h)](t)‖.

But the Lipschitz condition from (2.6) implies:

|F (g)](t)− [F (h)](t)| =
∣∣∣∣∫ t

t0

[f(s, g(s))− f(s, h(s))]ds

∣∣∣∣ ≤ (δ L) sup
s∈K

||g(s)− h(s)||

≤ (δ L)d∞(g, h), ∀t ∈ K. (2.10)

It means that d∞(F (g), F (h)) ≤ (δ L)d∞(g, h) for all g, h ∈ X, and remember that δL < 1. Thus
F is a contraction.
Finishing the proof of Theorem 2.4. Vi have seen that F is a contraction on X. Then
Theorem 1.2 implies that there exists a continuous function y : K → Br0(y0) such that

y(t) = [F (y)](t) = y0 +

∫ t

t0

f(s,y(s))ds, t ∈ [t0 − δ, t0 + δ].

It means that y is differentiable for t ∈]t0 − δ, t0 + δ[ and (2.8) is satisfied.

Remark 2.7. Choose 0 < δ < δ1. Define the sequence of functions yk : [t0 − δ, t0 + δ] → Rd,
k ≥ 1, where y1(t) = y0 and

yk+1(t) = y0 +

∫ t

t0

f(s,yk(s))ds, k ≥ 1.

We see that yk+1 = F (yk), where F is given by Lemma 2.6. A direct use of Lemma 2.6 (ii) implies
that {yk}k≥1 converges uniformly on the interval [t0− δ, t0+ δ] towards a continuous function y∞
which obeys the fixed point equation

y∞(t) = y0 +

∫ t

t0

f(s,y∞(s))ds,

thus solving (2.8). This is Picard’s iteration method.
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3 The inverse function theorem

In this section we only work with the Euclidian space Rd, whose norm is defined by ||x|| =√∑d
j=1 |xj |2.

Lemma 3.1. Let A be a d× d matrix with real components {ajk}. Define the quantity ||A||HS :=√∑d
j=1

∑d
k=1 |ajk|2. Then

||Ax|| ≤ ||A||HS ||x||, ∀x ∈ Rd. (3.1)

Proof. From the Cauchy-Schwarz inequality we have:

|(Ax)j |2 =

(
d∑

k=1

ajkxk

)2

≤
d∑

m=1

|ajm|2
d∑

n=1

|xn|2 =
d∑

m=1

|ajm|2||x||2,

and the lemma follows after summation with respect to j.

Lemma 3.2. Let K := Bδ(x0) = {y ∈ Rd : ||y−x0|| ≤ δ} be a closed ball in Rd. Let φ : Rd 7→ R
be a C1(K) map (which means that ∂jφ exist for all j and are continuous functions on K). Denote
by ||∂jφ||∞ = supx∈K |∂jφ(x)| < ∞. Then for every u,w ∈ K we have:

|φ(u)− φ(w)| ≤

√√√√ d∑
j=1

||∂jφ||2∞ ||u−w||. (3.2)

Proof. Define the real valued map f(t) = φ((1− t)w+ tu), 0 ≤ t ≤ 1. Applying the chain rule we
obtain:

f ′(t) =
d∑

j=1

(uj − wj)(∂jφ)((1− t)w + tu),

thus the Cauchy-Schwarz inequality implies:

|f ′(t)| ≤

√√√√ d∑
j=1

|∂jφ)((1− t)w + tu)|2 ||u−w|| ≤

√√√√ d∑
j=1

||∂jφ||2∞ ||u−w||, ∀0 < t < 1.

Since φ(u)− φ(w) = f(1)− f(0) =
∫ 1

0
f ′(t)dt, we obtain:

|φ(u)− φ(w)| ≤
∫ 1

0

|f ′(t)|dt ≤

√√√√ d∑
j=1

||∂jφ||2∞ ||u−w||

which proves (3.2).

Lemma 3.3. Let K be as above. Let f : Rd 7→ Rd a vector valued map which is C1(K) (which
means that ∂jfk exist and are continuous functions on K). Define

||∆f ||∞,K :=

√√√√ d∑
k=1

d∑
j=1

||∂jfk||2∞.

Then we have:
||f(u)− f(w)|| ≤ ||∆f ||∞,K ||u−w||, ∀u,w ∈ K. (3.3)
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Proof. Use (3.2) with φ replaced by fk. We have:

|fk(u)− fk(w)|2 ≤
d∑

j=1

||∂jfk||2∞||u−w||2

and then sum over k.

Lemma 3.4. Using the above notation, define g(x) = f(x) − [Df(x0)]x, where [Df(x0)] is the
Jacobi matrix with elements [Df(x0)]kj = (∂jfk)(x0). Then for every β > 0 there exists a δβ > 0
such that for every 0 < δ < δβ we have:

||g(u)− g(w)|| ≤ β||u−w||, ∀u,w ∈ K. (3.4)

Proof. A straightforward computation gives ∂jgk(x) = ∂jfk(x) − ∂jfk(x0). Thus ||∂jgk||∞ can
be made arbitrarily small when δ gets smaller, because f has continuous partial derivatives. It
follows that ||∆g||∞,K ≤ β whenever δ gets smaller than some small enough δβ , and then we can
use (3.3) with g instead of f .

Lemma 3.5. Let a ∈ Rd and let U ⊂ Rd be an open set with a ∈ U . Let f be a C1(U) vector
valued function, such that [Df(a)] is an invertible matrix. Then there exists r > 0 small enough
such that the restriction of f to Br(a) is injective.

Proof. Assume the contrary: for every r > 0 we can find two different points xr 6= yr in Br(a)
such that f(xr) = f(yr). Define g(x) = f(x)− [Df(a)]x on Br(a). Then we have g(xr)− g(yr) =
[Df(a)](yr − xr) or:

yr − xr = [Df(a)]−1(g(xr)− g(yr)), ∀r > 0.

Now using (3.1) we have:

||yr − xr|| = ||[Df(a)]−1||HS ||g(xr)− g(yr)||, ∀r > 0.

Choosing β = 1
1+||[Df(a)]−1||HS

, then (3.4) claims that there exists some rβ > 0 sufficiently small

such that for every r ≤ rβ we have ||g(xr)− g(yr)|| ≤ β||yr − xr||. It follows that:

||yr − xr|| ≤
||[Df(a)]−1||HS

1 + ||[Df(a)]−1||HS
||yr − xr|| < ||yr − xr||, ∀0 < r < rβ ,

which contradicts the assumption ||yr − xr|| 6= 0.

Lemma 3.6. Let f be as in Lemma 3.5, and consider the injective restriction of f to Br(a). Then
by eventually making r even smaller we have that the Jacobi matrix [Df(x)] is invertible for every
x ∈ Br(a).

Proof. The matrix [Df(x)] is invertible if and only if its determinant det[Df(x)] 6= 0. But the
determinant is a continuous function of x since f is C1. Because [Df(a)] is invertible, it follows that
|det[Df(a)]| > 0. Being continuous at a, the determinant has the property that |det[Df(x)]| ≥
|det[Df(a)]|/2 > 0 on a small ball around a. Thus [Df(x)] is invertible there.
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Theorem 3.7. Let f be C1 on an open set containing a ∈ Rd, such that [Df(a)] is invertible.
Then there exists r > 0 small enough such that the restriction of f to Br(a) is injective, and
[Df(x)] is invertible for every x ∈ Br(a). Moreover, if V := f(Br(a)), the following facts hold
true:

(i). The set V is open in Rd;
(ii). The inverse f−1 : V 7→ Br(a) is a C1(V ) function, and we have:

[Df−1(y)] = [Df(f−1(y))]−1.

Proof. The ball Br(a) has already been constructed in Lemma 3.6, hence we only need to prove
(i) and (ii).

We start with (i). Assume that y0 ∈ V , thus equal to f(x0) for some x0 ∈ Br(a). We will
show that y0 is an interior point of V . This means that we must show the existence of a small
ball Bε(y0) which is completely contained in V . In other words, we have to prove that there exists
a sufficiently small ε > 0 such that for every y ∈ Rd with ||y − y0|| < ε we can find a point
xy ∈ Br(a) such that f(xy) = y ∈ V , hence Bε(y0) ⊂ V .

So the main question we need to answer is the solvability of the equation f(x) = y. This
equation is equivalent with:

0 = f(x)− y = f(x)− f(x0)− [Df(x0)](x− x0) + [Df(x0)](x− x0) + y0 − y.

Denote by g(x) = f(x)− [Df(x0)]x. Then we have the equivalence between 0 = f(x)− y and the
equation

g(x)− g(x0) + [Df(x0)](x− x0) + y0 − y = 0.

Since [Df(x0)] is invertible, we can isolate x and write another equivalent equation:

x = x0 + [Df(x0)]
−1(y − y0)− [Df(x0)]

−1(g(x)− g(x0)).

This looks like a fixed point equation. Indeed, let us denote by

Fy(x) := x0 + [Df(x0)]
−1(y − y0)− [Df(x0)]

−1(g(x)− g(x0)). (3.5)

It follows that if we can find a fixed point for Fy, it will also solve the equation f(x) = y.
We note first that using (3.1) we have:

||Fy(x)− x0|| ≤ ||[Df(x0)]
−1||HS(||y − y0||+ ||g(x)− g(x0)||). (3.6)

Choosing β = β1 = 1
3(1+||[Df(x0)]−1||HS)

in (3.4), it follows that there exists a δ1 > 0 small enough,

in any case smaller than r − ||x0 − a||, such that for every δ < δ1 and ||x − x0|| < δ, we have
||g(x)− g(x0)|| ≤ β1||x− x0||, thus:

||Fy(x)− x0|| ≤ ||[Df(x0)]
−1||HS||y − y0||+

δ

3
, ∀x ∈ Bδ(x0) ⊂ Br(a). (3.7)

In particular, if

||y − y0|| <
δ

3(1 + ||[Df(x0)]−1||HS)
=: εδ (3.8)

then (3.7) states that

||Fy(x)− x0|| ≤
2δ

3
≤ δ, ∀x ∈ Bδ(x0) ⊂ Br(a). (3.9)

This proves that if δ is smaller than some critical value δ1 and ||y − y0|| < εδ, then the map Fy

invariates any closed ball K := Bδ(x0) , i.e. Fy(K) ⊂ K.
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Now we want to show that choosing δ even smaller, the map Fy becomes a contraction. Indeed,
from its definition in (3.5) we have:

Fy(u)− Fy(w) = −[Df(x0)]
−1(g(u)− g(w)),

or
||Fy(u)− Fy(w)|| ≤ ||[Df(x0)]

−1||HS ||g(u)− g(w)||, ∀u,w ∈ Bδ(x0).

Use again (3.4) with β = 1
2(1+||[Df(x0)]−1||HS)

: we obtain some δ2 < δ1 such that Fy(Bδ2(x0)) ⊂
Bδ2(x0) and

||Fy(u)− Fy(w)|| ≤ 1

2
||u−w||, ∀u,w ∈ Bδ2(x0).

Banach’s fixed point theorem states that there exists a unique solution xy ∈ Bδ2(x0) which solves
the equation Fy(x) = x. Going back to (3.9) we conclude that if ||y − f(x0)|| < εδ2 , then there

exists a solution xy ∈ Bδ2(x0) which solves the equation f(xy) = y. Since f is injective on its
domain, this solution is also unique. Moreover, Bεδ2

(y0) ⊂ V . Since y0 was arbitrary, V is open.

Let us now prove (ii). For any y ∈ V we constructed xy = f−1(y) which solves f(xy) = y and
Fy(xy) = xy. The fixed point equation rewrites as:

xy − x0 = [Df(x0)]
−1(y − y0)− [Df(x0)]

−1(g(xy)− g(x0)). (3.10)

We know that as soon as ||y − y0|| < εδ2 , the point xy belongs to the ball around x0 where
||g(xy)− g(x0)|| ≤ 1

2(1+||[Df(x0)]−1||HS)
||xy − x0||. Using this in (3.10) we get:

||xy − x0|| ≤ ||[Df(x0)]
−1||HS ||y − y0||+

1

2
||xy − x0||,

or ||xy − x0|| ≤ 2||[Df(x0)]
−1||HS ||y − y0|| for ||y − y0|| smaller than some critical value εδ2 . In

other words, it means that

lim
y→y0

f−1(y) = f−1(y0), ||f−1(y)− f−1(y0)|| ≤ C||y − y0||,

which shows that f−1 is continuous on V . Moreover, (3.4) and the above estimate show that

lim
y→y0

||g(xy)− g(x0)||
||y − y0||

= 0.

Finally, we conclude from (3.10) that

lim
y→y0

||f−1(y)− f−1(y0)− [Df(x0)]
−1(y − y0)||

||y − y0||
= 0

which shows that [Df−1(y0)] = [Df(x0)]
−1 for every pair f(x0) = y0, and we are done.

4 The implicit function theorem

In this section d = m + n with 1 ≤ m,n < d. A vector x ∈ Rd can be uniquely decomposed as
x = [u,w] with u ∈ Rm and w ∈ Rn.

Lemma 4.1. Assume that D is a d× d matrix which has the following triangular form:

D =

[
A B

0n×m 1n×n

]
,

where A is an m × m matrix and B is an arbitrary n × m matrix. Then D is invertible if and
only if A is invertible and

D−1 =

[
A−1 −A−1B
0n×m 1n×n

]
. (4.1)
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Proof. We check by direct computation that DD−1 = D−1D = 1d×d.

Lemma 4.2. Let U ∈ Rd be an open set and h : U 7→ Rm be a C1(U ;Rm) function. Denote
by [Duh](x) the partial m × m Jacobi matrix when w is kept fixed, and by [Dwh](x) the partial
m × n Jacobi matrix when u is kept fixed. Define the function f : U 7→ Rd by the formula
f([u,w]) = [h([u,w]),w]. Then f ∈ C1(U ;Rd) and

[Df ](x) =

[
[Duh](x) [Dwh](x)
0n×m 1n×n

]
. (4.2)

Proof. Direct computation.

We can now formulate the implicit function theorem.

Theorem 4.3. Let U ∈ Rd be an open set and h : U 7→ Rm be a C1(U ;Rm) function. Assume
that there exists a point a = [ua,wa] ∈ U such that h(a) = 0 and the m × m partial Jacobi
matrix [Duh](a) is invertible. Then there exists an open set E ∈ Rn containing wa, and a map
g : E 7→ Rm in C1(E;Rm), such that g(wa) = ua and h([g(w),w]) = 0 for all w ∈ E. Moreover,
[Duh]([g(w),w]) is invertible for all w ∈ E and

[Dg](w) = −[Duh]
−1([g(w),w]) [Dwh]([g(w),w]). (4.3)

Proof. As in Lemma 4.2 we define f([u,w]) = [h([u,w]),w]) on U . From Lemma 4.1 and (4.2)
we conclude that [Df ](a) is invertible. The inverse function theorem 3.7 provides us with a ball
Br(a) where f is injective, [Df ](x) is invertible on Br(a), and the set V = f(Br(a)) is open in
Rd. Of course, the vector [0,wa] = f(a) ∈ V . Since V is open, there exists ε > 0 such that the d
dimensional ball Bε(f(a)) = {y ∈ Rd : ||y − [0,wa]|| < ε} ⊂ V .

In general, if [u,w] ∈ V , assume that f−1([u,w]) = [u′,w′] ∈ Br(a). Then we must have:

[u,w] = f(f−1([u,w])) = [h(([u′,w′])),w′]

which shows that w = w′ and u = h([u′,w]). This proves that f−1([u,w]) is also of the form
[u′,w].

Let us define E := {w ∈ Rn : [0,w] ∈ Bε(f(a))}, which is nothing but the n dimensional open
ball Bε(wa) ⊂ Rn. Then for every w ∈ E we have that [0,w] ∈ V and

[0,w] = f(f−1([0,w])) = [h(f−1([0,w])),w]. (4.4)

We already know that f−1([0,w]) must be a vector of the form [u′,w], where u′ is nothing but
the vector obtained from the first m components of f−1([0,w]). Denote it by g(w). Then (4.4)
implies that h([g(w),w]) = 0 on E. Moreover,

[g(wa),wa] = f−1([0,wa]) = a = [ua,wa]

which implies g(wa) = ua. Finally, since (g(w))j = (f−1([0,w]))j for 1 ≤ j ≤ m and f−1([0,w])
is a C1(E;Rd) map, then g is C1(E;Rm). The formula (4.3) can be easily obtained by applying
the chain rule to the equality h(g(w),w) = 0.
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