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These notes are strongly inspired by the books Principles of Mathematical Analysis by Walter
Rudin and Topology from the Differentiable Viewpoint by John Milnor. Some of the theorems
below can be formulated in a more general setting than the one of metric spaces, but the metric
space structure brings important simplifications and clarity. Fundamental results like the Brouwer,
Schauder and Kakutani Fixed Point Theorems, the Hairy Ball Theorem, the Tietze Extension
Theorem, and the Jordan Curve Theorem are not in the curriculum, but this does not make
them less important. All proofs are quite detailed and self-contained, and are at the level of
hard-working second year undergraduate students.

The first two chapters deal with point set topology in metric spaces. In particular we prove
the equivalence between compact and sequentially compact sets in general metric spaces, and the
Bolzano-Weierstrass and Heine-Borel Theorems in Euclidean spaces.

Chapter three deals with continuous functions on metric spaces. We show the equivalence
between continuity, sequential continuity, and ’returning open sets into open sets’. We show that
a continuous function defined on a compact set is uniformly continuous.

Chapter four proves the Banach Fixed Point Theorem. Chapter five is based on the previous
one and investigates the local existence and uniqueness of solutions to first order differential
equations.

Chapter six contains the Implicit Function Theorem. Its proof is based on Banach’s Fixed
Point Theorem. Chapter seven deals with the Inverse Function Theorem, whose proof is shown to
be a consequence of the Implicit Function Theorem.

Chapter eight contains the proof of the Brouwer Fixed Point Theorem. We follow the strategy
of C.A. Rogers from the paper A Less Strange Version of Milnor’s Proof of Brouwer’s Fixed Point
Theorem, appeared in Amer. Math. Monthly. 87 525-527 (1980). We give many more details and
the presentation is completely analytic and self-contained, based on the previous six chapters. We
also prove that any convex body is homeomorphic with the closed unit ball.

Chapter nine contains the Schauder Fixed Point Theorem, presented as a consequence of
Brouwer’s Fixed Point Theorem.

Chapter ten presents the Kakutani Fixed Point Theorem. Its proof is an adaptation of that
of S. Kakutani in A generalization of Brouwer’s fixed point theorem, Duke Mathematical Journal
8(3), 457-459 (1941). This theorem is another consequence of Brouwer’s Fixed Point Theorem.

Chapter eleven contains the proof of the existence of a Nash equilibrium for a finite game with
two players, based on Kakutani’s theorem . The original paper of J. Nash entitled Non-cooperative
games, Annals of Math. 54 (2), 286-295 (1951) had a slightly different proof, based on Brouwer’s
fixed point theorem.

Chapter twelve contains an analytic proof of the Hairy Ball Theorem, and it follows the strategy
used by J. Milnor in the paper Analytic proofs of the hairy ball theorem and the Brouwer fixed
point theorem, appeared in Amer. Math. Monthly 85, 521-524 (1978).

Chapter thirteen contains the Jordan Curve Theorem and is inspired by a paper of R. Maehara
entitled The Jordan curve theorem via the Brouwer fixed point theorem, which appeared in Amer.
Math. Monthly 91(10), 641-643 (1984). We give many more details and in particular, we prove
a simple version of the Tietze Extension Theorem in R2 based on an extension formula due to
Hausdorff.

1 The natural topology of a metric space

Let (X, d) be a metric space. We define the open ball of radius r > 0 and center at a ∈ X the set
Br(a) := {x ∈ X : d(x, a) < r}.

Given a set A ⊂ X and a ∈ A, we say that a is an interior point of A if there exists r > 0 such
that Br(a) ⊂ A. The set of all interior points of A is denoted by Int(A). We say that A is an open
set if all its points are interior points, i.e. Int(A) = A. By convention, the empty set ∅ is open.

Lemma 1.1. Any ball Br(a) is an open set.
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Proof. Let x0 ∈ Br(a). We have that d(x0, a) < r. Define r0 := (r − d(x0, a))/2 > 0. Then for all
x ∈ Br0(x0) we have that d(x, x0) < r0 and:

d(x, a) ≤ d(x, x0) + d(x0, a) < (r − d(x0, a))/2 + d(x0, a) = (r + d(x0, a))/2 < r,

which shows that Br0(x0) ⊂ Br(a). Thus Br(a) has only interior points.

Lemma 1.2.
(i). Let {Vα}α∈F be an arbitrary collection of open sets. Then A := ∪αVα is open.
(ii). Let {Vj}nj=1 be a finite collection of open sets. Then B := ∩nj=1Vj is open.

Proof. We start with (i). Let a ∈ ∪αVα. There must exist αa ∈ F such that a ∈ Vαa . Since Vαa
is open, there exists ra > 0 such that

Bra(a) ⊂ Vαa ⊂ ∪αVα = A

hence a is an interior point of A.
We continue with (ii). Let a ∈ ∩nj=1Vj . Thus a ∈ Vj for all j. Hence there exists rj > 0

such that Brj (a) ⊂ Vj . Let r := min{r1, . . . rn} > 0. Thus Br(a) ⊂ Brj (a) ⊂ Vj for all j, hence
Br(a) ⊂ B and we are done.

We say that a set A ⊂ X is closed if Ac := {x ∈ X : x 6∈ A} is open. Given a set B ⊂ X and
b ∈ X, we say that b is an adherent point of B if there exists a sequence {xn}n≥1 ⊂ B such that
xn ∈ B 1

n
(b) (hence limn→∞ xn = b). The set of all adherent points of B is denoted by B.

Theorem 1.3. Let B ⊂ X. Then B ⊂ B. Moreover, B = B if and only if B is closed.

Proof. If a ∈ B we can define the constant sequence xn = a ∈ B which converges to a, thus a ∈ B
and B ⊂ B.

Now assume that B = B. We want to prove that B is closed, i.e. Bc is open. Let a ∈ Bc = B
c
.

Then a is not an adherent point, which means that there exists ε > 0 such that no point of B lies
in the ball Bε(a). In other words, Bε(a) ⊂ Bc, hence Bc is open.

Now assume that B is closed. We want to prove that B = B. Assume that this is not true; it
would imply the existence of a point b ∈ B such that b ∈ Bc. Since Bc is open, there exists ε > 0
such that Bε(b) ⊂ Bc, i.e. Bε(b) ∩B = ∅. But this is incompatible with b ∈ B.

2 Compact and sequentially compact sets

Definition 2.1. Let A be a subset of a metric space (X, d). Let F be an arbitrary set of indices,
and consider the family of sets {Oα}α∈F , where each Oα ⊆ X is open. This family is called an
open covering of A if A ⊆

⋃
α∈F Oα.

Definition 2.2. Assume that {Oα}α∈F is an open covering of A. If F ′ is a subset of F , we say
that {Oα}α∈F ′ is a subcovering if we still have the property A ⊆

⋃
α∈F ′ Oα. A subcovering is

called finite, if F ′ contains finitely many elements.

Definition 2.3. Let A be a subset of a metric space (X, d). Then we say that A is covered by a
finite ε-net if there exists a natural number Nε < ∞ and the points {x1, ...,xNε} ⊆ A such that

A ⊆
⋃Nε
j=1Bε(xj).

3



Definition 2.4. A subset A ⊂ X is called compact, if from any open covering of A one can extract
a finite subcovering.

Definition 2.5. A ⊂ X is called sequentially compact if from any sequence {xn}n≥1 ⊆ A one can
extract a subsequence {xnk}k≥1 which converges to some point x∞ ∈ A.

We will see that in metric spaces the two notions of compactness are equivalent.

2.1 Compact implies sequentially compact

We begin with two lemmas:

Lemma 2.6. Assume that the sequence {xn}n≥1 ⊂ A has a range consisting of finitely many
points. Then it admits a convergent subsequence whose limit is one of the elements in the range.

Proof. Assume that the range of the sequence consists of the distinct points a1, a2, . . . , aN . At least
one of these points, say a1, is taken infinitely many times by the sequence elements. Denote by nk
(with k ≥ 1) the increasing sequence of indices for which xnk = a1. This defines our convergent
subsequence.

We say that a ∈ X is an accumulation point for a sequence {xn}n≥1 if for every ε > 0 there
exists some xn 6= a such that xn ∈ Bε(a).

Lemma 2.7. Assume that the sequence {xn}n≥1 has an accumulation point a. Then {xn}n≥1
admits a convergent subsequence whose limit is a.

Proof. Since a is an accumulation point, there exists an index j ≥ 1 such that xj 6= a and
xj ∈ B1(a). Denote by n1 the smallest index for which these two properties hold true. Let
r1 := d(xn1

, a) > 0. Define n2 to be the smallest index j for which xj 6= a and xj ∈ Bmin{r1, 12}
(a).

We must have n2 ≥ n1 since xn2 ∈ B1(a); moreover, because r2 := d(xn2 , a) < r1, we cannot
have n1 = n2. In general, if k ≥ 2 we define nk to be the smallest index j for which xj 6= a
and xj ∈ Bmin{rk−1,

1
k }

(a); moreover, since rk := d(xnk , a) < rk−1 < · · · < r1, we must have

nk > · · · > n1. Then {nk}k≥1 is a strictly increasing sequence and 0 < d(xnk , a) < 1/k. This
shows that {xnk}k≥1 is a subsequence which converges to a.

Theorem 2.8. Let A ⊆ X be compact. Then A is sequentially compact.

Proof. We will assume the opposite, i.e. there exists a sequence {xn}n≥1 with no convergent
subsequence in A. Such a sequence must have an infinite number of distinct points in the range,
due to Lemma 2.6. Moreover, we can assume that {xn}n≥1 has no accumulation points in A
(otherwise such a point would be the limit of a subsequence according to Lemma 2.7).

Since no x ∈ A can be an accumulation point for {xn}n≥1, there exists εx > 0 such that the
ball Bεx(x) contains at most one element of the range of {xn}n≥1.

Clearly, {Bεx(x)}x∈A is an open covering for A. Because A is compact, we can extract a finite
subcovering from it:

A ⊆
N⋃
j=1

Bεyj (yj), N <∞, {y1, . . . , yN} ⊂ A.

Now remember that {xn}n≥1 ⊆ A ⊆
⋃N
j=1Bεyj (yj) and at the same time, there are at most N

distinct points of the range of {xn}n≥1 in the union
⋃N
j=1Bεyj (yj). We conclude that {xn}n≥1

can only have a finite number of distinct points in its range, thus it must admit a convergent
subsequence according to Lemma 2.6. This contradicts our hypothesis.
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2.2 Sequentially compact implies compact

The proof of this fact is slightly more complicated. We need two preparatory results:

Proposition 2.9. Let A be a sequentially compact set. Then for every ε > 0, A can be covered
by a finite ε-net (see Definition 2.3).

Proof. If A contains finitely many points, then the proof is obvious, thus we may assume that
#(A) =∞.

Now suppose that there exists some ε0 > 0 such that A cannot be covered by a finite ε0-net.
This means that for any N points of A, {x1, ..., xN}, we have:

A 6⊂
N⋃
j=1

Bε0(xj). (2.1)

We will now construct a sequence with elements in A which cannot have a convergent subse-
quence. Choose an arbitrary point x1 ∈ A. We know from (2.1), for N = 1, that we can find
x2 ∈ A such that x2 ∈ A \ Bε0(x1). This means that d(x1, x2) ≥ ε0. We use (2.1) again, for
N = 2, in order to get a point x3 ∈ A \ [Bε0(x1) ∪ Bε0(x2)]. This means that d(x3, x1) ≥ ε0 and
d(x3, x2) ≥ ε0. Thus we can continue with this procedure and construct a sequence {xn}n≥1 ⊆ A
which obeys

d(xj , xk) ≥ ε0, j 6= k.

In other words, we constructed a sequence in A which cannot have a Cauchy subsequence. This
contradicts Definition 2.5.

The second result states that a compact set is bounded:

Lemma 2.10. Let A be a (sequentially) compact set. Then there exists a ball which contains A.

Proof. We know that A can be covered by any finite ε-net; choose ε = 1. Then here exist N points
of A denoted by {x1, ..., xN} such that A ⊂

⋃N
j=1B1(xj).

Denote by R = max{1 + d(xj , xk) : 1 ≤ j, k ≤ N}. Then we have B1(xj) ⊂ BR(x1) for every
j, thus A ⊂ BR(x1) and we are done.

Let us now prove the theorem:

Theorem 2.11. Assume that A ⊆ X is sequentially compact. Then A is compact.

Proof. Consider an arbitrary open covering of A:

A ⊆
⋃
α∈F
Oα.

We will show that we can extract a finite subcovering from it.
For every x ∈ A, there exists at least one open set Oα(x) such that x ∈ Oα(x). Because Oα(x)

is open, we can find ε > 0 such that Bε(x) ⊆ Oα(x).
For a fixed x, we define the set

Ex := {r > 0 : there exists α ∈ F such that Br(x) ⊆ Oα} ⊂ R.

From the above argument we conclude that no Ex is empty. Moreover, if r ∈ Ex, then the open
interval (0, r) is included in Ex.

If for some x in A we have an unbounded Ex, it follows that for every r > 0 we can find some
open set Oα such that Br(x) ⊆ Oα. But if r is chosen to be large enough, it will contain the ball
we constructed in Lemma 2.10, thus Oα will also contain A. In this case we found our subcovering,
which consists of just one open set.
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It follows that we may assume that all the sets Ex are bounded intervals admitting a positive
and finite supremum supEx. Define 0 < εx := 1

2 supEx < supEx. Note the important thing that
εx ∈ Ex. Let us also observe that:

A ⊆
⋃
x∈A

Bεx(x) ⊆
⋃
α∈F
Oα. (2.2)

The first inclusion is obvious, while the second one follows from the above discussion.
We now need to prove a lemma:

Lemma 2.12. If A is sequentially compact, then

inf
x∈A

εx =: 2ε0 > 0.

In other words, there exists ε0 > 0 such that Bε0(x) ⊆ Bεx(x), for every x ∈ A.

Proof. Assume that infx∈A εx = 0. This implies that there exists a sequence {xn}n≥1 ⊆ A such
that εxn ≤ 1/n for every n ≥ 1. Since A is sequentially compact, there exists a convergent
subsequence {xnk}k≥1 which converges to a point x0 ∈ A, i.e.

lim
k→∞

xnk = x0. (2.3)

Because x0 belongs to A, we can find an open set Oα(x0) which contains x0, thus we can find
ε1 > 0 such that

Bε1(x0) ⊆ Oα(x0). (2.4)

Now (2.3) implies that there exists K > 0 large enough such that:

d(xnk , x0) ≤ ε1/4, whenever k > K. (2.5)

If y belongs to Bε1/4(xnk) (i.e. d(y, xnk) < ε1/4), then the triangle inequality implies (use also
(2.5)):

d(y, x0) ≤ d(y, xnk) + d(xnk , x0) < ε1/2 < ε1, k > K.

But this shows that we must have y ∈ Bε1(x0), or:

Bε1/4(xnk) ⊆ Bε1(x0) ⊆ Oα(x0), ∀k > K. (2.6)

Thus we got the inclusion
Bε1/4(xnk) ⊆ Oα(x0), ∀k > K,

which shows that ε1/4 must be less or equal than 2εxnk , or ε1/8 ≤ εxnk , for every k > K. But
this is in contradiction with the fact that εxn ≤ 1/n for every n ≥ 1.
Finishing the proof of Theorem 2.11. We now use Proposition 2.9, and find a finite ε0-net for A.
Thus we can choose {y1, ...yN} ⊆ A such that

A ⊆
N⋃
n=1

Bε0(yn) ⊆
N⋃
n=1

Bεyn (yn) ⊆
N⋃
n=1

On,

where On is one of the possibly many open sets which contain Bεyn (yn). We have thus extracted
our finite subcovering of A and the proof of the theorem is over.

2.3 The Bolzano-Weierstrass Theorem

We start with the case in which the metric space is R with the Euclidean distance.

Theorem 2.13. Let {xn} ⊂ R be a bounded real sequence, i.e. there exists M ≥ 0 such that
|xn| ≤ M for all n ≥ 1. Then there exists a subsequence {xnk}k≥1 and some s ∈ R such that
limk→∞ xnk = s.
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Proof. We have that −M ≤ xn ≤ M for all n. Define by a1 := −M and b1 := M . Since either
−M ≤ xn ≤ 0 or 0 ≤ xn ≤ M for any given n, it follows that at least one of the two intervals
[−M, 0] and [0,M ] must contain xn for infinitely many different values of n. If there are infinitely
many indices such that xn ∈ [−M, 0], then define a2 := a1 and b2 := (a1 + b1)/2. If this is not
true, then define a2 := (a1 + b1)/2 and b2 := b1. If the first case holds true, we define n1 to be the
smallest index n for which −M = a2 ≤ xn ≤ b2 = 0, while if the second case is true, we define n1
to be the smallest index n for which 0 = a2 ≤ xn ≤ b2 = M .

In either case, we know that there exist infinitely many indices n such that a2 ≤ xn ≤ b2, and
n1 is the smallest of them. If the interval [a2, (a2 + b2)/2] contains xn for infinitely many values
of n, then define a3 := a2 and b3 := (a2 + b2)/2. If this is not true, then define a3 := (a2 + b2)/2
and b3 := b2; the interval [a3, b3] will thus contain xn infinitely many times. We can thus choose
n2 to be the smallest index n > n1 for which a3 ≤ xn ≤ b3. By induction, for a given k ≥ 1,
we can construct nk > nk−1 > · · · > n1 such that ak+1 ≤ xnk ≤ bk+1, where either ak+1 := ak
and bk+1 := (ak + bk)/2 (if the interval [ak, (ak + bk)/2] contains xn infinitely many times),
or ak+1 := (ak + bk)/2 and bk+1 := bk otherwise. By construction we have that ak ≤ ak+1 and
bk+1 ≤ bk for all k. Moreover, ak ≤ bk for all k, and in particular ak ≤ b1 = M and a1 = −M ≤ bk.
By induction, we can also prove that bk − ak = (b1 − a1)/2k−1.

Thus {ak}k≥1 is increasing and bounded from above, hence it converges to α := supk≥1 ak.
The sequence {bk}k≥1 is decreasing and bounded from below, thus it converges to β := infk≥1 bk.
By taking the limit k → ∞ in the equality bk − ak = (b1 − a1)/2k−1 we conclude that α = β.
Since ak ≤ xnk ≤ bk, by the comparison theorem it follows that {xnk}k≥1 is convergent and has
the limit s := α = β.

We can generalize this result to Rd, with d ≥ 2. Without loss of generality, assume that d = 2;
the general case follows by induction. If x = [u, v] ∈ R2, then we define ||x|| =

√
u2 + v2. Clearly,

max{|u|, |v|} ≤ ||x|| ≤ |u| + |v|. The Euclidean distance between two vectors x = [u1, v1] and
y = [u2, v2] is given by d(x,y) = ||x − y|| =

√
(u1 − u2)2 + (v1 − v2)2. It is easy to check that

d(x,y) ≤ |u1 − u2|+ |v1 − v2|.
Now assume that the sequence {xn}n≥1 ⊂ R2 is bounded, i.e. there exists M ≥ 0 such

that ||xn|| ≤ M for all n. We denote the components of xn with [un, vn]. The real sequence
{un}n≥1 ⊂ R is also bounded by M , thus from Theorem 2.13 it follows that we can find a
subsequence {unk}k≥1 which is convergent to some t ∈ R, i.e. limk→∞ unk = t. Define zk := vnk ;
then {zk}k≥1 is also bounded by M and according to Theorem 2.13 we can find a subsequence
{zkj}j≥1 which is convergent to some s ∈ R, i.e. limj→∞ zkj = s. Thus we have that vnkj converges

to s while unkj still converges to t, as a subsequence of the convergent sequence {unk}k≥1.

Define y := [t, s]. We have 0 ≤ d(xnkj ,y) ≤ |unkj − t| + |vnkj − s| for all j ≥ 1, which shows

that y is the limit of {xnkj }j≥1.

2.4 The Heine-Borel Theorem

Lemma 2.14. Let A be a compact set in a metric space (X, d). Then A is bounded and closed.

Proof. We already know that a compact set A is bounded (see Lemma 2.10). Let us prove that it
is closed. Assume it is not. According to Theorem 1.3 it means that there exists an adherent point
a ∈ A which does not belong to A. Being an adherent point, there exists a sequence {xn}n≥1 ⊂ A
which converges to a, thus all of its subsequences must converge to the same limit. Since A is
(sequentially) compact, there exists a subsequence {xnk}k≥1 which converges to some point of A,
which has to be a. This contradicts the fact that a 6∈ A.

Theorem 2.15. Consider Rd with the Euclidean distance. In this metric space, a set A is (se-
quentially) compact if and only if A is both bounded and closed.
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Proof. The previous lemma showed that a compact set is always bounded and closed; this fact
holds for all metric spaces, not just for the Euclidean ones.

If the space is Euclidean, then we can also show the reversed implication. Assume that A
is bounded and consider an arbitrary sequence {xn}n≥1 ⊂ A. The Bolzano-Weierstrass theorem
implies the existence of a subsequence {xnk}k≥1 which converges to some point a ∈ Rd. Thus
a ∈ A, and due to Theorem 1.3 we know that A = A, thus a ∈ A. This proves that A is sequentially
compact, therefore compact.

3 Continuous functions on metric spaces

Let (X, d) and (Y, ρ) be two metric spaces. If A ⊂ X, the image of A through f is the set

f(A) := {y ∈ Y : there exists xy ∈ A such that f(xy) = y} ⊂ Y.

If B ⊂ Y the preimage of B through f is the set

f−1(B) := {x ∈ X : such that f(x) ∈ B} ⊂ X.

Note that the notation f−1(B) does not imply that f is invertible.

Lemma 3.1. If A1 ⊂ A2 ⊂ X and B1 ⊂ B2 ⊂ Y then f(A1) ⊂ f(A2) and f−1(B1) ⊂ f−1(B2).

Proof. We only prove the first inclusion. Assume that y ∈ f(A1). Then there exists xy ∈ A1 such
that f(xy) = y. But at the same time xy ∈ A2, hence y ∈ f(A2).

A map f : X → Y is said to be continuous at a point a ∈ X if for every ε > 0 there exists
δ > 0 such that

Bδ(a) ⊂ f−1(Bε(f(a))), (3.1)

which implies that f(Bδ(a)) ⊂ Bε(f(a)). The function is continuous on X if it is continuous at
all the points of X.

Theorem 3.2. A function between two metric spaces f : X → Y is continuous on X if and only
if for every nonempty open set V ⊂ Y we have that f−1(V ) is open in X.

Proof. First we assume that f is continuous on X. Let V a nonempty open set in Y . If f−1(V ) is
empty then we know that it is open. Otherwise, let a ∈ f−1(V ). Thus f(a) ∈ V . Since V is open,
f(a) is an interior point of V , thus there exists ε > 0 such that Bε(f(a)) ⊂ V . Applying Lemma
3.1 we get that f−1(Bε(f(a))) ⊂ f−1(V ). But from (3.1) it follows that Bδ(a) ⊂ f−1(V ), thus a
is an interior point.

We now assume that f returns any nonempty open set V of Y in an open set f−1(V ) of X.
Fix a ∈ X. Let ε > 0 and consider the ball Bε(f(a)). Lemma 1.1 implies that V = Bε(f(a))
is open in Y . Thus f−1(Bε(f(a))) must be open in X. Since a ∈ f−1(Bε(f(a))), it must be an
interior point. Thus there exists δ > 0 such that Bδ(a) ⊂ f−1(Bε(f(a))), which shows that f is
continuous at a.

Let (X, d) and (Y, ρ) be two metric spaces and consider a subset A ⊂ X. We can organize A
as a metric space with the natural distance dA induced by d. We say that the map f : A 7→ Y is
continuous on A if it is continuous between the metric spaces (A, dA) and (Y, ρ).

We say that f : A 7→ Y is sequentially continuous at a point a ∈ A if for every sequence
{xn}n≥1 ⊂ A which converges to a we have that {f(xn)}n≥1 ⊂ Y converges to f(a). We say that
f : A 7→ Y is sequentially continuous on A if it is sequentially continuous at all points of A.
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Theorem 3.3. With the above notation, consider a map f : A 7→ Y . Then f is continuous on A
if and only if it is sequentially continuous on A.

Proof. First, assume that f is continuous at a ∈ A. Consider any sequence {xn}n≥1 ⊂ A which
converges to a. From (3.1) we know that for every ε > 0 we have that ρ(f(xn), f(a)) < ε if
d(xn, a) < δ. But the second inequality holds if n is larger than some Nδ ≥ 1. Thus {f(xn)}n≥1 ⊂
Y converges to f(a).

Second, assume that f is sequentially continuous at a ∈ A. We will show that f must be
continuous at a. Suppose this is not true: it means that there exists ε0 > 0 such that for all δ > 0
we have that Bδ(a) 6⊂ f−1(Bε0(f(a))). By letting δ = 1/n for all n ≥ 1, we can find a point
xn ∈ B 1

n
(a) such that f(xn) 6∈ Bε0(f(a)), or ρ(f(xn), f(a)) ≥ ε0. In this way we constructed

a sequence {xn}n≥1 ⊂ A which converges to a while {f(xn)}n≥1 does not converge to f(a),
contradiction.

Theorem 3.4. With the above notation, consider a continuous map f : A 7→ Y where A ⊂ X is
compact. Then f(A) is compact.

Proof. We show that f(A) is sequentially compact. Let {yn}n≥1 ⊂ f(A) be an arbitrary sequence.
There exists {xn}n≥1 ⊂ A such that f(xn) = yn. Since A is sequentially compact, there exists
a subsequence {xnk}k≥1 ⊂ {xn}n≥1 which converges to some point a ∈ A. But f is sequentially
continuous at a, hence ynk = f(xnk) converges to f(a) ∈ f(A). Hence f(A) is sequentially
compact.

The next lemma recalls a general result which says that real continuous functions defined on
compact sets attain their extremal values. See also Theorem 10.61 in Wade.

Lemma 3.5. Let (X, d) be a metric space and let H ⊂ X be a compact set. Let f : H 7→ R
be continuous on H. Then there exist xm and xM in H such that f(xM ) = supx∈H f(x) and
f(xm) = infx∈H f(x).

Proof. We only prove this for supx∈H f(x). Let B := f(H) ⊂ R. Let us show that there exists a
sequence {xn}n≥1 ⊂ H such that limn→∞ f(xn) = supx∈H f(x) = sup(B).

Since B is compact, it is bounded. Thus sup(B) = supx∈H f(x) < ∞. For every n ≥ 1 we
know that sup(B) − 1/n is not an upper bound for B, thus there must exist xn ∈ H such that
sup(B)− 1/n < f(xn) ≤ sup(B). Thus limn→∞ f(xn) = sup(B).

Because H is compact, we can find a subsequence {xnk}k≥1 which converges towards some
point a ∈ H. Since f is continuous, we have that limk→∞ f(xnk) = f(a). Since {f(xnk)}k≥1 is a
subsequence of the convergent sequence {f(xn)}n≥1, we must have f(a) = sup(B). Thus we can
choose xM to be a.

We say that f : A 7→ Y is uniformly continuous on A if for every ε > 0 there exists δ > 0 such
that ρ(f(x), f(y)) < ε as soon as x, y ∈ A and d(x, y) < δ. Clearly, if f is uniformly continuous on
A then it is also continuous. The next result gives sufficient conditions for the reciprocal statement:

Lemma 3.6. Let (X, d) and (Y, ρ) be two metric spaces and let H ⊂ X be a compact set. Let
f : H 7→ Y be continuous on H. Then f is uniformly continuous on H.
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Proof. Assume that the conclusion is false. Then there exists ε0 > 0 such that regardless how large
n ≥ 1 is, we may find two points xn and yn in H which obey d(xn, yn) < 1

n and ρ(f(xn), f(yn)) ≥
ε0. Since H is sequentially compact, there exists a subsequence {xnk}k≥1 which converges to some
point a ∈ H. Because d(ynk , a) ≤ 1

k + d(xnk , a) for all k ≥ 1, it follows that ynk also converges to
a. The function f is sequentially compact at a, thus both f(xnk) and f(ynk) converge to f(a). In
particular, this contradicts our assumption that ρ(f(xnk), f(ynk)) ≥ ε0 for all k.

4 Banach’s fixed point theorem

Definition 4.1. Let (X, d) be a metric space. A map F : X → X is called a contraction if there
exists α ∈ [0, 1) such that:

d(F (x), F (y)) ≤ αd(x, y), ∀x, y ∈ X. (4.2)

A point x ∈ X is a fixed point for F if F (x) = x.

Theorem 4.2. Let (X, d) be a complete metric space and F : X → X a contraction. Then F has
a unique fixed point.

Proof. Vi start by showing uniqueness. Assume that there exist a, b ∈ X such that F (a) = a and
F (b) = b. Then (4.2) implies that

0 ≤ d(a, b) = d(F (a), F (b)) ≤ αd(a, b), (1− α)d(a, b) ≤ 0,

i.e. d(a, b) = 0 and a = b.
Now let us construct such a fixed point. Consider the sequence {yn}n≥1 ⊂ X, where y1 is

arbitrary and yn := F (yn−1) for every n ≥ 2. We will show two things:
(i). The sequence is Cauchy in X, thus convergent to a limit y∞ because we assumed X to be

complete;
(ii). y∞ is a fixed point for F .
Let us start with (i). For every ε > 0 we will construct N(ε) > 0 such that for all p ≥ q ≥ N(ε)

we have d(yq, yp) < ε. In other words:

d(yq, yq+k) < ε, ∀k ≥ 0, ∀q ≥ N(ε). (4.3)

If k ≥ 1, the triangle inequality implies:

d(yq, yq+k) ≤ d(yq, yq+1) + d(yq+1, yq+k)

≤ d(yq, yq+1) + d(yq+1, yq+2) + d(yq+2, yq+k)

≤
k−1∑
i=0

d(yq+i, yq+i+1). (4.4)

For every n ≥ 1 we have:

d(yn, yn+1) = d(F (yn−1), F (yn)) ≤ αd(yn−1, yn) ≤ · · · ≤ αn−1d(y1, y2), ∀n ≥ 1.

Thus d(yq+i, yq+i+1) ≤ αq+i−1d(y1, y2) for all q ≥ 1 and i ≥ 0. Together with (4.4), this implies:

d(yq, yq+k) ≤ αq−1d(y1, y2)(1 + · · ·+ αk−1) ≤ αq−1

1− α
d(y1, y2), ∀k ≥ 1.

Because α < 1, we have limq→∞ αq = 0. In other words, we can find some large enough N(ε) such
that for every q ≥ N(ε) to have

αq <
α(1− α)

d(y1, y2)
ε

10



and (4.3) follows. We conclude that there exists y ∈ X such that

lim
n→∞

d(yn, y) = 0. (4.5)

Now we prove (ii). For every n ≥ 1 we have:

d(F (y), y) ≤ d(F (y), F (yn)) + d(F (yn), y).

But d(F (y), F (yn)) ≤ αd(y, yn) → 0 and d(F (yn), y) = d(yn+1, y) → 0 when n → ∞, thus
d(F (y), y) = 0 and F (y) = y.

5 Local existence and uniqueness for first order ODE’s

We start with some general facts about functional spaces.

5.1 Spaces of bounded/continuous functions

Let Y be a real vector space. The map || · || : Y 7→ R+ is called a norm if it fulfills three conditions:
(1). ||y|| = 0 iff y = 0;
(2). ||λy|| = |λ| ||y||, for all λ ∈ R \ {0} and y ∈ Y ;
(3). ||y + z|| ≤ ||y||+ ||z|| for all y, z ∈ Y .

Proposition 5.1. Let (A, d) be a metric space, (Y, || · ||) a normed space, and H an arbitrary
non-empty subset of A. We define

B(H;Y ) := {f : H → Y : sup
x∈H
||f(x)|| <∞}.

Define || · ||∞ : B(H;Y )→ R+, ||f ||∞ := supx∈H ||f(x)||. Then the space (B(H;Y ), || · ||∞) is a
normed space, and the map d∞(f, g) := ||f − g||∞ defines a metric.

Proof. We first check the three conditions for being a norm. We have ||f ||∞ = 0 if and only if
||f(x)|| = 0 for all x ∈ H, which is equivalent with f = 0 and this proves (1).

Since ||λf(x)|| = |λ| ||f(x)|| for all x we have

||λf(x)|| = |λ| ||f(x)|| ≤ |λ| sup
y∈H
||f(y)|| = |λ| ||f ||∞

which shows that |λ| ||f ||∞ is an upper bound for all the numbers of the form ||λf(x)||. Hence:

||λf ||∞ = sup
x∈H
||λf(x)|| ≤ |λ| ||f ||∞.

On the other hand,

||f(x)|| = 1

|λ|
||λf(x)|| ≤ 1

|λ|
||λf ||∞

which means that 1
|λ| ||λf ||∞ is an upper bound for all the numbers of the form ||f(x)||. Hence:

||f ||∞ ≤
1

|λ|
||λf ||∞, or |λ| ||f ||∞ ≤ ||λf ||∞.

Thus |λ| ||f ||∞ = ||λf ||∞ and (2) is proved.
Finally, let us prove the triangle inequality (3). Fix f, g ∈ B(H;Y ) and for every x ∈ H we

apply the triangle inequality in (Y, || · ||):

||f(x) + g(x)|| ≤ ||f(x)||+ ||g(x)|| ≤ ||f ||∞ + ||g||∞.

11



Thus ||f ||∞ + ||g||∞ is an upper bound for the set {||f(x) + g(x)|| : x ∈ H}, hence

sup
x∈H
||f(x) + g(x)|| = ||f + g||∞ ≤ ||f ||∞ + ||g||∞.

Note that d∞(f, g) := ||f − g||∞ is the metric induced by the norm.

Proposition 5.2. Denote by C(H;Y ) the subset of B(H;Y ) where the functions are also contin-
uous. Assume that (Y, || · ||) is a Banach space (a complete normed space). Then (C(H;Y ), || · ||∞)
is a Banach space, too.

Proof. We need to prove that every Cauchy sequence is convergent. Assume that {fn}n≥1 ⊂
C(H;Y ) is Cauchy, i.e. for every ε > 0 one can find NC(ε) > 0 such that ||fp − fq||∞ < ε if
p, q > NC(ε). We have to show that the sequence has a limit f which belongs to C(H;Y ).

We first construct f . For every x ∈ H we consider the sequence {fn(x)}n≥1 ⊂ Y . Note the
conceptual difference between {fn(x)}n≥1 (a sequence of vectors from Y ) and {fn}n≥1 (a sequence
of functions from C(H;Y )). Because

||fp(x)− fq(x)|| ≤ ||fp − fq||∞
we have that the sequence {fn(x)}n≥1 is Cauchy in Y . Since Y is complete, then {fn(x)}n≥1
must have a limit in Y . We denote it with f(x). Moreover, since {fn}n≥1 is Cauchy it must be
bounded, i.e. there exists a constant M < ∞ such that ||fn||∞ ≤ M < ∞ for all n ≥ 1. The
triangle inequality gives:

||f(x)|| ≤ ||f(x)− fn(x)||+ ||fn(x)|| ≤ ||f(x)− fn(x)||+M,

and after taking the limit n→∞ we get:

||f(x)|| ≤M, ∀x ∈ H,

hence ||f ||∞ ≤M <∞.
The function f we have just constructed is our candidate for the limit in the norm || · ||∞. Now

we want to show that for every ε > 0 we can find N1(ε) > 0 so that:

sup
x∈H
||f(x)− fn(x)|| < ε whenever n > N1(ε). (5.1)

In order to do that, take an arbitrary point x ∈ H. For every p, n ≥ 1 we have

||f(x)− fn(x)|| ≤ ||f(x)− fp(x)||+ ||fp(x)− fn(x)||
≤ ||f(x)− fp(x)||+ ||fp − fn||∞. (5.2)

If we choose n, p > NC(ε/2), then we have ||fp − fn||∞ < ε/2 and

||f(x)− fn(x)|| ≤ ||f(x)− fp(x)||+ ε/2, ∀n, p > NC(ε/2).

But the above left hand side does not depend on p, thus if we take p→∞ on the right hand side,
we get:

||f(x)− fn(x)|| ≤ ε/2 < ε, n > NC(ε/2). (5.3)

Note that this inequality holds true for every x. This means that ε/2 is an upper bound for the
set {||f(x)− fn(x)|| : x ∈ H}, hence (5.1) holds true with N1(ε) = NC(ε/2).

Until now we have proved that f is bounded. Now we want to prove that f is a contin-
uous function on H. Fix some point a ∈ H. Choose ε > 0. Since limn→∞ fn(a) = f(a),
we can find N2(ε, a) > 0 such that ||fn(a) − f(a)|| < ε whenever n > N2. We define n1 :=
max{N1(ε/3), N2(ε/3, a)}. Because fn1 is continuous at a, we can find δ(ε, a) > 0 so that for every
x ∈ H with d(x, a) < δ we have ||fn1

(x)− fn1
(a)|| < ε/3. Thus if x ∈ H with d(x, a) < δ we have:

||f(x)− f(a)|| ≤ ||f(x)− fn1(x)||+ ||fn1(x)− fn1(a)||+ ||fn1(a)− f(a)||
< 2||f − fn1 ||∞ + ||fn1(x)− fn1(a)|| < ε. (5.4)

Since a is arbitrary, we can conclude that f is continuous on H, thus belongs to C(H;Y ). Therefore
the space is complete.

12



5.2 The main theorem

Let U be an open set in Rd, d ≥ 1, and I ⊂ R an open interval. Assume that there exist y0 ∈ U
and r0, δ0 > 0 such that Br0(y0) ⊂ U and [t0 − δ0, t0 + δ0] ⊂ I.

We consider a continuous function f : I × U → Rd for which there exists L > 0 such that

‖f(t,x)− f(t,y)‖ ≤ L‖x− y‖, ∀t ∈ [t0 − δ0, t0 + δ0], ∀x,y ∈ Br0(y0). (5.5)

We define the set H0 := [t0 − δ0, t0 + δ0] × Br0(y0) ⊂ Rd+1. Since H0 is bounded and closed, it
must be compact.

Using the triangle inequality we obtain:

| ||f(t,x)|| − ||f(s,y)|| | ≤ ||f(t,x)− f(s,y)||

which shows that the continuity of f implies continuity for ||f ||. Since ||f || is a real valued con-
tinuous function defined on a compact set, according to Lemma 3.5 we can find M < ∞ such
that

sup
[t,x]∈H0

‖f(t,x)‖ =: M <∞. (5.6)

Theorem 5.3. Consider the initial value problem:

y′(t) = f(t,y(t)), y(t0) = y0. (5.7)

Define δ1 := min{δ0, r0/M, 1/L}. Then there exists a solution y : (t0 − δ1, t0 + δ1) 7→ Br0(y0),
which is unique.

Proof. Take some 0 < δ < δ1 and define the compact interval K := [t0 − δ, t0 + δ] ⊂ R. Then
any continuous function φ : K → Rd is automatically bounded, and since the Euclidean space
Y = Rd is a Banach space, we can conclude from Proposition 5.2 that the space (C(K;Rd), d∞)
of continuous functions defined on the compact K with values in Rd is a complete metric space.

Define
X := {g ∈ C(K;Rd) : g(t) ∈ Br0(y0), ∀t ∈ K}. (5.8)

Lemma 5.4. The metric space (X, d∞) is complete.

Proof. Consider a Cauchy sequence {gn}n≥1 ⊂ X. Because (C(K;Rd), d∞) is complete, we can
find g ∈ C(K;Rd) such that limn→∞ d∞(gn,g) = 0. Thus for every t ∈ K we have

g(t) = lim
n→∞

gn(t), lim
n→∞

‖gn(t)− g(t)‖ = 0.

Since by assumption ‖gn(t)− y0‖ ≤ r0 for all t and n, we have

‖g(t)− y0‖ = lim
n→∞

‖gn(t)− y0‖ ≤ r0, ∀t ∈ K,

which implies that g ∈ X.

Lemma 5.5. Define the map F : X → C(K;Rd)

[F (g)](t) := y0 +

∫ t

t0

f(s,g(s))ds, ∀t ∈ K,

where f obeys (5.5). Then (i) the range of F belongs to X and (ii) F : X → X is a contraction.

Proof.
(i). Since fj are continuous real valued functions, we have that

K 3 s 7→ fj(s,g(s)) ∈ R
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are also continuous, thus Riemann integrable. Because g(s) ∈ Br0(y0) for all s ∈ K, we have that
(s,g(s)) ∈ H0. The integral from the definition of F defines a vector u(t) with components

uj(t) :=

∫ t

t0

fj(s,g(s))ds, 1 ≤ j ≤ d.

Denote by t1 := min{t0, t} and t2 := max{t0, t} . Then we have:

||u(t)||2 =

d∑
j=1

u2j (t) =

∫ t

t0

 d∑
j=1

uj(t)fj(s,g(s))

 ds ≤
∫ t2

t1

||u(t)|| ||f(s,g(s))||ds

where in the last inequality we used the Cauchy-Schwarz inequality. Hence we may write:∥∥∥∥∫ t

t0

f(s,g(s))ds

∥∥∥∥ ≤ ∫ t2

t1

||f(s,g(s))||ds.

From (5.6) we have sups∈K ‖f(s,g(s))‖ ≤M , hence:

‖[F (g)](t)− y0‖ = ‖u(t)‖ ≤
∫ t2

t1

||f(s,g(s))||ds ≤Mδ < r0, ∀t ∈ K,

which shows that [F (g)](t) ∈ Br0(y0) for all t ∈ K, thus the range of F is contained in X.
(ii). Consider two functions g,h ∈ X. We have

d∞(F (g), F (h)) = sup
t∈K
‖[F (g)](t)− [F (h)](t)‖.

The Lipschitz condition from (5.5) implies:

||F (g)](t)− [F (h)](t)|| =
∥∥∥∥∫ t

t0

[f(s,g(s))− f(s,h(s))]ds

∥∥∥∥ ≤ (δ L) sup
s∈K
||g(s)− h(s)||

≤ (δ L)d∞(g,h), ∀t ∈ K. (5.9)

It means that d∞(F (g), F (h)) ≤ δ L d∞(g,h) for all g,h ∈ X, and δL < 1. Thus F is a
contraction.

Finishing the proof of Theorem 5.3. Vi have seen that F is a contraction on X. Then
Theorem 4.2 implies that there exists a continuous function y : K → Br0(y0) such that

y(t) = [F (y)](t) = y0 +

∫ t

t0

f(s,y(s))ds, t ∈ [t0 − δ, t0 + δ].

But the right hand side is differentiable for t ∈ (t0 − δ, t0 + δ) due to the fundamental theorem of
calculus, and moreover,

d

dt

(∫ t

t0

f(s,y(s))ds

)
= f(t,y(t)).

Thus (5.7) is satisfied. Finally, let us prove uniqueness. Assume that there exists another solution
z obeying the conditions of the theorem. We have z(t0) = y0 and z is continuous because it
is differentiable; moreover, z′ is also continuous because it equals f(s, z(s)), and z ∈ X. Thus
applying once again the fundamental theorem of calculus we obtain:

z(t) = z(t0) +

∫ t

t0

z′(s)ds = [F (z)](t), z = F (z), z ∈ X.

Since F has a unique fixed point, we must have z = y.
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Remark 5.6. Choose 0 < δ < δ1. Define the sequence of functions yk : [t0 − δ, t0 + δ] → Rd,
k ≥ 1, where y1(t) = y0 and

yk+1(t) = y0 +

∫ t

t0

f(s,yk(s))ds, k ≥ 1.

We see that yk+1 = F (yk), where F is given by Lemma 5.5. A direct use of Lemma 5.5 (ii) implies
that {yk}k≥1 converges uniformly on the interval [t0 − δ, t0 + δ] towards a continuous function y
which obeys the fixed point equation

y(t) = y0 +

∫ t

t0

f(s,y(s))ds,

thus solving (5.7). This is Picard’s iteration method.

6 The implicit function theorem

The Euclidean space Rm has a norm defined by ||x|| =
√∑m

j=1 |xj |2.

Lemma 6.1. Let A be a m×n matrix with real components {ajk}. Define the quantity ||A||HS :=√∑m
j=1

∑n
k=1 |ajk|2. Then

||Au||Rm ≤ ||A||HS ||u||Rn , ∀u ∈ Rn. (6.1)

Proof. From the Cauchy-Schwarz inequality we have:

|(Au)j |2 =

(
n∑
k=1

ajkuk

)2

≤

(
n∑
k=1

|ajk|2
)

n∑
k=1

|uk|2 =

n∑
k=1

|ajk|2||u||2Rn ,

and the lemma follows after summation with respect to j.

Lemma 6.2. Let O ⊂ Rm be an open set and Kδ := Bδ(u0) = {u ∈ Rm : ||u − u0|| ≤ δ} be a
closed ball included in O. Let φ : O 7→ R be a C1(Kδ) map (which means that ∂jφ exist for all
j and are continuous functions on Kδ). Denote by ||∂jφ||∞ = supx∈Kδ |∂jφ(x)| < ∞. Then for
every u,u′ ∈ Kδ we have:

|φ(u)− φ(u′)| ≤

√√√√ m∑
j=1

||∂jφ||2∞ ||u− u′||. (6.2)

Proof. Define the real valued map f(t) = φ((1− t)u′+ tu), 0 ≤ t ≤ 1. Applying the chain rule we
obtain:

f ′(t) =

m∑
j=1

(uj − u′j)(∂jφ)((1− t)u′ + tu),

thus the Cauchy-Schwarz inequality implies:

|f ′(t)| ≤

√√√√ m∑
j=1

|∂jφ((1− t)u′ + tu)|2 ||u− u′|| ≤

√√√√ m∑
j=1

||∂jφ||2∞ ||u− u′||, ∀0 < t < 1.

Since φ(u)− φ(u′) = f(1)− f(0) =
∫ 1

0
f ′(t)dt, we obtain:

|φ(u)− φ(u′)| ≤
∫ 1

0

|f ′(t)|dt ≤

√√√√ m∑
j=1

||∂jφ||2∞ ||u− u′||

which proves (6.2).
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Lemma 6.3. Let O and Kδ be as above. Let f : O 7→ Rq a vector valued map which is C1(Kδ).
Define

||∆f ||∞,Kδ :=

√√√√ q∑
k=1

m∑
j=1

||∂jfk||2∞.

Then we have:
||f(u)− f(u′)||Rq ≤ ||∆f ||∞,Kδ ||u− u′||Rm , ∀u,u′ ∈ Kδ. (6.3)

Proof. Let f(x) = [f1(x), ..., fq(x)] and use (6.2) with φ replaced by fk, 1 ≤ k ≤ q. We have:

|fk(u)− fk(u′)|2 ≤
m∑
j=1

||∂jfk||2∞||u− u′||2Rm

and the proof is completed after taking the sum over k.

Let d = m+ n with 1 ≤ m,n < d. A vector x ∈ Rd can be uniquely decomposed as x = [u,w]
with u ∈ Rm and w ∈ Rn. Let U ∈ Rd be an open set and h : U 7→ Rm be a C1(U ;Rm) function.
We denote by:

[Duh([u′,w′])] :=

{
∂hk
∂uj

([u′,w′]) : 1 ≤ j, k ≤ m
}
∈ L(Rm,Rm),

and

[Dwh([u′,w′])] :=

{
∂hk
∂wj

([u′,w′]) : 1 ≤ k ≤ m, 1 ≤ j ≤ n
}
∈ L(Rn,Rm)

the partial Jacobi matrices of h. We also have:

[Dh([u′,w′])] = [Duh([u′,w′]);Dwh([u′,w′])] ∈ L(Rd,Rm).

We can now formulate the implicit function theorem.

Theorem 6.4. Let U ⊂ Rd be an open set and h : U 7→ Rm be a C1(U ;Rm) function. Assume
that there exists a point a = [ua,wa] ∈ U such that h(a) = 0 and the m × m partial Jacobi
matrix [Duh(a)] is invertible. Then there exists an open set E ⊂ Rn containing wa and a map
f : E 7→ Rm continuous on E which obeys f(wa) = ua and h([f(w),w]) = 0 for all w ∈ E.
Moreover, f is continuously differentiable on E, and we have:

[Df(w′)] = −[Duh([f(w′),w′])]−1 [Dwh([f(w′),w′])] ∈ L(Rn,Rm), ∀w′ ∈ E. (6.4)

Proof. The point a is an interior point of U , hence there exists r > 0 such that Br(a) ⊂ U . Thus
for every x = [u,w] ∈ Br(a) we have

||x− a||2Rd = ||u− ua||2Rm + ||w −wa||2Rn < r2.

If ε < r/
√

2, let Pn(ε) be the open ball Bε(wa) ⊂ Rn and Qm(ε) be the open ball Bε(ua) ⊂ Rm.
Then one can verify that Qm(ε)× Pn(ε) ⊂ Br(a) ⊂ U .

For every w ∈ Pn(ε), define the map Fw : Qm(ε) 7→ Rm given by

Fw(u) := u− [Duh(a)]−1h([u,w]).

The strategy is to show that if ||w −wa||Rn < ε < r/
√

2 for some small enough ε, then there
exists some uw ∈ Qm(ε) such that Fw(uw) = uw, which would imply that [Duh(a)]−1h([uw,w]) =
0. By multiplying with [Duh(a)] on the left we would get h([uw,w]) = 0. In the second part of
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the proof one needs to show that the map w 7→ uw defines in fact our differentiable function f
which obeys (6.4).

Let us start with a general estimate which will play an important role in what follows. We
want to prove that there exists some 0 < ε1 < r/

√
2 small enough such that for every w ∈ Pn(ε1)

we have:

||Fw(u)− Fw(u′)||Rm ≤
1

10
||u− u′||Rm , ∀u,u′ ∈ Qm(ε1). (6.5)

From the definition of Fw we can write:

Fw(u) = −[Duh(a)]−1{h([u,w])− [Duh(a)]u}.

Define gw(u) := h([u,w])− [Duh(a)]u. Hence Fw(u) = −[Duh(a)]−1gw(u) and we have:

||Fw(u)− Fw(u′)||Rm ≤ ||[Duh(a)]−1||HS||gw(u)− gw(u′)||Rm ,

where we used (6.1).
The set Qm(ε) is closed and bounded, thus compact. As in Lemma 6.3, namely the estimate

(6.3) with q = m, we can derive the inequality:

||gw(u)− gw(u′)||Rm ≤ ||∆gw||∞,Qm(ε)
||u− u′||Rm , ∀u,u′ ∈ Qm(ε).

Let us show that ||∆gw||∞,Qm(ε)
can be made arbitrarily small when ε goes to zero. It is enough

to show that ∂[gw]k
∂uj

goes to zero uniformly on Qm(ε). By computing the partial derivative we

obtain:
∂[gw]k
∂uj

(u) =
∂hk
∂uj

([u,w])− ∂hk
∂uj

(a).

Due to the continuity of the partial derivatives of h at a, we get that the above right hand side
can be made arbitrarily small with ε. In particular, there exists ε1 > 0 small enough such that

||∆gw||∞,Qm(ε1)
≤ 1

10(1 + ||[Duh(a)]−1||HS||)
,

hence (6.5) is proved.
We need a second important estimate. We will show that there exists a constant C > 0 such

that
||Fw(u)− Fw′(u)||Rm ≤ C ||w −w′||Rn , ∀w,w′ ∈ Pn(ε1), ∀u ∈ Qm(ε1). (6.6)

Indeed, using the definition we have:

Fw(u)− Fw′(u) = −[Duh(a)]−1{h([u,w])− h([u,w′])}.

Now reasoning as in Lemma 6.3 where we keep u fixed as a parameter we obtain that

||h([u,w])− h([u,w′])||Rm ≤ ||∆wh||∞,Pn(ε1) ||w −w′||Rn ≤ ||∆wh||∞,Pn(r/√2)
||w −w′||Rn

where ||∆wh||∞,Pn(r/√2)
depends parametrically on u. But since h is C1(U), this quantity is

bounded if u ∈ Qm(r/
√

2), by some number C̃. Then using (6.1) we obtain (6.6).
In particular, if w′ = wa and u = ua we obtain:

||Fw(ua)− Fwa(ua)||Rm ≤ C ||w −wa||Rn , ∀w ∈ Pn(ε1). (6.7)

If we choose ε2 := ε1/(10C) we obtain:

||Fw(ua)− Fwa(ua)||Rm ≤
ε1
10
, ∀w ∈ Pn(ε2). (6.8)

17



We are now able to prove that for every w ∈ Pn(ε2), the map Fw leaves the setQm(ε1) invariant.
Note first that Fwa(ua) = ua because h(a) = 0 from our hypothesis. Now if ||u − ua|| ≤ ε1 we
have:

||Fw(u)− ua||Rm ≤ ||Fw(u)− Fw(ua)||Rm + ||Fw(ua)− ua||Rm ≤
ε1
5
,

where we used both (6.5) and (6.8).
We have just proved that for every w ∈ Pn(ε2), the map Fw : Qm(ε1) 7→ Qm(ε1) is a contraction

(see (6.5)) defined on the complete metric space Qm(ε1) ⊂ Rm. Thus there exists a unique
uw ∈ Qm(ε1) such that Fw(uw) = uw, which implies that

h([uw,w]) = 0, ∀w ∈ Pn(ε2).

Now if w,w′ ∈ Pn(ε2) we have:

||uw − uw′ ||Rm = ||Fw(uw)− Fw′(uw′)||Rm
≤ ||Fw(uw)− Fw(uw′)||Rm + ||Fw(uw′)− Fw′(uw′)||Rm

≤ 1

10
||uw − uw′ ||Rm + C ||w −w′||Rn . (6.9)

This shows that

||uw − uw′ ||Rm ≤
10C

9
||w −w′||Rn ∀w,w′ ∈ Pn(ε2), (6.10)

which proves that the map
Pn(ε2) 3 w 7→ uw ∈ Rm

is (Lipschitz) continuous.
We now want to prove that f(w) := uw is differentiable at w′ ∈ Pn(ε2) and obeys (6.4), even-

tually by making ε1 even smaller (remember also that ε2 = ε1/(10c)). Because h is differentiable
at x′ = [u′,w′], there exists a map εx′ defined on the ball Br(a) ⊂ Rd, continuous at x′ and with
εx′(x

′) = 0, such that for every x ∈ Br(a) we can write:

h(x)− h(x′) = [Dh(x′)](x− x′) + ||x− x′||Rdεx′(x). (6.11)

Replacing x with [f(w),w] and x′ with [f(w′),w′] we have:

h([f(w),w])− h([f(w′),w′]) (6.12)

= [Dh(x′)]([f(w)− f(w′),w −w′]) +
√
||f(w)− f(w′)||2Rm + ||w −w′||2Rn εx′([f(w),w]).

Remember that h([f(w),w]) = h([f(w′),w′]) = 0 and

[Dh(x′)](x− x′) = [Duh(x′)](f(w)− f(w′)) + [Dwh(x′)](w −w′).

Because h is a C1 function, it follows that the map

Qm(ε1)× Pn(ε2) 3 x′ 7→ det[Duh(x′)] ∈ R

is continuous. Since [Duh(a)] is invertible we must have that det[Duh(a)] 6= 0. The point
x′ belongs to Qm(ε1) × Pn(ε2), thus by choosing ε1 (hence ε2) small enough we can make the
difference between x′ and a as small as we want. Thus by choosing ε1 (hence ε2) small enough we
can insure that det[Duh(x′)] 6= 0 for all x′ ∈ Qm(ε1)× Pn(ε2), thus [Duh(x′)] is invertible.

Using this in (6.12) we have:

f(w)− f(w′) =− [Duh(x′)]−1[Dwh(x′)](w −wa) (6.13)

−
√
||f(w)− f(w′)||2Rm + ||w −w′||2Rn [Duh(x′)]−1εx′([f(w),w]).
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Using (6.10), we have:√
||f(w)− f(w′)||2Rm + ||w −w′||2Rn ≤

√
100C2

81
+ 1 ||w −w′||Rn , ∀w,w′ ∈ Pn(ε2).

Replacing this in (6.13) we obtain:

||f(w)− f(w′) + [Duh(x′)]−1[Dwh(x′)](w −w′)||Rm

≤
√

100C2

81
+ 1 ||w −w′||Rn ||[Duh(x′)]−1εx′([f(w),w])||Rm

≤ ||w −w′||Rn
√

100C2

81
+ 1 ||[Duh(x′)]−1||HS||εx′([f(w),w])||Rm , ∀w ∈ Pn(ε2). (6.14)

Now using limw→w′ [f(w),w] = x′ and the continuity of εx′ at x = x′ we have:

lim
w→w′

||f(w)− f(w′) + [Duh(x′)]−1[Dwh(x′)](w −w′)||Rm
||w −w′||Rn

= 0,

which proves (6.4).

7 The inverse function theorem

We start with two technical lemmas.

Lemma 7.1. Let O ⊂ Rm be an open set, Kδ := Bδ(u0) = {u ∈ Rm : ||u− u0|| ≤ δ} be a closed
ball included in O, and f : O 7→ Rm such that f ∈ C1(Kδ). Define g(u) = f(u) − [Df(u0)]u on
Kδ, where [Df(u0)] is the Jacobi matrix with elements [Df(u0)]kj = (∂jfk)(u0). Then for every
β > 0 there exists an 0 < εβ < δ such that for every 0 < ε < εβ we have:

||g(u)− g(u′)|| ≤ β||u− u′||, ∀u,u′ ∈ Kε. (7.1)

Proof. A straightforward computation gives ∂jgk(x) = ∂jfk(x) − ∂jfk(u0). Thus ||∂jgk||∞ can
be made arbitrarily small when ε gets smaller, because f has continuous partial derivatives. It
follows that ||∆g||∞,Kε ≤ β whenever ε gets smaller than some small enough εβ , and then we can
use (6.3) with g instead of f .

Lemma 7.2. Let O ⊂ Rm be open and let u0 ∈ O. Let f be a C1(O;Rm) vector valued function,
such that [Df(u0)] ∈ L(Rm;Rm) is an invertible matrix. Then there exists r > 0 small enough
such that the restriction of f to Br(u0) is injective.

Proof. Assume the contrary: for every n ≥ 1 there exist two different points xn 6= yn in B 1
n

(u0)

such that f(xn) = f(yn). Define g(x) = f(x) − [Df(u0)]x on B 1
n

(u0). Then we have g(xn) −
g(yn) = [Df(u0)](yn − xn) or:

yn − xn = [Df(u0)]−1(g(xn)− g(yn)), ∀n ≥ 1.

Now using (6.1) we have:

||yn − xn|| = ||[Df(u0)]−1||HS ||g(xn)− g(yn)||, ∀n ≥ 1.

Choosing β = 1
1+||[Df(u0)]−1||HS

, then from (7.1) we infer that there exists some εβ > 0 sufficiently

small such that for every n−1 < εβ we have ||g(xn)− g(yn)|| ≤ β||yn − xn||. It follows that:

||yn − xn|| ≤
||[Df(u0)]−1||HS

1 + ||[Df(u0)]−1||HS
||yn − xn|| < ||yn − xn||, ∀0 < n−1 < εβ ,

which contradicts the assumption ||yn − xn|| 6= 0.
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Here is the Inverse Function Theorem:

Theorem 7.3. Let O ⊂ Rm be an open set containing u0. Let g ∈ C1(O;Rm) such that
[Dg(u0)] ∈ L(Rm,Rm) is invertible, and g is injective on O. Then there exists an open ball
E ⊂ Rm which contains w0 := g(u0), and a function f : E 7→ O such that the following facts hold
true:

(i). The set V = f(E) equals g−1(E) and is open in Rm;
(ii). g(f(w)) = w on E and f(g(u)) = u on V , hence they are local inverses to each other;
(iii). The function f is a C1(V ) function, [Dg(f(w))] is invertible on E and we have:

[Df(w)] = [Dg(f(w))]−1.

Proof. The set U := O×Rm ⊂ R2m is open. Define h : U 7→ Rm given by h([u,w]) := g(u)−w.
Denote by a := [u0,w0]. Then h ∈ C1(U), h(a) = 0, and [Duh(a)] = [Dg(u0)] is invertible.
Thus the conditions of the Implicit Function Theorem are satisfied and we can find an open ball
E ⊂ Rm containing g(u0) = w0 and a function f ∈ C1(E) such that h([f(w),w]) = 0 on E. In
other words, g(f(w)) = w for every w ∈ E. This equality shows in particular that g(y) ∈ E if y
is of the form f(w) with w ∈ E. In other words, f(E) ⊂ g−1(E).

Now let us show that in fact f(E) = g−1(E). Let x ∈ g−1(E). We have g(x) =: w ∈ E
hence g(f(w)) = w = g(x). Because g is injective on O we must have x = f(w) ∈ f(E), hence
g−1(E) ⊂ f(E) and the equality of the two sets is proved.

Since g is continuous, the set V = f(E) = g−1(E) is open according to Theorem 3.2. This
proves (i), together with the equality g(f(w)) = w on E.

Now let us prove that we also have f(g(u)) = u on V . Take u ∈ V = g−1(E) and put
w = g(u) ∈ E. Since w = g(f(w)), we must have g(u) = g(f(w)). Because g is injective, we
must have u = f(w) = f(g(u), thus (ii) is proved.

Finally, differentiating g(f(w)) = w and using the chain rule we get

[Dg(f(w))][Df(w)] = Im×m

which means that both factors on the left hand side are invertible and (iii) is proved.

8 Brouwer’s fixed point theorem

We say that K ⊂ Rd is convex if for every x,y ∈ K we have that (1 − t)x + ty ∈ K for all
0 ≤ t ≤ 1. A set K is called a convex body if K is convex, compact, and with at least one interior
point.

Theorem 8.1. Let K ⊂ Rd be a convex body. Let f : K 7→ K be a continuous function which
invariates K. Then f has a (not necessarily unique) fixed point, that is a point x ∈ K such that
f(x) = x.

Proof. The first thing we do is to reduce the problem from a general convex body to the unit ball
in Rd. We will show that there exists a bijection ϕ : K 7→ B1(0), which is continuous and with
continuous inverse (a homeomorphism). If this is true, then it is enough to show that the function
ϕ ◦ f ◦ ϕ−1 : B1(0) 7→ B1(0) has a fixed point a ∈ B1(0). In that case, x = ϕ−1(a) ∈ K.

Lemma 8.2. Any convex body in Rd is homeomorphic with the closed unit ball B1(0).

Proof. Let x0 be an interior point of K. There exists r > 0 such that Br(x0) ⊂ K. Define the
continuous map g : K 7→ Rd given by g(x) := (x − x0)r−1. Define K̃ := g(K). It is easy to
see that K̃ is a convex and compact set. Moreover, the function g : K 7→ K̃ is invertible and
g−1(y) = ry + x0. Both g and g−1 are continuous, and for every y ∈ Rd with ||y|| ≤ 1 we have
that ry + x0 ∈ Br(x0) ⊂ K, thus y ∈ K̃. This shows that B1(0) ⊂ K̃, thus K̃ is a convex body
containing the closed unit ball.
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We now construct a homeomorphism between K̃ and B1(0). The boundary of K̃ is denoted
by ∂K̃, equals K̃ \ int(K̃), and is a closed and bounded set. The boundary of B1(0) is denoted
by Sd−1 and equals the unit sphere in Rd. The ray connecting a given x ∈ ∂K̃ with the origin
intersects Sd−1 in a point; in this way we define the function h : ∂K̃ 7→ Sd−1 where h(x) is given
by the above intersection.

The function h is injective; let us show this. Given x ∈ ∂K̃, the set C(x) defined by joining
x with all the points of B1(0) must belong to the convex set K̃. But C(x) also contains the ray
joining x with 0, and all the points of the segment strictly between x and 0 are interior points of
C(x), thus interior points of K̃. It means that no two different points of ∂K̃ can be placed on the
same ray starting from the origin, which proves the injectivity of h.

Let us show that the function h is also surjective. Consider any ray generated by x̂ ∈ Sd−1,
starting from the origin and parametrized by R(x̂) := {λx̂ : λ ≥ 0}. This ray is a closed set.
Consider the set E(x̂) := R(x̂) ∩ int(K̃). This set must be bounded, because K̃ is bounded.
Hence the set of non-negative real numbers {||y|| : y ∈ E(x̂)} ⊂ R is bounded, thus it has a
supremum c < ∞. The supremum is an accumulation point, thus there must exist a sequence of
points {yn}n≥1 ⊂ E(x̂) such that ||yn|| → c. But this sequence is also included in the compact

set K̃ ∩ R(x̂). It means that there exists a subsequence ynk which converges to some point
u ∈ K̃ ∩ R(x̂), i.e. ||ynk − u|| → 0 when k → ∞. Thus we also have ||ynk || → ||u|| which shows
that ||u|| = c. Now u cannot be an interior point of K̃, because in that case we could find points
of E(x̂) which are farther away from the origin than u, contradicting the maximality of ||u||. Thus
u ∈ ∂K̃, which proves that the ray hits at least one point of the boundary.

Thus h is bijective and invertible. The (sequential) continuity of h follows easily by geometric
arguments.

Let us now prove that h−1 : Sd−1 7→ ∂K̃ is also sequential continuous. For every x̂ ∈ Sd−1,
the point h−1(x̂) is the unique point of ∂K̃ which is hit by the ray defined by x̂. Assume that
h−1 is not continuous at some â ∈ Sd−1. It means that we can find some ε0 > 0 and a sequence
{x̂n}n≥1 ⊂ Sd−1, such that x̂n → â and ||h−1(x̂n)− h−1(â)|| ≥ ε0. The vector h−1(x̂n) is parallel
with x̂n and the same is true for the pair h−1(â) and â. Thus if n is large enough, the last inequality
implies that either ||h−1(x̂n)|| ≤ ||h−1(â)|| − ε0/2 or ||h−1(â)||+ ε0/2 ≤ ||h−1(x̂n)||. Assume that
there are infinitely many cases where the first situation holds true. Then if n is large enough, the
point h−1(x̂n) enters in the cone C(h−1(â)) and must be an interior point of K̃, contradiction. In
the other situation, h−1(â) would eventually become an interior element of the cone C(h−1(x̂n))
for large enough n, again contradiction.

Let us define the map φ : K̃ 7→ B1(0) by φ(x) := x/||h−1(x/||x||)|| if x 6= 0 and φ(0) = 0. It is
nothing but taking x and dividing it with the length of the segment between 0 and the point on
the boundary corresponding to the ray generated by x/||x||. Clearly, φ is continuous. It is easy
to check that the inverse of φ is given by φ−1 : B1(0) 7→ K̃ where φ−1(y) := y||h−1(y/||y||)|| if
y 6= 0 and φ−1(0) = 0. This inverse is continuous because h−1 is continuous.

In conclusion, ϕ := φ ◦ g : K 7→ B1(0) is a homeomorphism, and we are done.

Thus from now on we will assume without loss of generality that K = B1(0).

Lemma 8.3. Assume that f : B1(0) 7→ B1(0) is continuous with no fixed points. Then there exists
a smooth function f̃ : B1(0) 7→ B1(0) with the same property.

Proof. Our assumption says that ||f(x)− x|| > 0 for all x ∈ B1(0). The real valued map

B1(0) 3 x 7→ ||f(x)− x|| ∈ R

is continuous and defined on a compact set. Thus it attains its minimum in some point xm. It
follows that:

||f(x)− x|| ≥ ||f(xm)− xm|| = ε0 > 0. (8.1)

Let us extend f to the whole of Rd in the following way. Define g : Rd 7→ B1(0) by g(x) = f(x) if
||x|| ≤ 1, and g(x) = f(x/||x||) if ||x|| > 1. The extension is continuous, and ||g(x)|| ≤ 1 for all x.
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Define the function j : Rd 7→ R, j(x) = e−1/(1−||x||
2) if ||x|| < 1 and j(x) = 0 if ||x|| ≥ 1. The

function j is non-negative, belongs to C∞(Rd) and has a positive integral I :=
∫
Rd j(x)dx > 0.

Define j̃(x) := j(x)/I. Then
∫
Rd j̃(x)dx = 1.

Now if δ > 0 we define the function Jδ(x) := δ−d j̃(δ−1x). Clearly, Jδ is non-negative, belongs
to C∞(Rd), it is non-zero only if ||x|| < δ, and

∫
Rd Jδ(x)dx = 1 independently of δ.

Define the function gδ : B1(0) 7→ B1(0) by the formula:

gδ(x) :=

∫
Rd
Jδ(x− y)g(y)dy =

∫
Rd

g(x− y)Jδ(y)dy. (8.2)

That the range of gδ is included in B1(0) is a consequence of the fact that ||g(y)|| ≤ 1 and∫
Rd Jδ(x− y)dy = 1 independently of x. The function gδ is smooth because Jδ is smooth.

Now we can write:

gδ(x)− g(x) =

∫
Rd

[g(x− y)− g(x)]Jδ(y)dy =

∫
||y||≤δ

[g(x− y)− g(x)]Jδ(y)dy, (8.3)

where the second equality comes from the support properties of Jδ. If we impose the condition
δ < 1, then x− y ∈ B2(0) if ||y|| ≤ δ and ||x|| ≤ 1. The function g restricted to the compact set
B2(0) is uniformly continuous, thus there exists some δ0 > 0 small enough such that

||g(x′)− g(x′′)|| ≤ ε0/2 whenever ||x′ − x′′|| ≤ δ0, x′,x′′ ∈ B2(0).

Applying this estimate in (8.3) we obtain that ||gδ0(x) − g(x)|| ≤ ε0/2, for all x ∈ B1(0). Using
this in (8.1) it follows:

||gδ0(x)− x|| ≥ ε0/2 > 0, ∀x ∈ B1(0). (8.4)

The function gδ0 is our f̃ and the proof of this lemma is over.

From now on we can assume that our function f is smooth and with no fixed points in B1(0).
The next lemma shows that such a function f would allow us to construct a smooth retraction of
the unit ball onto its boundary.

Lemma 8.4. Assume that f : B1(0) 7→ B1(0) is smooth with no fixed points. Then there exists a
smooth function h : B1(0) 7→ Sd−1 such that h(x) = x if x ∈ Sd−1.

Proof. We know that there exists some ε0 > 0 such that ||f(x) − x|| ≥ ε0 for all x ∈ B1(0). We
define the unit vector w(x) := (||x− f(x)||)−1 (x− f(x)) which defines the direction of a straight
line starting in f(x) and going through x. This line is parametrized as f(x) + tw(x), with t ≥ 0.
The value t = ||x − f(x)|| gives x. For even larger values of t we approach the boundary. There
exists a unique positive value of t(x) ≥ ||x − f(x)|| ≥ ε0 which corresponds to the intersection of
this line with the unit sphere Sd−1. Namely, from the condition ||f(x) + tw(x)||2 = 1 we obtain:

t(x) = −f(x) ·w(x) +
√

(f(x) ·w(x))2 + 1− ||f(x)||2 ≥ ||x− f(x)||,

where f(x) ·w(x) is the inner product in Rd. The only problem related to the smoothness of this
function could appear if the square root can be zero. The square root is zero if ||f(x)|| = 1 and
0 = f(x) ·w(x). Equivalently, f(x) ·x = 1. The last equality demands that x = f(x), both vectors
having unit lenght and sitting on the boundary, situation excluded by our assumption of absence
of fixed points. Thus t(x) is smooth, and we can define

h(x) := f(x) + t(x) w(x) ∈ Sd−1

which ends the proof.
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Lemma 8.5. Assume that h : B1(0) 7→ Sd−1 is smooth and h(x) = x if x ∈ Sd−1. If 0 ≤ s ≤ 1,
define the map gs : B1(0) 7→ B1(0) given by gs(x) = (1−s)x+sh(x). Then there exists 0 < s0 < 1
such that gs is a bijection for all 0 ≤ s ≤ s0.

Proof. First of all, we note that if x ∈ Sd−1 then gs(x) = x. Thus the only thing we need to show
is that gs is injective and gs(B1(0)) = B1(0).

For the injectivity part: consider the equality gs(x) = gs(y) for some x,y ∈ B1(0). This can
be rewritten as:

x− y = − s

1− s
(h(x)− h(y)).

Reasoning as in Lemma 6.3 we can find a constant Ch > 0 such that ||h(u)−h(w)|| ≤ Ch||u−w||
for all u,w ∈ B1(0). Thus we obtain:

||x− y|| ≤ Chs

1− s
||x− y||

which imposes x = y if s is smaller than some small enough value 0 < s̃ < 1.
Now let us assume that 0 ≤ s ≤ s̃. We want to prove that there exists 0 < s0 ≤ s̃ such that

gs(B1(0)) = B1(0) for all 0 ≤ s ≤ s0.
One inclusion is easy: if ||x|| < 1, then ||gs(x)|| ≤ (1−s)||x||+s < 1. Thus gs(B1(0)) ⊂ B1(0).
The other inclusion is more complicated. Let us consider the equation gs(x) = z, where

||z|| ≤ 1/4 is arbitrary. This equation can be rewritten as x = (1− s)−1{z− sh(x)}. Now if s is
smaller than some small enough value s1, the vector T (x) := (1 − s)−1z − s(1 − s)−1h(x) obeys
||T (x)|| ≤ 1/2 for all ||x|| ≤ 1. In particular, T invariates B 1

2
(0). Also:

||T (u)− T (w)|| ≤ Ch s ||u−w||, ∀u,w ∈ B 1
2
(0).

Thus if s < s2 := min{s1, C−1h }, the map T is a contraction and has a unique fixed point. This
fixed point solves the equation gs(x) = z. Thus until now we showed that

B 1
4
(0) ⊂ gs(B1(0)), 0 ≤ s < s2 < 1.

Another important observation which we have to prove is that gs(B1(0)) is an open set. Indeed,
we have [Dgs(x)] = (1− s)Id×d + s[Dh(x)] and det[Dgs(x)] ≥ 1/2 if s is smaller than some small
enough s3, for all x ∈ B1(0); let y = gs(a) for some a ∈ B1(0). Then from Theorem 7.3 (i) it
follows that there is some r small enough such that gs(Br(a)) is open, and since y ∈ gs(Br(a))
there exists ε > 0 so that Bε(gs(a)) ⊂ gs(Br(a)) ⊂ gs(B1(0)).

Now fix 0 < s0 < min{s2, s3}. For 0 ≤ s ≤ s0 we know that gs(B1(0)) is open and B 1
4
(0) ⊂

gs(B1(0)) ⊂ B1(0). We need to show that B1(0) ⊂ gs(B1(0)).
Assume the contrary: there exists some y0 ∈ B1(0) which does not belong to gs(B1(0)).

Denote by I the closed segment joining 0 with y0. The set E := I ∩ gs(B1(0)) is not empty.
Moreover, the set:

{||y|| : y ∈ I ∩ gs(B1(0))} ⊂ [0, ||y0||]

is not empty, and has a supremum c < 1. The supremum is always a limit point, hence there
exists a sequence {yn}n≥1 ⊂ I ∩ gs(B1(0)) such that ||yn|| → c. Because I is compact, there
exists a subsequence ynk which converges in I to some point ỹ ∈ I, thus ỹ is an adherent point
of gs(B1(0)) and ||ỹ|| = c < 1. Clearly, ỹ 6∈ gs(B1(0)) because otherwise, since gs(B1(0)) is
open, we could find elements of I ∩gs(B1(0)) even farther away from the origin, contradicting the
maximality of the length of ỹ.

Thus we have constructed ỹ ∈ gs(B1(0))\gs(B1(0)) with ||ỹ|| ≤ ||y0|| < 1. Being an adherent
point of gs(B1(0)), there must exist a sequence {zn}n≥1 ⊂ gs(B1(0)) such that zn → ỹ. There
exists a sequence {xn}n≥1 ⊂ B1(0) such that gs(xn) = zn. We can find a subsequence xnk which

converges to some x0 ∈ B1(0). Since gs(xnk) = znk → ỹ and due to the continuity of gs, we must
have gs(x0) = ỹ. But since ỹ 6∈ gs(B1(0)), it must be that x0 ∈ Sd−1. But on the boundary,
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gs(x0) = x0 and has unit length, which contradicts our assumption that ||ỹ|| ≤ ||y0|| < 1.
Therefore, y0 cannot exist, and B1(0) ⊂ gs(B1(0)).

We are finally ready to prove Brouwer’s theorem. In the previous lemma we considered the
smooth map gs : B1(0) 7→ B1(0). Define the function:

F (s) :=

∫
B1(0)

det[Dgs(x)] dx, 0 ≤ s ≤ 1.

The determinant of the Jacobi matrix [Dgs(x)] is a polynomial in s, thus F (s) is a polynomial.
Moreover, we have shown that if 0 ≤ s ≤ s0, the map gs is nothing but a smooth and bijective
change of coordinates in B1(0) with det[Dgs(x)] > 0, thus F (s) is constant on [0, s0] and equal
to the volume of B1(0). But if a polynomial is locally constant, then it is constant everywhere.
Thus F (1) should also be equal to the volume of B1(0).

Now let us show that this cannot be true. If s = 1, then g1(x) = h(x) on B1(0). It means that

1 = ||h(x)||2 = g1(x) · g1(x) =

d∑
k=1

(g1(x))2k.

Differentiating with respect to xj we obtain

0 =

d∑
k=1

[∂j(g1(x))k] (g1(x))k, 1 ≤ j ≤ d,

or [Dg1(x)]∗g1(x) = 0 for all x. Since ||g(x)|| = 1, we have that [Dg1(x)]∗ is not injective, thus
not invertible, hence with zero determinant. Therefore det[Dg1(x)] = det[Dg1(x)]∗ = 0 for all
x, and F (1) = 0 6= vol(B1(0)). This contradiction can be traced back to our assumption which
claimed that f had no fixed points. The proof is over.

9 Schauder’s fixed point theorem

Theorem 9.1. Let X be a Banach space, and let K ⊂ X be a non-empty, compact, and convex
set. Then given any continuous mapping f : K 7→ K there exists x ∈ K such that f(x) = x.

Proof. Given ε > 0, the family of open sets {Bε(x) : x ∈ K} is an open covering of K. Because K
is compact, there exists a finite subcover, i.e. there exists N points p1, . . . , pN of K such that the
balls Bε(pi) cover the whole set K.

Let Kε be the convex hull of p1, . . . , pN , defined by:

Kε :=


N∑
j=1

tjpj ,

N∑
j=1

tj = 1, tj ≥ 0

 ⊂ K.
It is an easy computation to show that Kε is a convex set. Moreover, Kε is immersed in an at
most N−1 dimensional Euclidean space generated by the vectors pj−p1, where j ∈ {2, 3, . . . , N}.

Define the function gj : K 7→ R+ by gj(x) = ε−||x−pj || if x ∈ Bε(pj), and gj(x) = 0 otherwise.

Each function gj is continuous, while g(x) =
∑N
j=1 gj(x) is positive due to the fact that any x has

to be in some ball, where the corresponding gj is positive. Since g is continuous and K compact,
there exists δ > 0 such that g(x) ≥ δ for every x ∈ K.

Now consider the continuous map πε : K → Kε given by:

πε(x) :=

N∑
j=1

gj(x)

g(x)
pj ,

N∑
j=1

gj(x)

g(x)
= 1.
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Since ||gj(x)(x− pj)|| ≤ gj(x)ε for all j, we have:

‖πε(x)− x‖ ≤
N∑
j=1

||gj(x)(pj − x)||
g(x)

≤ ε, ∀x ∈ K. (9.1)

Now we define:
fε : Kε → Kε, fε(x) = πε(f(x)).

This is a continuous function defined on a convex and compact set Kε in a finite dimensional
vector space. By Brouwer’s fixed point theorem it admits a fixed point xε

fε(xε) = xε.

Using (9.1) we get:
||πε(f(xε))− f(xε)|| ≤ ε,

thus for every ε > 0 we have constructed xε ∈ Kε ⊂ K such that ||f(xε)− xε|| ≤ ε.
Choosing 1/n instead of ε, we construct a sequence {xn}n≥1 ⊂ K such that ||f(xn)−xn|| ≤ 1/n.

Since K is sequentially compact, we can find a subsequence xnk which converges to some point
x̄ ∈ K when k →∞. By writing:

||f(x̄)− x̄|| ≤ ||f(x̄)− f(xnk)||+ ||f(xnk)− xnk ||+ ||xnk − x̄||, k ≥ 1,

we observe that due to the continuity of f at x̄, the right hand side tends to zero with k. Thus
f(x̄) = x̄ and we are done.

10 Kakutani’s fixed point theorem

Let A ⊂ Rd be a closed set, and denote by 2A the set of all subsets of A. We say that F : A 7→ 2A

is upper semi-continuous if the following property holds: assume that {xn}n≥1 ⊂ A with xn →
x∞ ∈ A, {yn}n≥1 ⊂ A with yn → y∞ ∈ A, and yn ∈ F (xn); then we must have y∞ ∈ F (x∞).

Note that if we choose xn = x∞ for all n, then the upper semi-continuity implies that if
yn → y∞ ∈ A and yn ∈ F (x∞), then y∞ ∈ F (x∞). In other words, F (x∞) is always closed for
all x∞ ∈ A.

Theorem 10.1. Let K ⊂ Rd be a convex body. Let F : K 7→ 2K be upper semicontinuous, such
that F (x) ⊂ K is convex and nonempty. Then there exists x∗ ∈ K such that x∗ ∈ F (x∗).

Proof. Since K is compact, for every m ≥ 1 there exist Nm points denoted by {wj,m}Nmj=1 such

that K ⊂ ∪Nmj=1B 1
m

(wj,m). It is important for what follows to note that we may choose the points

wj,m such that each ball B 1
m

(x) contains at most N (only depending on the dimension d) points
wj,m, independent of m and x.

For every 1 ≤ j ≤ Nm we define a map gj,m : K 7→ R+ by gj,m(x) = 1
m − ||x − wj,m||

if x ∈ B 1
m

(wj,m), and gj,m(x) = 0 otherwise. Each function gj,m is continuous, while gm(x) =∑Nm
j=1 gj,m(x) is positive due to the fact that any x has to be in some ball j, where the corresponding

gj,m is positive. Since gm is continuous and K compact, there exists δm > 0 such that gm(x) ≥ δm
for every x ∈ K.

For every 1 ≤ j ≤ Nm we choose some yj,m ∈ F (wj,m) ⊂ K in an arbitrary way. Define the
map

fm : K 7→ K, fm(x) :=

Nm∑
j=1

gj,m(x)

gm(x)
yj,m,

Nm∑
j=1

gj,m(x)

gm(x)
= 1, yj ∈ F (wj,m).

The function fm is continuous and defined on a convex body, thus Brouwer’s fixed point theorem

provides us with a fixed point xm ∈ K such that fm(xm) =
∑Nm
j=1

gj,m(xm)
gm(xm) yj,m = xm, for every

m ≥ 1.
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Because K is sequentially compact, we may find a subsequence xmk which converges to some
x∗ ∈ K when k → ∞. It is important to note that when j varies from 1 to Nmk we have
gj,mk(xmk) 6= 0 only for those wj,mk which obey ||xmk −wj,mk || ≤ 1

mk
≤ 1

k . There are at most

N indexes j such that gj,mk(xmk) 6= 0:

fmk(xmk) = xmk =
∑

||xmk−wj,mk ||≤
1
mk

gj,mk(xmk)

gmk(xmk)
yj,mk .

Thus for a fixed k ≥ 1 we have finitely many wj,mk (at most N , independently of k) which all lie
in a small ball of radius 1/mk around xmk . We can reorganize the N closest points wj,mk and
their corresponding yj,mk as N pairs of sequences {w̃s

k}k≥1 and ỹsk, with limk→∞ ||w̃s
k − x∗|| = 0

and ỹsk ∈ F (w̃s
k) for all 1 ≤ s ≤ N . With the new notation:

fmk(xmk) = xmk =

N∑
s=1

gs,mk(xmk)

gmk(xmk)
ỹsk, lim

k→∞
w̃s
k = x∗.

Now we can choose a subsequence ỹskn , n ≥ 1, such that ỹskn converges to some ys ∈ K. Thus:

xmkn =

N∑
s=1

gs,mkn (xmkn )

gmkn (xmkn )
ỹskn , lim

n→∞
w̃s
kn = x∗, lim

n→∞
ỹskn = ys.

To summarize, we have limn→∞ w̃s
kn

= x∗, limn→∞ ỹskn = ys, and ỹskn ∈ F (w̃s
kn

). Because F
is upper semi-continuous, we must have ys ∈ F (x∗) for all 1 ≤ s ≤ N . Moreover,∥∥∥∥∥xmkn −

N∑
s=1

gs,mkn (xmkn )

gmkn (xmkn )
ys

∥∥∥∥∥ ≤ N
max
s=1
||ỹskn − ys|| → 0.

Since F (x∗) is convex, and all ys ∈ F (x∗), the convex combination
∑N
s=1

gs,mkn
(xmkn

)

gmkn
(xmkn

) ys is an

element of F (x∗). Since xmkn → x∗, we have that x∗ must be an adherent point of F (x∗). Since
F (x∗) is closed, then x∗ ∈ F (x∗) and we are done.

11 Existence of Nash equilibrium for finite games with two
players

In order to simplify notation, we only consider two players. Let us start with a few definitions. Let
d1 and d2 be two natural numbers larger than 1. Consider two finite sets Si = {s1,i, s2,i, . . . sdi,i},
i ∈ {1, 2}, where the element sk,i is called the k’th pure strategy of player i. The sets S1 and S2

are called the sets of pure strategies.
A payoff function of player i is just an arbitrary non-negative function πi : S1 × S2 7→ R+.

It is completely characterized by the non-negative numbers πi,jk := πi(s1,j , s2,k) which define a
d1×d2 matrix. The set of mixed strategies for player i, denoted by Mi, is the set of all probability
distributions defined on Si. We can write:

Mi := {ρi : Si 7→ R+ :

di∑
k=1

ρi(sk,i) = 1}.

It is easy to see that each such probability distribution is completely characterized by its di values
taken on the different possible pure strategies. Hence we have the identification with a compact
set (bounded and closed) in Rdi :

M̃i := {x ∈ Rdi : 0 ≤ xk ≤ 1,

di∑
k=1

xk = 1}, i ∈ {1, 2}.
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The expected payoff to player i is defined to be the function:

K := M̃1 × M̃2 3 z = [x,y] 7→ vi(z) :=

d1∑
j=1

d2∑
k=1

xjykπ
i,jk ∈ R+.

A point ze = [xe,ye] ∈ K ⊂ Rd1+d2 is called a Nash equilibrium if v1(ze) ≥ v1([x,ye]) and
v2(ze) ≥ v2([xe,y]) for every x ∈ M̃1 and y ∈ M̃2.

Theorem 11.1. Every finite game has a Nash equilibrium.

Proof. We will use the Kakutani fixed point theorem. For every z = [x,y] ∈ K we define the ’best
response functions’:

K 3 [x,y] 7→ φ1(z) := {x̃ ∈ M̃1 : v1([x̃,y]) ≥ v1([w,y]), ∀w ∈ M̃1} ∈ 2M̃1

and
K 3 [x,y] 7→ φ2(z) := {ỹ ∈ M̃2 : v2([x, ỹ]) ≥ v2([x,u]), ∀u ∈ M̃2} ∈ 2M̃2 ,

and F : K 7→ 2K given by F (z) := φ1(z)× φ2(z).
Now let us assume that F has a fixed point in the sense of Kakutani’s theorem. It means

that there exists ze ∈ K such that ze ∈ F (ze). In other words, xe ∈ φ1(ze) which is the same
as v1([xe,ye]) ≥ v1([w,ye]),∀w ∈ M̃1, and ye ∈ φ2(ze) which is the same as v2([xe,ye]) ≥
v2([xe,u]),∀u ∈ M̃2. These are exactly the Nash equilibrium conditions.

The rest of the proof will show that F obeys the conditions of Kakutani’s theorem. First,
K ⊂ Rd1+d2 is (sequentially) compact because it is the cartesian product of two sequentially
compact sets.

Second, let us show that F (z) is convex, with z = [x,y]. Let [u1,w1] and [u2,w2] in F (z).
For every 0 ≤ t ≤ 1 we have to show that (1 − t)u1 + tu2 ∈ φ1(z) and (1 − t)w1 + tw2 ∈ φ2(z).
We only show the first property. Since u1 and u2 belong to φ1(z), according to the definition we
have:

v1([u1,y]) ≥ v1([w,y]) and v1([u2,y]) ≥ v1([w,y]), ∀w ∈ M̃1.

Since v1 is linear in u for fixed y, we have:

v1([(1− t)u1 + tu2,y]) = (1− t)v1([u1,y]) + tv1([u2,y]) ≥ v1([w,y]), ∀w ∈ M̃1

which shows that (1− t)u1 + tu2 ∈ φ1(z).
Third, we need to show that F is upper semi-continuous. Let zn → z∞ ∈ K, fn → f∞ ∈ K,

and fn ∈ F (zn) for all n ≥ 1. We need to show that f∞ ∈ F (f∞). But this is an easy consequence
of the fact that v1 and v2 are continuous functions which preserve inequalities at the limit. The
proof is over.

12 The Hairy Ball Theorem

The question we want to answer here is of geometric nature: given the unit sphere Sd−1 :=
{x ∈ Rd : ||x|| = 1} ⊂ Rd for d ≥ 2, is it possible to find a continuous tangent vector field
w̃ : Sd−1 7→ Rd which vanishes nowhere? If it is possible, then ||w̃(x)|| has a positive lower bound
because Sd−1 is compact, and in this way we would be able to construct a continuous vector field
w : Sd−1 7→ Sd−1 given by w(x) := 1

||w̃(x)||w̃(x), which satisfies w(x) · x = 0.

If d = 2p is even, then such a vector field exists and let us construct an example. If x =
[x1, x2, . . . , xp, xp+1, . . . , x2p−1, x2p] then we can define u ∈ Rp by u := [x1, x2, . . . , xp] and ũ ∈ Rp
by ũ := [xp+1, . . . , x2p−1, x2p]. Thus x = [u, ũ]. Define w(x) = [−ũ,u]. Then clearly ||w(x)|| =
||x|| = 1 and w(x) · x = 0.

Theorem 12.1. If d ≥ 3 is odd, then one cannot construct a continuous map w : Sd−1 7→ Sd−1

such that w(x) · x = 0 on Sd−1.
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Proof. We will assume that such a vector field exists, and then we will arrive at a contradiction.

Lemma 12.2. Let d ≥ 2. Assume that w : Sd−1 7→ Sd−1 is continuous and w(x) · x = 0 for all
x ∈ Sd−1. Define D1 := {x ∈ Rd : 1

2 < ||x|| <
3
2}. Then there exists a smooth map w̃ : D1 7→ Rd

such that w̃(D1) ⊂ Sd−1 and w̃(x) · x = 0 for all x ∈ D1.

Proof. If x 6= 0 we denote by x̂ := 1
||x||x ∈ Sd−1. Define D2 := {x ∈ Rd : 1

4 ≤ ||x|| ≤ 2},
and consider the function w2 : D2 7→ Rd given by w2(x) := w(x̂). Then w2 is continuous on
the compact set D2, thus uniformly continuous. Given any ε > 0 we may find δ > 0 such that
||w2(x)−w2(x′)|| < ε as soon as x,x′ ∈ D2 and ||x− x′|| < δ. We will reason as in Lemma 8.3:
consider the function Jδ and define as in (8.2)

gδ(x) :=

∫
Rd
Jδ(x− y)w2(y)dy =

∫
Rd

w2(x− y)Jδ(y)dy, x ∈ D1.

As in that lemma, we may write

gδ(x)−w2(x) =

∫
Rd

[w2(x− y)−w2(x)]Jδ(y)dy =

∫
||y||≤δ

[w2(x− y)−w2(x)]Jδ(y)dy.

If δ < 1/4 then x−y ∈ D2, hence using the uniform continuity of w2 on D2 we may find δ0 < 1/4
small enough such that ||w2(x− y)−w2(x)|| ≤ 1/10 for every x ∈ D1 and ||y|| ≤ δ0. This leads
to

||gδ0(x)−w2(x)|| ≤ 1/10 and ||gδ0(x)|| ≥ 9/10, ∀x ∈ D1.

The function w3 : D1 7→ Rd given by (remember that w2(x) · x = 0)

w3(x) := gδ0(x)− x
gδ0(x) · x
||x||2

= gδ0(x)− x
[gδ0(x)−w2(x)] · x

||x||2

is smooth on D1 and obeys:

w3(x) · x = 0, ||w3(x)|| ≥ ||gδ0(x)|| − ||gδ0(x)−w2(x)|| ≥ 8/10, ∀x ∈ D1.

Finally, we can define the function w̃(x) := 1
||w3(x)||w3(x) ∈ Sd−1 which is smooth and orthog-

onal on x. Moreover, we have the estimate (see Lemma 6.3 for the notation):

||∆w̃||∞,D1
<∞. (12.1)

Define D3 := {x ∈ Rd : 9
10 < ||x|| <

10
9 } ⊂ D1. If s ∈ R we denote by

Es :=

{
x ∈ Rd :

√
81

100
+ s2 < ||x|| <

√
100

81
+ s2

}
.

Lemma 12.3. Let hs : D3 7→ Es given by hs(x) := x + sw̃(x). If |s| > 0 is sufficiently small,
then the map hs is a bijection.

Proof. Because ||hs(x)||2 = ||x||2 + s2 it is easy to see that hs(D3) ⊂ Es for all s. We need to
show that hs is injective and surjective if s is small enough.

Let us start by showing injectivity. Assume that hs is not injective in a neighborhood of s = 0.
Then there exists a sequence {sn}n≥1 which converges to 0 such that for every n 6= 1 there exist
xn 6= yn ∈ D3 such that hsn(xn) = hsn(yn). This is equivalent with xn−yn = sn[w̃(yn)−w̃(xn)],
which implies that ||xn − yn|| ≤ 2|sn|. Since D3 ⊂ D1, if |sn| is small enough then the whole
segment joining xn and yn is included in D1. Using (12.1) and (6.3) for w̃ we get that

||xn − yn|| = |sn| ||w̃(yn)− w̃(xn)|| ≤ |sn| ||∆w̃||∞,D1
||xn − yn||
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which is incompatible with xn 6= yn if |sn| is small enough.
Now we have to prove that hs is surjective if |s| is small enough. Let y ∈ Es. We have to

show that the equation hs(x) = y has a solution. This equation is equivalent with x = y−sw̃(x),
which looks like a fixed point equation.

Define the closed set D4 := {x ∈ Rd : 8
9 ≤ ||x|| ≤

9
8}. If |s| is sufficiently small, then Es ⊂ D4.

Moreover, D3 ⊂ D4 ⊂ D1.
The set D4 is closed in Rd, thus together with the induced Euclidean metric it forms a complete

metric space. We want to show that the map fy,s : D4 7→ D4 given by fy,s(x) := y − sw̃(x) is a
contraction on D4 provided |s| is small enough. If this is true, then the unique fixed point which
obeys fy,s(x) = xy has the property that ||xy||2 + s2 = ||y||2, thus xy ∈ D3 if y ∈ Es.

Now let us show that fy,s is a contraction for small |s|. First, using that ||w̃(x)|| = 1, then
if 10

9 + 2|s| ≤ 9
8 and 8

9 ≤
9
10 − |s| we have that fy,s(D4) ⊂ D4. Second, if x1,x2 ∈ D4 with

||x1 − x2|| ≥ 1
100 , we have:

||fy,s(x1)− fy,s(x2)|| ≤ 200 |s| ||x1 − x2||, if ||x1 − x2|| ≥
1

100
.

Third, if x1,x2 ∈ D4 with ||x1 − x2|| ≤ 1
100 , then since the ball B 1

100
(x1) is completely included

in D1, the straight segment joining x1 and x2 is included in D1 and using again (6.3) we obtain:

||fy,s(x1)− fy,s(x2)|| ≤ |s| ||∆w̃||∞,D1
||x1 − x2||, if ||x1 − x2|| ≤

1

100
.

Thus fy,s is a contraction if |s| is smaller than some critical value s0 which is independent of y.
This implies that the fixed point exists for all y ∈ Es provided 0 ≤ |s| ≤ s0, and we are done.

We are now ready to finish the proof of the Hairy Ball Theorem. Since the map hs is a smooth
bijection between D3 and Es and det[Dhs](x) > 0 if |s| ≤ s0, we must have the equality:

Vol(Es) =

∫
D3

det[Dhs](x)dx, |s| ≤ s0.

The right hand side of the above equality is a polynomial in s of degree at most d. The left hand
side can be calculated explicitly: it equals the difference of the volumes of two d-dimensional balls:

Vol(Es) =
π
d
2

Γ(d2 + 1)

{(
100

81
+ s2

) d
2

−
(

81

100
+ s2

) d
2

}
.

This function is analytic around s = 0, and since it equals a polynomial if |s| ≤ s0, by analytic

continuation it must be a polynomial (thus analytic) for all s ∈ C. The function
(
100
81 + s2

) d
2 is

analytic if |s| < 10/9, thus
(

81
100 + s2

) d
2 must also be analytic on the same disk. Since d = 2p+ 1

is odd, the function
(

81
100 + s2

) d
2 can be factorized as the product

(
81
100 + s2

)p ( 81
100 + s2

) 1
2 . But

this function is not analytic at s = 8i
9 , and this is our contradiction.

13 The Jordan Curve Theorem

13.1 Some preparatory results

Let (X, d) be a metric space with the topology generated by d. We say that X is not connected if
we can find two non-empty open sets O1 and O2 which are disjoint and X = O1 ∪ O2. A subset
A ⊂ X is not connected if the induced metric space (A, d) is not connected. If a metric space can
be written as a union of connected sets {Oi}, then they are called the connected components of
X.
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Let −∞ < a ≤ b <∞ and let γ : [a, b] 7→ R2 be a homeomorphism (continuous, invertible and
with continuous inverse). Then γ([a, b]) is called an arc. A set A ⊂ R2 is called path-connected if
given any two distinct points x,y ∈ A we can find an arc joining them and which is included in
A.

Lemma 13.1. Let A be a non-empty connected open set in the Euclidean space R2. Then A is
path-connected.

Proof. Choose a point x ∈ A. Define the set O1 ⊂ A which contains all the points y ∈ A which
can be connected with x by an arc. Let us show that O1 is open. If y ∈ O1 then there exists an
arc γ([a, b]) ⊂ A with γ(a) = x and γ(b) = y. Since y is an interior point of A, there exists ε > 0
such that if ||x′ − y|| < ε then x′ ∈ A. But all such points can be joined with y by a straight line
included in A. Thus x can be joined with x′ by an arc included in A, hence Bε(y) ⊂ O1.

Now if O1 = A then we are done. If not, the set O2 := A \O1 is not empty. One can prove in
a similar manner that O2 is open: if y cannot be joined with x by an arc included in A, then no
points close enough to y can be joined with x. But since A = O1 ∪ O2, it would mean that A is
not connected, contradiction.

Lemma 13.2. Let M be a compact set in the Euclidean space R2. If x ∈ R2 we define

R2 3 x 7→ d(x,M) := inf{||y − x|| : y ∈M} ∈ R.

Then this map is continuous.

Proof. For a fixed x, the map M 3 y 7→ ||y− x|| ∈ R is continuous and defined on a compact set.
Thus it attains its minimum at some point yx ∈M . Hence for every x ∈ R2 there exists yx ∈M
such that d(x,M) = ||x− yx||. We note the inequalities:

d(x′,M) ≤ ||x′ − yx|| ≤ ||x′ − x||+ ||x− yx|| = ||x′ − x||+ d(x,M),

which due to the symmetry lead to:

|d(x,M)− d(x′,M)| ≤ ||x− x′||

for all x,x′ ∈ R2, which proves Lipschitz continuity.

The next lemma is a poor man’s version of the Tietze extension theorem. It roughly says
that given an arc M in R2 contained in a large closed ball B, we can find a continuous function
g : B 7→M which extends the identity map on M .

Lemma 13.3. Let M be an arc in R2. Let x0 ∈ R2 and consider Br(x0) a ball sufficiently large
such that M ⊂ Br(x0). Then there exists a continuous map g : Br(x0) 7→ M such that g(x) = x
if x ∈M .

Proof. Since M is an arc, it is bounded and closed, thus compact. Moreover, M is homeomorphic
with a closed interval in R, thus we can find a continuous function γ : [0, 1] 7→M with continuous
inverse γ−1 : M 7→ [0, 1]. If we can find a continuous function F : Br(x0) 7→ [0, 1] such that
F (x) = γ−1(x) for all x ∈M , then the extension we are looking for is g = γ ◦ F .

Let us define the function F . If x ∈M we put F (x) = γ−1(x). If x ∈ Br(x0) \M we put

F (x) := inf
y∈M

{
γ−1(y) +

||x− y||
d(x,M)

− 1

}
.

If x 6∈M , the map

M 3 y 7→ γ−1(y) +
||x− y||
d(x,M)

− 1 ∈ R
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is continuous and defined on a compact set, thus there exists some w(x) ∈M such that

F (x) = γ−1(w(x)) +
||x−w(x)||
d(x,M)

− 1. (13.2)

Let us show that the range of F is the interval [0, 1]. If x ∈M it is obvious. If x 6∈M then we
know from Lemma 13.2 that there exists some yx ∈M such that 0 < ||x−yx|| = d(x,M) ≤ ||x−y||
for all y ∈M . Thus 0 ≤ γ−1(y)+ ||x−y||d(x,M)−1, for all y ∈M , which implies that 0 ≤ F (x). Moreover,

F (x) ≤ γ−1(yx) +
||x− yx||
d(x,M)

− 1 = γ−1(yx) ≤ 1.

Now we want to prove that F is continuous. Let a ∈ M . According to the definition of F ,
we have that F (a) = γ−1(a). Consider any sequence {xn} ⊂ Br(x0) which converges to a. We
can split it in a subsequence included in M , denoted by {xMn }, and a subsequence in Br(x0) \M ,
denoted by {xMc

n }. Since F (xMn ) = γ−1(xMn ) and because γ−1 is continuous on M , we have
F (xMn ) → F (a) = γ−1(a). What we have to prove now is that F (xM

c

n ) → γ−1(a) provided
xM

c

n → a. We note that the sequence of minimizing points w(xM
c

n ) must converge to a; otherwise,
since d(xM

c

n ,M) ≤ ||xMc

n − a|| → 0, we would eventually have F (xM
c

nk
) > 1 for some subsequence.

Moreover, any sequence yxMcn
defined by d(xM

c

n ,M) = ||xMc

n −yxMcn
|| ≤ ||xMc

n −a|| must converge
to a. Then we have:

γ−1(w(xM
c

n )) ≤ F (xM
c

n ) ≤ γ−1(yxMcn
),

where the first inequality is a consequence of (13.2) and of ||xMc

n −w(xM
c

n )|| ≥ d(xM
c

n ,M), while
the second inequality is a consequence of the definition of F . Then the continuity of γ−1 at a
ensures that F (xM

c

n )→ γ−1(a) and we are done.
Now let a ∈ Br(x0)\M and consider any sequence xn → a. Since M is closed, we may consider

that xn 6∈M for all n. Then we can write:

F (a) = γ−1(w(a)) +
||a−w(a)||
d(a,M)

− 1, F (xn) = γ−1(w(xn)) +
||xn −w(xn)||
d(xn,M)

− 1.

From the definition of F and using the triangle inequality we have:

F (a) ≤ γ−1(w(xn)) +
||a−w(xn)||
d(a,M)

− 1

≤ F (xn) +
||a− xn||
d(a,M)

+

(
1

d(a,M)
− 1

d(xn,M)

)
||w(xn)− xn||.

Using the continuity of the distance d(·,M) from Lemma 13.2, we obtain F (a) ≤ lim inf F (xn).
In the same way we have:

F (xn) ≤ γ−1(w(a))+
||xn −w(a)||
d(xn,M)

−1 ≤ F (a)+
||xn − a||
d(xn,M)

+

(
1

d(xn,M)
− 1

d(a,M)

)
||w(a)−a||

hence lim supF (xn) ≤ F (a). Thus F is continuous and the proof is over.

The following lemma has a quite obvious ’proof by drawing’, but it’s rigorous argument is
based on Brouwer’s fixed point theorem.

Lemma 13.4. Let K be the rectangle {[x, y] : a ≤ x ≤ b, c ≤ y ≤ d} ⊂ R2. Assume that we have
two arcs γ, φ : [−1, 1] 7→ K, j ∈ {1, 2}, such that γ(−1) belongs to the left side {[a, y] : y ∈ [c, d]}
of K, γ(1) belongs to the right side {[b, y] : y ∈ [c, d]} of K, φ(−1) belongs to the upper side
{[x, d] : x ∈ [a, b]} of K, and φ(1) belongs to the lower side {[x, c] : x ∈ [a, b]} of K. Then the
two arcs must cross each other, i.e. there exist s, t ∈ [−1, 1] such that γ(t) = φ(s).
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Proof. Denote by γ(t) = [x(t), y(t)] and by φ(s) = [u(s), w(s)]. Assume that the two arcs never
cross. It means that the quantity:

N(t, s) := max{|x(t)− u(s)|, |y(t)− w(s)|}, [t, s] ∈ [−1, 1]× [−1, 1]

is strictly positive. By the triangle inequality:

|x(t)− u(s)| − |x(t0)− u(s0)| ≤ |x(t)− x(t0)− u(s) + u(s0)| ≤ |x(t)− x(t0)|+ |u(s)− u(s0)|,

or
|x(t)− u(s)| ≤ |x(t0)− u(s0)|+ ε ≤ N(t0, s0) + ε

if [t, s] is close enough to [t0, s0], due to the continuity of x and u. In a similar way we can prove
|y(t)− w(s)| ≤ N(t0, s0) + ε, thus by taking the maximum we obtain N(t, s) ≤ N(t0, s0) + ε. By
symmetry we must also have the inequality N(t0, s0) ≤ N(t, s) + ε hence N is continuous.

Since N is continuous, positive and defined on a compact set, it must have a positive minimum.
Thus 1/N(t, s) is also continuous on [−1, 1]× [−1, 1]. Define:

f : [−1, 1]× [−1, 1] 7→ [−1, 1]× [−1, 1], f(t, s) :=

[
−x(t)− u(s)

N(t, s)
,−y(t)− w(s)

N(t, s)

]
.

Due to our assumptions, x(−1) = a, w(−1) = d, x(1) = b and w(1) = c. The function f is
continuous and defined on a convex body. According to Brouwer’s fixed point theorem, it must
have a fixed point. Note that the range of f belongs in fact to the boundary of the square. Thus
if f([t0, s0]) = [t0, s0] is a fixed point of f , we must either have |t0| = 1 or |s0| = 1.

If t0 = 1, then we would have 1 = −x(1)−u(s0)N(1,s0)
= − b−u(s0)N(1,s0)

≤ 0, impossible. If t0 = −1 we

would have −1 = −x(−1)−u(s0)N(−1,s0) = − a−u(s0)
N(−1,s0) ≥ 0, again impossible.

If s0 = 1 we would have 1 = −y(t0)−w(1)
N(t0,1)

= −y(t0)−cN(t0,1)
≤ 0, impossible. If s0 = −1 we would

have −1 = −y(t0)−w(−1)
N(t0,−1) = − y(t0)−d

N(t0,−1) ≥ 0, again impossible.

Thus f cannot have fixed points, which shows that our assumption on the positivity of N was
false.

The next lemma says that if an arc starts inside a closed rectangle and ends outside it, then it
must cross the boundary.

Lemma 13.5. Let K be the rectangle {[x, y] : a ≤ x ≤ b and c ≤ y ≤ d} ⊂ R2. Assume that
γ : [0, 1] 7→ R2 is an arc such that γ(0) ∈ Int(K) and γ(1) 6∈ K. Then there exists 0 < c < 1 such
that γ(c) ∈ ∂K and γ(t) ∈ Int(K) for all 0 ≤ t < c.

Proof. We start by noting that K is closed, the interior of K is given by

Int(K) = {[x, y] : a < x < b and c < y < d},

the exterior of K is
Kc = {[x, y] : x < a or b < x or y < c or d < y},

and the boundary is ∂K = K \ Int(K).
Denote by A the subset of the interval [0, 1] ⊂ R defined by:

A := {0 ≤ t ≤ 1 : γ(s) ∈ Int(K), ∀0 ≤ s ≤ t}.

In words, if t ∈ A, then all the points of the arc γ corresponding to previous parameter values
s ≤ t lie in the open rectangle. Since A is bounded, it has a supremum which we denote by c.
Denote by [x(t), y(t)] := γ(t). Since a < x(0) < b and c < y(0) < d, and because x and y are
continuous functions, the previous strict inequalities will remain true in a neighborhood of 0. This
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shows that c > 0. Moreover, since c is the supremum of A, there exists a sequence {tn}n≥1 ⊂ A
such that limn→∞ tn = c. This means in particular that a < x(tn) < b and c < y(tn) < d for
all n, and by taking the limit using the continuity of x and y at c we obtain a ≤ x(c) ≤ b and
c ≤ y(c) ≤ d. In other words, γ(s) ∈ Int(K) if 0 ≤ s < c and γ(c) ∈ K.

Assume without loss of generality that γ(1) = [ξ1, ξ2] ∈ Kc with ξ1 < a. Since a ≤ x(c),
we have that c < 1. Moreover, there exists N large enough such that c + 1/n < 1 for all
n ≥ N . Because c + 1/n is not an element of A, we may find some 0 ≤ sn ≤ c + 1/n such that
γ(sn) := [un, wn] 6∈ Int(K). Moreover, we must have c ≤ sn because we know that for all t < c we
have γ(t) ∈ Int(K). Thus c ≤ sn ≤ c+1/n. In other words, sn → c and γ(sn) = [un, wn] 6∈ Int(K).
Hence at least one of the following four possibilities must occur: un ≤ a or un ≥ b or wn ≤ c
or wn ≥ d. There must exist a subsequence {snk}k≥1 such that exactly one of the above four
inequalities is satisfied for all k ≥ 1. Without loss of generality, assume that unk ≥ b for all k ≥ 1.
Since snk → c, due to the continuity of γ at c we must have that the first component of γ(c) must
obey the same inequality as the first component of γ(snk). Thus γ(c) 6∈ Int(K). But we proved
before that γ(c) ∈ K. Thus γ(c) ∈ K \ Int(K) = ∂K and we are done.

13.2 The main theorem

If φ : S1 7→ R2 is a homeomorphism which maps the unit circle into the plane, then the image
J := φ(S1) is called a Jordan curve. In other words, a Jordan curve is a simple closed path which
can be parametrized by

[0, 2π] 3 t 7→ φ(cos(t), sin(t)) ∈ R2.

A Jordan curve is bounded and closed, thus compact.

Theorem 13.6. (Jordan curve theorem). Let J be any Jordan curve. Then the set R2 \J is open
in R2, has exactly two connected components (one bounded and the other one unbounded), and J
is their boundary.

Proof. We start by proving that R2 \ J is not connected, i.e. it has at least two connected
components. Assume that R2 \ J is connected. According to Lemma 13.1, since R2 \ J is open
(because J is closed), it must be path connected. The strategy is to construct an ’inner’ point xi
which cannot be joined with the points situated outside some large ball which contains J .

Let us construct this point xi. The map

R4 ⊃ J × J 3 [x,y] 7→ ||x− y|| ∈ R

is continuous and defined on a compact set. Thus there exist xl and xr in J which maximize this
distance, i.e. ||x − y|| ≤ ||xr − xl|| for all x,y ∈ J . Denote by xrxl the straight segment joining
the two points, and consider the two infinite lines Ll and Lr which are perpendicular on xrxl
and pass through xl and xr respectively. No point of Ll other than xl, and no point of Lr other
than xr can belong to J , otherwise ||xr −xl|| would not be maximal. Thus J belongs to the strip
generated by the two lines. Moreover, because J is bounded, we can build a closed rectangle K
which includes J in its interior and has two parallel sides included in Ll and Lr.

Without loss of generality, we may assume that xl = [−1, 0], xr = [1, 0] and K = {[x, y] :
−1 ≤ x ≤ 1, −10 ≤ y ≤ 10}. The curve J has exactly two points in common with K, and they
are xr and xl. These two points split J into two arcs: Ju and Jd. Without loss of generality we
may assume that Ju starts at xr and ends at xl with the trigonometric orientation, while Jd starts
at xl and ends at xr with the same trigonometric orientation.

The segment linking the top point T = [0, 10] with the bottom point B = [0,−10] is denoted by
TB. We note that Ju and TB are two arcs which must cross at least in one point, due to Lemma
13.4. Denote by ymax,u the point of Ju ∩ TB with the largest second coordinate, i.e. the crossing
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point closest to T . Denote by ymin,u the point of Ju ∩ TB with the lowest second coordinate, i.e.
the crossing point closest to B. Note that it can happen that ymax,u = ymin,u.

In the same way, the arc Jd and the segment TB must cross. Denote by ymax,d the point of
Jd ∩TB with the largest second coordinate, i.e. the crossing point closest to T . Denote by ymin,d
the point of Jd ∩ TB with the smallest second coordinate, i.e. the crossing point closest to B.

Define the ’inner’ point which we talked about to be xi := (ymin,u + ymax,d)/2. Clearly, xi
is not an element of J and belongs to R2 \ J . If R2 \ J were connected, we can join xi with any
other point from outside K, since Kc ⊂ R2 \J . According to Lemma 13.5, such an arc must cross
the boundary of the rectangle K in some point w. This w can be neither xr nor xl, since they
belong to J .

If the second coordinate of w is negative, then consider the arc starting at T , continued with a
straight segment to ymax,u, continued with the part of Ju between ymax,u and ymin,u, then by the
straight segment to xi, then by the arc linking xi with w, and then we continue on the boundary
of K until we reach B. In this way we constructed an arc in K starting at T and ending at B
which has no common points with Jd, contradicting Lemma 13.4.

If the second coordinate of w is positive, then consider the arc starting at B, continued with a
straight segment to ymin,d, then continued with the part of Jd between ymin,d and ymax,d, then
with a straight segment to xi, then with the arc from xi to w, and then on the boundary of K
until we reach T . In this way we constructed an arc in K linking B with T which does not cross
Ju, again a contradiction. Thus R2 \ J is not connected.

Up to now we know that there exists exactly one unbounded connected component (which
contains Kc), and at least one bounded ’inner’ component. The next result is about the boundary
of each such connected component: it says that if U is a connected component of R2 \ J , then U
is open in R2 and the boundary ∂U = U \ U equals J .

The first observation is that ∂U ⊂ J ; if this was not true, then there exists some point x in
U which belongs neither to U nor to J , hence it must be an element of some other connected
component W . But then x is an inner point of W and must be isolated from U , contradiction
with our assumption that x belongs to the closure of U .

It could happen though that ∂U is strictly included in but not equal with J . In this case, there
exists an arc M ⊂ J such that ∂U ⊂M . We will show that this leads to a contradiction.

We first assume that U is a bounded connected component. Consider a closed ball D := BR(xo)
where xo is some inner point of U , and R > 0 is sufficiently large such that the circle ∂D belongs
to Kc, thus outside U . Clearly, M ⊂ U ⊂ D. According to Lemma 13.3, there exists a continuous
map g : D 7→ M such that g(x) = x on M . Define the map q : D 7→ D \ {xo} given by
q(x) = g(x) ∈ M if x ∈ U and q(x) = x if x ∈ D \ U . Note that q is well defined because the
’dangerous’ points of U ∩ (D \ U) are included in M where g(x) = x. Moreover, q is continuous,
and xo is never in its range. Let t : D \ {xo} 7→ ∂D be the natural retraction, i.e. the map
which sends x ∈ D \ {xo} into the point on ∂D obtained from the intersection of ∂D with the ray
starting from xo and going through x. Let a : ∂D 7→ ∂D be the antipodal map, i.e. the map which
sends a point of ∂D into the diametrically oposed point. Now define the map r : D 7→ D given by
r = a ◦ t ◦ q. We note that r is continuous, and its range is ∂D. Brouwer’s fixed point theorem
says that r must have a fixed point, which can only be on the boundary ∂D. But q(x) = x if
x ∈ ∂D ⊂ U c, and t(x) = x on the boundary. The antipodal map a prohibits the existence of a
fixed point on the boundary for r, which leads to a contradiction. Thus ∂U = J if U is bounded.

If W is the unbounded connected component and M is an arc containing the boundary of W ,
then we can use the point xo and the disk D previously considered in order to define q : D 7→
D \ {xo} by q(x) = x if x ∈ W and q(x) = g(x) ∈ M if x ∈ D \W . From here the rest of the
argument is identical, and leads to a contradiction. Thus ∂W = J .

Let us recapitulate what we know until now: there is exactly one unbounded component, at
least one bounded, and every connected component has its boundary equal with J . The last thing
we have to prove is that there are no other bounded components besides the component Ui which
contains the point xi defined when we proved that R2 \ J is not connected.

Now let us assume that there exists a bounded component W 6= Ui. The points xr and xl
belong to the boundary of W , hence both of them are limits of sequences of points from W . In
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particular, there exists x̃r ∈ W such that its first component is larger than 1/2, and there exists
x̃l ∈ W such that its first component is smaller than −1/2. Because W is path connected, there

exists a path ̂̃xlx̃r ⊂W .
Now consider the path T̂B starting from T , continued with the straight segment joining T

with ymax,u, continued with the arc of J between ymax,u and ymin,u, then with the straight
segment (containing xi) between ymin,u and ymax,d, continued with the arc of J between ymax,d
and ymin,d, and finally continued with the straight segment between ymin,d and B. We see that

all the points of T̂B belong either to J , to Ui or to the unbounded connected component. It means
that T̂B and ̂̃xlx̃r ⊂W cannot have common points, and this contradicts Lemma 13.4.
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