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1 Banach’s fixed point theorem

Definition 1.1. Let (X, d) be a metric space. A map F : X — X is called a contraction if there
exists o € [0,1) such that:

d(F(z), F(y)) < ad(z,y), Vr,yeX. (1.1)
A point x € X is a fized point for F if F(x) = x.
Theorem 1.2. Let (X, d) be a complete metric space and F : X — X a contraction. Then F has
a unique fized point.
Proof. Vi start by showing uniqueness. Assume that there exist a,b € X such that F(a) = a and
F(b) =b. Then (1.1) implies that
0 < d(a,b) = d(F(a), F(b)) < ad(a,b), (1—a)d(a,b) <0,

ie. d(a,b) =0and a =b.

Now let us construct such a fixed point. Consider the sequence {y,}n,>1 C X, where y; is
arbitrary and y,, := F(y,—1) for every n > 2. We will show two things:

(i). The sequence is Cauchy in X, thus convergent to a limit y, because we assumed X to be
complete;

(ii). Yo is a fixed point for F'.

Let us start with (i). For every € > 0 we will construct N(e) > 0 such that for all p > g > N(e)
we have d(y,, yp) < €. In other words:

Ad(Yq, Yg+k) <€, VE>0, Vg> N(e). (1.2)
If kK > 1, the triangle inequality implies:

d(Ygs Yg+1) < d(Yqs Yg+1) + A(Yg+15Yg+k)

< d(Yqs Yg+1) + d(Ygqr1, Yg+2) + A(Yg+2, Yg+k)
k=1

<> d(YgrisYgritr)- (1.3)
1=0

For every n > 1 we have:
AdWns Ynt1) = A(F(Yn-1), F(yn)) < ad(yn-1,yn) < -+ < " d(yr,52), Vn>1.
Thus d(Ygris Ygrit1) < @7 1d(y1,y0) for all ¢ > 1 and ¢ > 0. Together with (1.3), this implies:

q—1

_ _ «
d(Yq, Ygix) < T d(yr, y2)(1+--- + P 1) < dynye), VE>1

—

Because o < 1, then lim; o, a? = 0 and (1.2) follows. We conclude that there exists yoo € X
such that

lim d(yn,Yoo) = 0. (1.4)
n— o0
Now we prove (ii). For every n > 1 we have:
A(F(Yoo), Yoo) < d(F(yoo); F(yn)) + d(F(yn), yoo)-

But d(F(yOO),F(yn)) < ad(yomyn) — 0 and d(F(yn)ayoo) = d(yn-i-layoo) — 0 when n — oo, thus
A(F(Yoo), Yoo) = 0 and F (Yoo ) = Yoo- O

IThese notes are strongly inspired by the books Principles of Mathematical Analysis by Walter Rudin and
Topology from the Differentiable Viewpoint by John Milnor.




2 Local existence and uniqueness for first order ODE’s

We start with some general facts about functional spaces.

2.1 Spaces of bounded/continuous functions

Proposition 2.1. Let (A,d) be a metric space, (Y,||-||) a normed space, and H an arbitrary
non-empty subset of A. We define

BH;Y)={f:H—-Y: sug”f(m)“ < 00}
e
Define the map || - ||oc : B(H;Y) = Ry, ||flloo :=sup,eq || f(x)||. Then the space (B(H;Y),|| -
lloo) is @ normed space, and the map doo(f,g) :=||f — 9lloo defines a metric.

Proof. Clearly, ||f||o = 0 if and only if f(x) = 0 for all x € H. Moreover,

A flloe = sup [[Af(2)]] = [Al sup |[f(@)[] = [A] [[f]]oc-
r€EH xeH

Finally, let us prove the triangle inequality. Take f,g € B(H;Y); then for every x € H we
apply the triangle inequality in (Y] - ||):

1 (@) + g(@)[] < |[F (@) + lg(@)]] < [ Flloc + 1glloc-

Thus ||f]|so + ||9]lcc is an upper bound for the set {||f(z) + g(x)|| : * € H}, hence

sup || f(z) + (@) = [If + gllc < [[flloc + l1glloo-
zeH

Note that doo (f, 9) := ||f — gl|co is the metric induced by the norm. O

Proposition 2.2. Denote by C(H;Y') the subset of B(H;Y') where the functions are also contin-
uous. Assume that (Y,||-||) is a Banach space (a complete normed space). Then (C(H;Y),||"|]s0)
is a Banach space, too.

Proof. We need to prove that every Cauchy sequence is convergent. Assume that {f,}n>1 C
C(H;Y) is Cauchy, i.e. for every e > 0 one can find N¢(e) > 0 such that ||fp — fylleo < € if
p,q > N¢(e). We have to show that the sequence has a limit f which belongs to C(H;Y).

We first construct f. For every xy € H we consider the sequence {f,(zo)}n>1 C Y. Note
the difference between {f,(zo)}n>1 (a sequence of vectors from Y) and {f,}n>1 (a sequence
of functions from C(H;Y)). It is easy to see that {f,(x¢)}n>1 is Cauchy in Y (exercise), and
because Y is complete, then {f,(xo)},>1 has a limit in Y. We denote it with f(zo). Moreover,
since {f,}n>1 is Cauchy it must be bounded, i.e. ||fn]lcc < M < oo for all n > 1. Thus we have:

7@l = lim [lfu@)ll < M, Ve H,

therefore || f||o < o0.
Second, we prove the "uniform convergence” part, or the convergence in the norm || ||oo. More
precisely, it means that for every € > 0 we must construct Ny (e) > 0 so that:

sup ||f(x) — fu(x)|| < e whenever n > Ni(e). (2.1)
rcH

In order to do that, take an arbitrary point x € H. For every p,n > 1 we have

1f (@) = fu(@)ll < [[f(2) = fo@)ll + | fp(2) = fu(2)]]
< f@) = fo@l +[1fp = Falloo- (2.2)



If we choose n,p > N¢(e/2), then we have ||f, — fullco < €/2 and

1 (@) = fu(@)]] < |If(2) = fo(@)]| +€/2, n,p> Ne(e/2).

But the above left hand side does not depend on p, thus if we take p — oo on the right hand side,
we get:
1f(z) = fa(@)l| < €/2 <&, n>No(e/2). (2.3)

Note that this inequality holds true for every x. This means that €/2 is an upper bound for the
set {||f(x) — fu(x)|| : * € H}, hence (2.1) holds true with Ny(e) = Ne(e/2).

Third, we must prove that f is a continuous function on H. Fix some point a € H. Choose
€ > 0. Since lim,,_,o fn(a) = f(a), we can find Na(e,a) > 0 such that || f,,(a) — f(a)|| < € whenever
n > Ny. We define n; := max{Ny(e/3), Na(e/3,a)}. Because f,, is continuous at a, we can find
d(e,a) > 0 so that for every x € H with d(z,a) < 6 we have ||fn, () — fn,(a)|| < €/3. Thus if
x € H with d(z,a) < § we have:

1f (@) = F(@)l] < |1f(2) = fry @] + [y () = fr (@] + [ fn, (@) = f(a)]
<2/[f = flloo + |Ifni (2) = fui (a)]] <& (2.4)

Since a is arbitrary, we can conclude that f is continuous on H, thus belongs to C(H;Y'). Therefore
we can rewrite (2.1) as:

[|f = folloo <€ whenever n > Nj(e), (2.5)
and the proof is over. O
Remark 2.3. The “ordinary” convergence in the functional space (C(H;Y),|| - |lco) (given in

(2.5)) is nothing but the uniform convergence of a sequence of functions defined on the set H (see
(2.1)). One can find more details in Wade, exercise 10.6.6 in Chapter 10.6 (page 376).

2.2 The main theorem

Let U be an open set in R?, d > 1, and I C R an open interval. Assume that there exist y, € U
and rg, dp > 0 such that B,,(yo) C U and [to — do,to + o] C I.
We consider a continuous function f : I x U — R? for which there exists L > 0 such that

1£(t,x) = £(t, )l < Llx —yll, 'Vt € [to—do,to+dol, X,y € Bry(yo)- (2.6)
We define the compact set Hy := [to — 0o, to + o] X By, (yo) C R™"*L. Because f is continuous,
the set f(Hy) is also compact (see Theorem 10.61 in Wade), hence bounded. Thus we can find

M < oo such that

sup ||f(t,x)|| =: M < oo. (2.7)
(t,x)€EHo
Consider the initial value problem:
y'(t) =£(t,y), y(to) = yo. (2.8)

Theorem 2.4. Define
01 := min{dg,ro/M,1/L}.

Then the equation (2.8) has a unique solution for t €]ty — 01,t0 + 01].

Proof. Take some 0 < ¢ < ¢; and define the compact interval K := [ty — 0,9 + 6] C R. Then

any continuous function ¢ : K — R? is automatically bounded, and since the Euclidian space

Y = R? is a Banach space, we can conclude from Proposition 2.2 that the space (C(K; R%), doo)

of continuous functions defined on the compact K with values in R¢ is a complete metric space.
Define

X :={ge€C(K;RY): g(t) € By(yo0), Vt € K}. (2.9)



Lemma 2.5. The metric space (X, ds) is complete.

Proof. Consider a Cauchy sequence {f,}n,>1 C X. Because (C(K;R%),d,) is complete, we can
find foo € C(H;RY) such that lim,, o0 deo(fn, foo) = 0. Thus for every t € H we have

foolt) = T fu(8), T [[£u(8) ~ faolt)] = 0.
Since by assumption || f,,(t) — yo|| < 7o for all ¢t and n, we have
[Fse) = yoll = i 1fult) ~ yoll <70, VEE K,
which implies that f., € X. O
Lemma 2.6. Define the map F : X — C(K;R?)

¢
F@)0) =yo+ [ fs.g(6)ds, Ve K,
to
where £ is given in (2.6). Then:
(i). The range of F belongs to X ;
(ii). F: X — X is a contraction.

Proof. (i). Because g(s) € B,,(yo) for all s € K, we have that (s, g(s)) € Hp for all s € K. Thus
(see (2.7)) sup,cc (5, ()| < M and

/ " E(s g(s)ds

to

IFE@I() - yoll < ‘ < Mi<ry, WeK,

which means that [F(¢)](t) € By, (yo) for all t € K.
(ii). Consider two functions g,h € X. We have

doo(F(9), F'(h)) = sup IE(@)I(#) = [FMI@)]-

But the Lipschitz condition from (2.6) implies:

[F(9))(t) = [F(W))(8)] = /[f(sag(S))—f(Syh(S))]dS < (6 L) sup [lg(s) — h(s)]]

to seEK
< (0 L)dx(g,h), Vte K. (2.10)
It means that de (F(g), F'(h)) < (6 L)d(g, h) for all g,h € X, and remember that 6L < 1. Thus
F' is a contraction. O

Finishing the proof of Theorem 2.4. Vi have seen that F' is a contraction on X. Then
Theorem 1.2 implies that there exists a continuous function y : K — B,,(yo) such that

y() = [F)I) = yo + / f(s,y(s))ds, ¢ € [to—d,to +3].

to
It means that y is differentiable for ¢ €]tg — J, to + 6] and (2.8) is satisfied. O

Remark 2.7. Choose 0 < § < 0;. Define the sequence of functions yy, : [to — 6,to + 6] — RY,
k > 1, where y1(t) = yo and

t
Yesi(t) =yo + / £(s,yi(s)ds, k> 1.

to

We see that yx+1 = F(yx), where F is given by Lemma 2.6. A direct use of Lemma 2.6 (ii) implies
that {yr}rk>1 converges uniformly on the interval [to — 6,19+ 6] towards a continuous function yoo
which obeys the fixed point equation

Yoo(t) = ¥o +/ f(s,y50(s))ds,

to

thus solving (2.8). This is Picard’s iteration method.



3 The inverse function theorem

In this section we only work with the Euclidian space R?, whose norm is defined by ||x|| =
d
Zj:l |;5]2.
Lemma 3.1. Let A be a d X d matriz with real components {a;x}. Define the quantity || A||lus :=

d d
\/Zj:l > k=1 lajkl®. Then

14x]| < [|Allss l|lzll,  vx € R (3.1)

Proof. From the Cauchy-Schwarz inequality we have:

d 2 d d d
|(Ax);|* = (Z ajk-%'k) < agm? Yl =D lajm Pl
k=1 m=1 n=1 m=1
and the lemma follows after summation with respect to j. O

Lemma 3.2. Let K := Bs(xo) = {y € R%: ||y —x0|| < §} be a closed ball in RY. Let ¢ : R — R
be a CY(K) map (which means that d;¢ exist for all j and are continuous functions on K ). Denote
by [|0;0||oc = supxex |0;0(x)| < co. Then for every u,w € K we have:

d
[p(u) — o(w)| < ZH@MHEO [l — wi|. (3.2)

Proof. Define the real valued map f(t) = ¢((1 —t)w +tu), 0 < ¢t < 1. Applying the chain rule we
obtain:

d
)= Z(uj —w;)(0;¢)((1 — t)w + tu),

thus the Cauchy-Schwarz inequality implies:

d

/@01 < ([ D 10;0)((1 = )w + tu)[2 [Ju - w]| <

j=1

d
D N06]1% [la—wl[, YO<t<1.
j=1
Since ¢(u) — ¢(w) = f(1) — f(0) = [, f'(t)dt, we obtain:

1
6(u) — p(w)] < / 1 ()ldt <

d
D 11050112 [[u - wi|
j=1

which proves (3.2). O

Lemma 3.3. Let K be as above. Let £ : R? +— RY a vector valued map which is C1(K) (which
means that 0; fi, exist and are continuous functions on K ). Define

d d
Aok = | DD 1105 fxl1%

k=1 j=1

Then we have:
[£(u) — f(w)|| < [[Af]|o,k[[u— W], Vu,we K. (3.3)



Proof. Use (3.2) with ¢ replaced by fr. We have:
d
() = fe(W)1? <1105 ful 2 llu — wi|?
j=1

and then sum over k. O

Lemma 3.4. Using the above notation, define g(x) = f(x) — [Df(xo)]x, where [Df(xg)] is the
Jacobi matriz with elements [Df(x0)x; = (05 fx)(X0). Then for every B > 0 there exists a 63 >0
such that for every 0 < 6 < dg we have:

lg(u) —g(wW)|| < Bllu—wl|, Vu,weK. (3.4)

Proof. A straightforward computation gives 0;gx(x) = 0, fr(x) — 0} fr(x0). Thus ||0;9x|/cc can
be made arbitrarily small when § gets smaller, because f has continuous partial derivatives. It
follows that ||Ag||ee,x < § whenever § gets smaller than some small enough dg, and then we can
use (3.3) with g instead of f. O

Lemma 3.5. Let a € R? and let U C R be an open set with a € U. Let f be a C1(U) vector
valued function, such that [Df(a)] is an invertible matriz. Then there exists v > 0 small enough
such that the restriction of f to B.(a) is injective.

Proof. Assume the contrary: for every r > 0 we can find two different points x, # y, in B,.(a)
such that f(x,) = f(y,). Define g(x) = f(x) — [Df(a)]x on B,.(a). Then we have g(x,) — g(y,) =
[Df(a)|(y, — x,) or:

yr —x, = [Df(a)] " (g(x,) — g(yr)), ¥r>0.

Now using (3.1) we have:

lyr = x|l = [I[DE()] " lns lg(xr) — gy, Vr>0.

Choosing 8 = m, then (3.4) claims that there exists some rg > 0 sufficiently small

such that for every r < rg we have ||g(x,) — g(y+)|| < B|ly» — x,||. It follows that:

[|[Df ()]s
+ [[[Df(2)]~[us

Hyr_XrHSl lyr = x| < |lyr =%, YO<r<rg,

which contradicts the assumption ||y, — x,|| # 0. O

Lemma 3.6. Let f be as in Lemma 3.5, and consider the injective restriction of f to B,.(a). Then
by eventually making r even smaller we have that the Jacobi matriz [Df(x)] is invertible for every
x € B,(a).

Proof. The matrix [Df(x)] is invertible if and only if its determinant det[Df(x)] # 0. But the
determinant is a continuous function of x since f is C'*. Because [Df(a)] is invertible, it follows that
|det[Df(a)]| > 0. Being continuous at a, the determinant has the property that |det[Df(x)]| >
|det[Df(a)]|/2 > 0 on a small ball around a. Thus [Df(x)] is invertible there. O



Theorem 3.7. Let f be C' on an open set containing a € R, such that [Df(a)] is invertible.
Then there exists r > 0 small enough such that the restriction of f to B,.(a) is injective, and
[Df(x)] is invertible for every x € By(a). Moreover, if V := f(By(a)), the following facts hold
true:

(i). The set V is open in RY;

(ii). The inverse f=1: V s B.(a) is a CY(V) function, and we have:

[Df ' (y)] = [DE(E " (y))] "

Proof. The ball B,.(a) has already been constructed in Lemma 3.6, hence we only need to prove
(i) and (ii).

We start with (i). Assume that yo € V, thus equal to f(x¢) for some x¢ € B,.(a). We will
show that yg is an interior point of V. This means that we must show the existence of a small
ball B.(yo) which is completely contained in V. In other words, we have to prove that there exists
a sufficiently small € > 0 such that for every y € R? with ||y — yo|| < € we can find a point
Xy € B.(a) such that f(x,) =y € V, hence B.(yo) C V.

So the main question we need to answer is the solvability of the equation f(x) = y. This
equation is equivalent with:

0=1f(x) —y=f(x) —f(x0) — [Df(x0)](x — %0) + [Df (x0)](x — X0) + Yo — ¥

Denote by g(x) = f(x) — [Df (x0)]x. Then we have the equivalence between 0 = f(x) —y and the
equation
g(x) — g(x0) + [Df(x0)](x — x0) +y0 =y = 0.

Since [Df(x¢)] is invertible, we can isolate x and write another equivalent equation:
x = Xg + [Df(x0)] ' (y — yo) — [DFf(x0)] ! (g(x) — g(%0))-
This looks like a fixed point equation. Indeed, let us denote by
Fy(x) == xo + [Df(x0)] 7 (y — yo) — [Df(x0)] ™ (g(x) — &(x0))- (3.5)

It follows that if we can find a fixed point for Fy, it will also solve the equation f(x) =y.
We note first that using (3.1) we have:

[|1Fy (x) = xol| < [|[Df(x0)]H[ms (Ily = yoll + [lg(x) = g(x0)]])- (3.6)

Choosing 3 = 3, = 3(1+H[Df(i<o)]*1||Hs) in (3.4), it follows that there exists a 6; > 0 small enough,
in any case smaller than r — ||xo — al|, such that for every § < §; and ||x — x¢|| < §, we have
|lg(x) — g(x0)l| < B1llx — %o, thus:

1By (x) = xol| < [|[Df(x0)] ™ lms]ly — yol| + g Vx € Bs(xo) C By (a). (3.7)

In particular, if

]

I = oll < S DR G i)~ 5)

then (3.7) states that

w0l

|Fy(x) — Xo|| < = <0, ¥x € Bs(xo) C By (a). (3.9)

This proves that if § is smaller than some critical value d; and ||y — yo|| < €5, then the map F},
invariates any closed ball K := Bjs(xo) , i.e. Fy(K) C K.



Now we want to show that choosing § even smaller, the map Fy, becomes a contraction. Indeed,
from its definition in (3.5) we have:

Fy(u) — Fy(w) = —[Df(x0)] "' (g(u) — g(w)),

or

1Fy () = Fy(w)[| < [|[[DFf(x0)] " [[ms [lg(w) — g(w)ll, Vu,w € Bs(xo).
Use again (3.4) with g =
m and

we obtain some d2 < d1 such that Fy(Bs,(x0)) C

1 .
2(1+[[[Df (x0)] = H[ms) *

1 -
£y (u) = Fy (W)l < gllu—wl,  Vu,w & Bs, (x0)-

Banach’s fixed point theorem states that there exists a unique solution x, € Bs,(xo) which solves
the equation Fy(x) = x. Going back to (3.9) we conclude that if ||y — f(z0)|| < €s,, then there
exists a solution x, € By,(Xo) which solves the equation f(x,) = y. Since f is injective on its
domain, this solution is also unique. Moreover, B, (yo) C V. Since yo was arbitrary, V' is open.

Let us now prove (ii). For any y € V we constructed x,, = f~!(y) which solves f(xy) =y and
Fy(xy) = xy. The fixed point equation rewrites as:

xy — x0 = [Df(x0)] " (y — yo) — [Df(x0)] " (g8(xy) — g(x0))- (3.10)

We know that as soon as |[ly — yo|| < €5,, the point xy belongs to the ball around x, where
l|g(xy) — g(x0)]| < 2(1+H[Df(1co)]*1||Hs) ||xy — x0||. Using this in (3.10) we get:

- 1
[y = xol| < [[[DF(x0)] " [luss [ly = yoll + 5 1%y = oll,

or ||xy — x| < 2||[Df(x0)]"*|us |ly — yol| for [ly — yo|| smaller than some critical value €5,. In
other words, it means that

lim £ (y) =f"(yo), [If "(y)— £ (yo)ll < Clly — yoll,
Y—Yo

which shows that f~! is continuous on V. Moreover, (3.4) and the above estimate show that

1o leGsy) — gl

y=yo |y = yoll

Finally, we conclude from (3.10) that

I~ (y) — £~ (yo) — [DE(x0)] "' (¥ — ¥o)ll

lim =0
y=yo [y = yoll
which shows that [Df~1(yq)] = [Df(x0)]~! for every pair f(xq) = yo, and we are done. O

4 The implicit function theorem

In this section d = m +n with 1 < m,n < d. A vector x € R? can be uniquely decomposed as
x = [u, w] with u € R”™ and w € R".

Lemma 4.1. Assume that D is a d X d matriz which has the following triangular form:
A B
D B |: On><m Inxn :| ’
where A is an m X m matriz and B is an arbitrary n X m matriz. Then D is invertible if and
only if A is invertible and
-1 _ -1
Dl—[ A A B] (4.1)

OTLX”TL ITIXTL



Proof. We check by direct computation that DD~! = D7D = I;,4. O

Lemma 4.2. Let U € R? be an open set and h : U + R™ be a CY(U;R™) function. Denote
by [Dyh](x) the partial m x m Jacobi matriz when w is kept fized, and by [Dywh](x) the partial
m x n Jacobi matriz when u is kept fized. Define the function £ : U + R? by the formula
f([u,w]) = [h([u, w]),w]. Then f € C1(U;RY) and

[Dub](x)  [Dwh](x)

On><m ITLXTL

[Df](x) = (4.2)

Proof. Direct computation. O

We can now formulate the implicit function theorem.

Theorem 4.3. Let U € R? be an open set and h : U + R™ be a C*(U;R™) function. Assume
that there exists a point a = [Ua, Wa] € U such that h(a) = 0 and the m x m partial Jacobi
matriz [Dyh](a) is invertible. Then there exists an open set E C R™ containing wa, and a map
g: E— R™ in CY(E;R™), such that g(wa) = ua and h([g(w),w]) =0 for all w € E. Moreover,
[Duh]([g(w), w]) is invertible for all w € E and

[Dg](w) = —[Duh] ™ ([g(w), w]) [Dwh]([g(w), W]). (4.3)

Proof. As in Lemma 4.2 we define f([u,w]) = [h([u,w]),w]) on U. From Lemma 4.1 and (4.2)
we conclude that [Df](a) is invertible. The inverse function theorem 3.7 provides us with a ball
B,.(a) where f is injective, [Df](x) is invertible on B,.(a), and the set V = f(B,(a)) is open in
R<. Of course, the vector [0, w,] = f(a) € V. Since V is open, there exists ¢ > 0 such that the d
dimensional ball B (f(a)) = {y € R%: ||y — [0, wa]|| <€} C V.

In general, if [u, w] € V, assume that f~!([u, w]) = [0, w’] € B,.(a). Then we must have:

[, w] = £(£7" ([u, w])) = [h(([w', w'])), W]

which shows that w = w’ and u = h([u’,w]). This proves that f=!([u, w]) is also of the form
[0, w].

Let us define E := {w € R": [0,w] € B.(f(a))}, which is nothing but the n dimensional open
ball Bc(w,) C R™. Then for every w € E we have that [0, w] € V' and

[0, w] = £(£7([0, w])) = [h(£~"([0, w])), w]. (4.4)

We already know that £~1([0, w]) must be a vector of the form [u’, w], where u’ is nothing but
the vector obtained from the first m components of f~1([0, w]). Denote it by g(w). Then (4.4)
implies that h([g(w),w]) = 0 on E. Moreover,

[8(Wa), Wa] = ffl([oawa]) =a = [Ua, Wa
which implies g(w,) = u,. Finally, since (g(w)); = (£71([0,w])); for 1 < j < m and £71([0, w])
is a C1(E;RY) map, then g is C1(E;R™). The formula (4.3) can be easily obtained by applying

the chain rule to the equality h(g(w), w) = 0.
O

5 Brouwer’s fixed point theorem

We say that K C R? is convex if for every x,y € K we have that (1 —t)x+ty € K forall 0 <t < 1.
A set K is called a convex body if K is convex, compact, and with at least one interior point.



Theorem 5.1. Let K C R? be a conver body. Let f : K — K be a continuous function which
invariates K. Then £ has a (not necessarily unique) fixed point, that is a point x € K such that
f(x) =x.

Proof. The first thing we do is to reduce the problem from a general convex body to the unit ball
in R%. We will show that there exists a bijection ¢ : K — B;(0), which is continuos and with
continuous inverse (a homeomorphism). If this is true, then it is enough to show that the function
pofop™:B(0) — Bi(0) has a fixed point a € B1(0). In that case, x = p~1(a) € K.

Lemma 5.2. Any convex body in R? is homeomorphic with the closed unit ball By(0).

Proof. Let x¢ be an interior point of K. There exists > 0 such that B,(x¢) C K. Define the
continuous map ¢ : K ~ R? given by g(x) := (x — xo)r~!. Define K = g(K). It is easy to
see that K is a convex and compact set. Moreover, the function g : K K is invertible and
g Y(y) = ry +x0. Both g and g~! are continuous, and for every y € R? with ||y|| < 1 we have
that ry + x¢ € B,(x¢) C K, thus y € K. This shows that B;(0) C K, thus K is a convex body
containing the closed unit ball.

We now construct a homeomorphism between K and B;(0). The boundary of K is denoted
by 0K, equals K \ int(K), and is a closed and bounded set. The boundary of B;(0) is denoted
by S% 1 and equals the unit sphere in R%. The ray connecting a given x € K with the origin
intersects S9! in a point; in this way we define the function h : K — S9! where h(x) is given
by the above intersection.

The function A is injective; let us show this. Given x € K, the cone C' (x) defined by joining
x with all the points of B;(0) must belong to the convex set K. But C(x) also contains the ray
joining x with 0, and all the points of the segment strictly between x and 0 are interior points of
C'(x), thus interior points of K. Tt means that no two different points of K can be placed on the
same ray starting from the origin, which proves the injectivity of h.

Let us show that the function A is also surjective. Consider any ray generated by & € S9!,
starting from the origin and parametrized by R(Z) := {AZ : A > 0}. Consider the set E(Z) :=
R(2) Nint(K). This set must be bounded, because K is bounded. Thus the set of non-negative
real numbers {||y|| : y € E(#)} C R is bounded, thus it has a supremum ¢ < co. The supremum
is an accumulation point, thus there must exist a sequence of points {y,}n>1 C E(Z) such that
|lyn|| = ¢. But this sequence is also contained by the compact set K N R(#). It means that there
exists a subsequence y,, which converges to some point u € K N R(%), i.e. ||y, —u|| = 0 when
k — oco. Thus we also have ||y, || = [|ul|| which shows that ||u|| = ¢. Now u cannot be an interior
point of K, because in that case we could find points of F (Z) which are farther away from the
origin than u, contradiciting the maximality of ||u||. Thus u € &K, which proves that the ray hits
at least one point of the boundary. Hence h is surjective.

Thus h is bijective and invertible. The continuity of h is obvious.

Let us now prove that h=1 : 41 — 9K is also continuous. For every # € S9!, the point
h~=1(#) is the unique point of OK which is hit by the ray defined by Z. Assume that h~! is
not continuous at some @ € S%°!. It means that we can find some ¢ > 0 and a sequence
{#n}n>1 C S¥7L, such that &, — @ and ||h~1(#,) — h~1(a)|| > €. The vector h=*(,,) is parallel
with #,, and the same is true for the pair h=!(a) and a. Thus if n is large enough, the last inequality
implies that either ||h=1(2,)|| < ||h~1(a)|| — €0/2 or ||h=(a)|| + €0/2 < ||~ (2,,)]|. Assume that
there are infinitely many cases where the first situation holds true. Then if n is large enough, the
point h~'(Z,) enters in the cone C'(h~'(a)) and must be an interior point of K, contradiction. In
the other situation, h~!(a) would eventually become an interior element of the cone C'(h~1(2,))
for large enough n, again contradiction.

Let us define the map ¢ : K +— B (0) by é(x) := x/||h =" (x/||x]])|| if x # 0 and ¢(0) = 0. It is
nothing but taking x and dividing it with the length of the segment between 0 and the point on
the boundary corresponding to the ray generated by x/||x||. Clearly, ¢ is continuous. It is easy
to check that the inverse of ¢ is given by ¢~ : B;(0) — K where ¢~ (y) := y||h= (y/|ly|])| if
y # 0 and ¢~1(0) = 0. This inverse is also continuous since A is.

In conclusion, ¢ := ¢ o g: K — B1(0) is a homeomorphism, and we are done. O
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Thus from now on we will assume without loss of generality that K = B1(0). And also from
now we will assume that there exists a continuous function which invariates B;(0) and has no
fixed points.

Lemma 5.3. Assume that f : B1(0) — B1(0) is continuous with no fived points. Then there exists
a smooth function f : B1(0) — B1(0) with the same property.

Proof. Our assumption says that ||f(x) — x|| > 0 for all x € B1(0). The real valued map
Bi(0) > x— ||f(x) — x| € R

is continuous and defined on a compact set. Thus it attains its minimum in some point X,,. It
follows that:
[£(x) = x[| > [[£(xm) — Xm|| = €0 > 0. (5.1)

Let us extend f to the whole of R in the following way. Define g : R? +— B;(0) by g(x) = f(x) if
[Ix|] <1, and g(x) = f(x/||x]||) if ||x|| > 1. Clearly the extension is continuous, and ||g(x)|| < 1
for all x.

Define the function j : R? +— R, j(x) = e~ 1/ Q=lIx®) i [Ix|] <1 and j(x) =0 if ||x|| > 1. The
function j is non-negative, belongs to C>°(R?) and has a positive integral I := Jpa J(x)dx > 0.
Define j(x) := j(x)/I. Then [p,j(x)dx = 1.

Now if € > 0 we define the function J,(x) := e~ j(e~'x). Clearly, J. is non-negative, belongs
to C>°(R?), it is non-zero only if |[x|| < ¢, and [y, Je(x)dx = 1 independently of e.

Define the function g, : B1(0) — B;(0) by the formula:

) = [ Tx= vy = [ alx=y) . (x)dy. (52

The fact that g maps into By (0) is a consequence of the fact that |[g(y)|| < 1and [p, Jo(x—y)dy =
1 independently of x. The function g, is smooth because J is smooth.
Now we can write:

%) ~ 9(x) = [

g [9(x —y) — 9(x)]Je(y)dy = / [9(x —y) — 9(x)]Je(y)dy, (5.3)

llyll<e

where the second equality comes from the support properties of J.. If we impose the condition
e <1, then x —y € B2(0) if ||y|| < € and ||x|| < 1. The function g restricted to the compact set
B5(0) is uniformly continuous, thus there exists some § > 0 small enough such that

[lg(x') — g(x")|| < €/2 whenever [|x' —x"|| <6, x',x" € B(0).
Applying this estimate in (5.3) we obtain that ||gs(x) — g(x)|] < €0/2, for all x € B;(0). Using
this in (5.1) it follows:

llgs(x) —x|| > €0/2 >0, Vx €& B;(0). (5.4)

The function gs is our f and the proof of this lemma is over. O

From now on we can assume that our function f is smooth and with no fixed points in B;(0).
The next lemma shows that such a function f would allow us to construct a smooth retraction of
the unit ball onto its boundary.

Lemma 5.4. Assume that f : B1(0) — B1(0) is smooth with no fized points. Then there exists a
smooth function h : By(0) — S9! such that h(x) = x if x € S971.
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Proof. We know that there exists some €y > 0 such that ||f(x) — x|| > ¢ for all x € B;(0). We
define the unit vector w(x) := (||x — f(x)||) ™! (x — f(x)) which defines the direction of a straight
line starting in f(x) and going through x. This line is parametrized as f(x) + tw(x), with ¢ > 0.
The value ¢t = ||x — f(x)]|| gives x. For even larger values of ¢ we approach the boundary. There
exists a unique positive value of t(x) > ||x — f(x)|| > €y which corresponds to the intersection of
this line with the unit sphere S?~!. Namely, from the condition ||f(x) + tw(x)||> = 1 we obtain:

t(x) = ~f(x) - w(x) + v/(F(x) - w(x))? + 1 — [[Ex)[]> = []x — £(x)]],

where f(x) - w(x) is the inner product in R?. The only problem related to the smoothness of this
function could appear if the square root can be zero. The square root is zero if ||[f(x)|| = 1 and
0 = f(x) - w(z). Equivalently, f(x)-x = 1. The last equality demands that x = f(x) and both
sitting on the boundary, situation excluded by our assumption of absence of fixed points. Thus
t(x) is smooth, and we can define

h(x) := f(x) + t(x) w(x) € S9!

which ends the proof.

Lemma 5.5. Assume that h: B1(0) — S9! is smooth and h(x) = x ifx € S¥~ 1. [f0 <s <1,
define the map g5 : B1(0) — B1(0) given by gs(x) = (1—s)x+sh(x). Then there exists 0 < s9 < 1
such that gs is a bijection for all 0 < s < s9.

Proof. First of all, we note that if x € S9~! then g,(x) = x. Thus the only thing we need to show
is that g is injective and g4(B1(0)) = B1(0).
For the injectivity part: consider the equality gs(x) = gs(y) for some x,y € B1(0). This can
s

be rewritten as:
= (h(x) ~ h(y).

Reasoning as in Lemma 3.3 we can find a constant Cj, > 0 such that ||h(u) —h(w)|| < Ch|lu—w]]
for all u,w € B1(0). Thus we obtain:

X—y=-—

Chs
[Ix =l
S

— <
-yl <

which imposes x = y if s is smaller than some small enough value 0 < § < 1.

Now let us assume that 0 < s < 5. We want to prove that there exists 0 < sg < s such that
gs(B1(0)) = B1(0) for all 0 < s < s¢.

One inclusion is easy: if ||x|| < 1, then ||gs(x)|| < (1—s)||x||+s < 1. Thus gs(B1(0)) C B1(0).

The other inclusion is more complicated. Let us consider the equation gs(x) = 2z, where
||z|| < 1/4 is arbitrary. This equation can be rewritten as x = (1 — s)71{z — sh(x)}. Now if s is
smaller than some small enough value s, the vector T'(x) := (1 — s) 'z — s(1 — s)~'h(x) obeys
[|T(x)|] <1/2 for all ||x|| < 1. In particular, T invariates B1(0). Also:

1T (w) = T(W)|| < Ch s [[lu—wl|, Vu,we BL(0).

Thus if s < s := min{sy, C,:l}, the map T is a contraction and has a unique fixed point. This
fixed point solves the equation gg(x) = z. Thus until now we showed that

B1(0) C gs(B1(0)), 0<s<sy <l

1
4

Another important observation which we have to prove is that gs(B1(0)) is an open set. Indeed,
we have [Dgs(x)] = (1 — s)Iaxaq + s[Dh(x)] and det[Dgs(x)] > 1/2 if s is smaller than some small
enough ss, for all x € B1(0); let y = gs(a) for some a € B;(0). Then from Theorem 3.7 (i) it
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follows that there is some r small enough such that g,(B,(a)) is open, and since y € g.(B,(a))
there exists € > 0 so that B.(gs(a)) C gs(Br(a)) C g+(B1(0)).

Now fix 0 < 59 < min{sz,s3}. For 0 < s < so we know that g;(B1(0)) is open and B1(0) C
gs(B1(0)) C B1(0). We need to show that B1(0) C gs(B1(0)).

Assume the contrary: there exists some yg € B;1(0) which does not belong to gs(B1(0)).
Denote by I the closed segment joining 0 with yo. The set E := I N g(B1(0)) is not empty.
Moreover, the set:

{llyll - ¥y € Ings(B1(0))} < [0, |lyolll

is not empty, and has a supremum ¢ < 1. There exists a sequence {X, }n>1 C I Ngs(B1(0)) such
that ||z,|| — c. There is a subsequence x,, which converges in I to some point y, thus ¥ is an
adherent point of g¢(B;1(0)) and ||y|| = ¢ < 1. Clearly, y & gs(B1(0)) because otherwise, since
gs(B1(0)) is open, we could extend I Ng,(B1(0)) even further away form the origin, contradicting
the maximality of the length of y.

Thus we have constructed y € g,(B1(0))\ gs(B1(0)) with ||y|| < ||yol| < 1. Being an adherent
point of g4(B1(0)), there must exist a sequence {z,},>1 C gs(B1(0)) such that z, — y. There
exists a sequence {x, }n>1 C B1(0) such that gs(x,) = z,,. We can find a subsequence x,,, which

converges to some xg € B1(0). Since g4(xy, ) = Zn, — ¥ and due to the continuity of g,, we must
have gy(xg) = y. But since y ¢ g,(B1(0)), it must be that xo € S~!. But on the boundary,
gs(x0) = xg, which contradicts our assumption that ||y|| < ||yo|| < 1. Therefore, yq cannot exist,
and B1(0) C g5(B1(0)).

O

We are finally ready to prove Brouwer’s theorem. In the previous lemma we considered the
smooth map g, : B1(0) — B;(0). Define the function:

F(s) := / det[Dgs(x)] dx, 0<s<1.
B1(0)

The determinant of the Jacobi matrix [Dgs(x)] is a polynomial in s, thus F(s) is a polynomial.
Moreover, we have shown that if 0 < s < sy the map g, is nothing but a smooth and bijective
change of coordinates in By (0) with det[Dg4(x)] > 0, thus F(s) is constant on [0, so] and equal to
the volume of B;(0). But if a polynomial is locally constant, then is constant everywhere. Thus
F(1) should also be equal to the volume of B;(0).

But let us show that this is not true. If s = 1, then g;(x) = h(x) on B;(0). It means that

d
L= = g1(x) - &1(x) = >_(8:1(x)i.

k=1

Differentiating with respect to z; we obtain

d
0= Z[aj(gl(x))k] (g1(x)k, 1<j<d,
k=1

or [Dgi(x)]*g1(x) = 0 for all x. Since ||g(x)|| = 1, we have that [Dg;(x)]* is not injective, thus
not invertible, hence with zero determinant. Therefore det[Dg(x)] = det[Dgi(x)]* = 0 for all
x, and F(1) = 0 # vol(B1(0)). This contradiction can be traced back to our assumption which
claimed that f has no fixed points. The proof is over. O

6 Schauder’s fixed point theorem

Theorem 6.1. Let X be a Banach space, and let K C X be a non-empty, compact, and convex
set. Then given any continuous mapping f: K — K there exists x € K such that f(z) = x.
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Proof. Given e > 0, the family of open sets {B.(z): x € K} is an open covering of K. Because K
is compact, there exists a finite subcover, i.e. there exists N points p1,...,pny of K such that the
balls B.(p;) cover the whole set K.

Let K. be the convex hull of pq,...,py, defined by:

N N
K. = thpj, thzl, tj >0, CK.
j=1

j=1

It is an easy computation to show that K. is a convex set. Moreover, K, is a finite dimensional
object, immersed in an at most /N —1 dimensional Euclidian space generated by the vectors p; —p1,
where j € {2,3,...,N}.

Define the function g; : K +— R4 by g;(x) = e—||z—p;|| if € B.(p;), and g;(x) = 0 otherwise.
Each function g; is continuous, while g(z) = E;\Ll g;j(x) is positive due to the fact that any = has
to be in some ball, where the corresponding g; is positive. Since g is continuous and K compact,
there exists & > 0 such that g(x) > ¢ for every xz € K.

Now consider the continuous map 7.: K — K, given by:

(@) @)
@) =2 P g
Since ||g;(z)(z — p;)|| < g;(x)e for all 7, we have:
N
o) — aff < 3 1@E =D g e (6.1)
= g(x)

Now we define:
fer Ke = Ko, fe(x) = me(f(2)).

This is a continuous function defined on a convex and compact set K, in a finite dimensional
vector space. By Brouwer’s fixed point theorem it admits a fixed point x.

fe(me) = Te-
Using (6.1) we get:
||7T5(f(x6)) - f(me)H <k¢

thus for every e¢ > 0 we have constructed z. € K. C K such that ||f(z¢) — z|| < e.

Choosing 1/n instead of €, we construct a sequence {z, },>1 C K such that || f(z,)—z,|| < 1/n.
Since K is sequentially compact, we can find a subsequence z,, which converges to some point
z € K when k — oo. By writing:

1f (@) =zl < [1f (@) = flen )l + [1f (@n,) = 2o ]| + |2, —2l], k=1,

we observe that due to the continuity of f at Z, the right hand side tends to zero with k. Thus
f(@) =T and we are done.
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