Power series are analytic

Horia Cornean!

1 Fubini’s theorem for double series

Theorem 1.1. Let {tm tn,m>0 be a real sequence indexed by two indices. Assume that the series
Y om0 |0nm| is convergent for all n and

C:= Z ( Z |latm]|) < o0. (1.1)

n>0 m2>0

Then we have that ano |atm| converges for all m and:

(D lamml) = C. (1.2)

m>0 n>0

Moreover,

lim (> lenml) :MnglooZ( > lomml) = 0. (1.3)

N—o00
m>0 n>N n>0 m>M

Finally,

YD) =D (3 onm) €R. (1.4)

m>0 n>0 n>0 m>0

Proof. We recall a few fundamental results. If a, > 0 is a nonnegative sequence, we define
SN = Zg:o an to be an increasing sequence of partial sums. Then Zn>0 a, = limpy_,o SN exists
and is finite if and only if the sequence {sy } x>0 is bounded from above. Moreover, if s converges
then it is Cauchy, hence for all € > 0 there exists N, > 0 such that 0 < sy4x — sy < € for all
k>1and N > N.. This implies:

N+k

0<sNyk— SN = Z anp <€, Vk>1.
n=N+1

Taking the supremum over k we get 0 < Zn> Ni1an <€ for every N > N.. In other words:

A}gnoo Z an = 0. (1.5)
n>N

If N and M are finite natural numbers, then we have:

M N N M N
m=0n=0 n=0m=0 n=0m2>0

In the last two inequalities we employed the assumption (1.1). Hence

M N
3 anm| £ C <00, VN,M >0. (1.7)

m=0n=0
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In particular,
N
Z |otnm| < C < o0, VN,m >0.
n=0

This shows that > . |onm| is convergent for all m > 0. Now we can take the limit N — oo in
(1.7) and obtain:

M
ZZ|anm|§C<oo, VM > 0.
m=0n>0
But this shows that the sequence of the partial sums generated by ay, := ", < |®nm| is bounded,
hence
D= Z (Z |anm|) <C.
m>0 n>0

Now using again the first identity in (1.6) we have:

N M M N M
Z Z ‘Oénm| = Z Z‘O&nm‘ < Z Zla"m| <D
n=0m=0 m=0n=0 m=0n>0
or
N M
S5 Jawml <D, YN, M >0.
n=0m=0

Our hypothesis guarantees that limpy; o Z%:o |ty | exists and is finite, hence:

N
> Y lawml <D, YN >0

n=0m>0

CzZZ|anm|§D

n>0m>0

Thus by taking N — oo we get:

which proves that C'= D.
Now we have to prove (1.3). Define 8, = apm if n > N, and B, = 01if 0 < n < N. Then

we have:
S S Bl = X Bl o XY foal = X (3 o)

m>0n>0 n>0m>0 m>0n>N n>N m>0
Denoting by a, = ", < [anm| we see that (use (1.5)):
g g lanm | = E an —+0 when N — co.
m>0n>N n>N

In a similar way we can prove the other limit in (1.3).
Now we have to prove (1.4). First of all, because

1> aum| <D lowml, Yn >0

m2>0 m>0

we have that > -, (Zm>0 Q) 1s absolutely convergent. The same holds true for the series in
the right hand side of (1.4). Thus we only need to prove that the two double series are equal.
If N and M are finite natural numbers we have:

M N N M
Z Z Onm = Z Z Qpm,s (1.8)

m=0n=0 n=0 m=0



which implies:

M N M N
g E Opm — E E AOpm = E § AOpm — E E Apmy (19)
m=0n>0 n=0m2>0 m=0n>N n=0m>M

which leads to:
M N
S Yo Y €Y S o 4 Yl (110
m=0n>0 n=0m>0 m>0n>N n>0m>M
Now we use (1.3) in (1.10): take both M and N to infinity, and obtain:
D2 Onm =D Y Cum| <0
m>0n>0 n>0m>0

which ends the proof.

2 The binomial identity

Theorem 2.1. Let a,b € R and n € N. Then:

n __ . n! kin—k
(a+0b) _I;Jik!(n—k)!ab .

Proof. Let P : R — R given by P(x) = (z + b)". We have that P'(z) = n(x + b)"~ !, P"(z) =
n(n — 1)(z + b)"~2, and by induction we can prove:

(n—k)!

Moreover, P(k)(x) = 0 if £ > n. The Taylor formula with remainder provides us with some c
between 0 and x such that:

PO (z)=nn—-1)...(n —k+1)(z+b)"* = (x4+b)" % 0<k<n.

" plk) (n+1) (¢ " pk)
Pa)=Po)+ 3 L k,(o) oF 4+ P(n — 1(),):& —p)+3 ©
= !

The final result is obtained by replacing = with a. O

3 The exponential and the logarithm

For every = € R we define

2 n n

x x T
exp(x)::1+$+?+.”+H+'“:Zﬁ’
) n>0

assuming for the moment that it converges. If x = 0 we have exp(0) = 1. If  # 0 consider the
series ) -, an given by a, = ;. Using the ratio criterion we have:

|an+1|: i —0<1 when n— oo,
o | n+1

which shows that the series defining exp(x) converges absolutely.



We want to prove that the exponential is everywhere differentiable. Fix a € R and let h € R.
Define the function

F(h):=(h+a)", n>2. (3.11)

The Taylor formula with remainder provides us with a ¢ = ¢y 4,5 between 0 and A such that
F(h) = F(0) + F'(0)h + F"(c)h?/2, or:

-1
(h+a)" —a™ =na" *h+ %hg(cn,a,h +a)" 2, (3.12)
which leads to:
(h + a)n a’ an—l (Cn ah + a)TL—Q )
—_— — — = h — h > 2. 3.13
n! n! (n—1)! + 2(n — 2)! = (3.13)

Thus if h # 0:

exp(h +a) — exp(a L Cnan+ )"
s E gy 3 et
(n—1)!

h (n—2)!

n>2
Note first that 1+ 3, -, Z 71), = exp(a). Moreover, since |y .5 + @] < |a| + |h| we may write:

exp(h + a) — exp(a)
h

—expl(a

<7 )
-2 (n—2)! 2 - 2

Id 3 (lal +[p)"= _ |hlexp(la] +[R]) _ [hlexp(la] +1)
n>2

which holds for every 0 < |h| < 1. It follows that the exponential function is differentiable at a

and exp’(a) = exp(a).

Theorem 3.1. We have that exp(—z)exp(z) = 1 and exp(z) > 0 for all x € R. Moreover,
exp(a + b) = exp(a) exp(b) for all a,b € R. Define the logarithm function

1
In(z) := / —dt, z>0.
1 t

Then we have In(exp(z)) = x for all x € R, and exp(Iln(x)) = x for all x > 0.

Proof. We know that exp(0) = 1 and exp’(z) = exp(x) holds on R. Define the function f(z) =
exp(—x) exp(z). Then f is differentiable and

f(0)=1, f'(z)=0, VzeR.

Hence f(x) = 1 on R, which proves that exp(—x)exp(z) = 1 for all z € R. The same identity
shows that exp(x) can never be zero. Now since exp(0) = 1 > 0 and because exp is continuous
(being differentiable), it cannot change sign because it would have to go through a zero (remember
the intermediate value theorem). Hence exp(x) > 0 on R.

Now define the function g(z) = exp(—x — b) exp(x) exp(b) for some fixed b. We again have
g(0) =1 and ¢’'(z) = 0 for all z € R, hence exp(—x — b) exp(z) exp(b) = 1 on R. Multiply with
exp(x + b) on both sides and obtain exp(z) exp(b) = exp(x + b) on R.

The logarithm function is defined to be a primitive of 1/x, i.e.:

Define f(x) = In(exp(z)) — x on R, which is possible because exp(z) > 0. We have f(0) = 0 and
f'(x) =0 for all x € R, hence In(exp(z)) = = on R.

If 2 > 0, consider the function f(z) = L exp(In(z)). We have that f(1) =1 and f’(z) = 0 for
all z > 0, hence exp(In(z)) = z for all z > 0.

We have just proved that the exponential and the logarithm are inverses to each other. O



Corollary 3.2. We have In(ab) = In(a) +1n(b) for all a,b > 0. Moreover, In(y*) = xIn(y) for all
y>0 and z € R. Thus if y > 0 and x € R, we have y* = exp(x1n(y)).

Proof. Since
exp(In(ab)) = ab = exp(In(a)) exp(In(b)) = exp(In(a) + In(b)),

we must have In(ab) = In(a) + In(d) due to the injectivity of exp. If ab = 1 we have 0 =
In(a) + In(a™?), or In(a=!) = —In(a). Now if @ = b we get In(a?) = 2In(a). By induction, we
obtain that In(a™) = nln(a) for all n € N. Replacing a in the last identity with b/ we obtain
In(b*/™) = LIn(b). Thus In(b™) = 2 In(b). Moreover, In(b™" ) = — In(b).

Thus we have just proved that for every rational number r and for every positive number y > 0
we have In(y") = rIn(y). This implies y" = exp(rIn(y)) for every rational number r. Finally, we
use that every real number x is the limit of a sequence of rational numbers, together with the

continuity of exp. O
Corollary 3.3. Let «, 3,v > 0. We have that

T A v C Y (3.14)

e exp(Bz) | #oto a7
Proof. Let N be an integer such that @ < N. We have the inequality:

ﬁNxN ﬁNQL‘N
N!' — NI

exp(Bx) > 1+ B+ -+ , Vx> 0.

Then:
z® N!

< op(Fa) = Fave

Now if v > 0 and 2 > 0 we have 27 = exp(yIn(x)). Denote by y = In(z). Then we have:

— 0 when =z — oo.

1
lim Lx) = lim =
z—o0 7 y—o0 exp(yy)

4 Power series are analytic functions

Let {a,}n>0 C R such that limsup,_, . |a,|'/" < co. Define r = 1/{limsup,_,.. |an|"/"} if
limsup,, ., |an|"/" > 0 and 7 = oo if limsup,,_, ., |a,|"/™ = 0.
Let 0 < R < r and define f : (xg — R,z9 + R) — R given by:

f(z) = Z an(z — 29)".

n>0

The series is absolutely convergent because limsup,, , . |an(z — 20)"|"/™ = ‘gc_rix“l <1

Theorem 4.1. Let b € (zg— R,x0+ R) be an arbitrary point. Then f is indefinitely differentiable
at b, and for every t € (xg — R,xo + R) with |t — b] < R — |b — x¢| we have:

where the Taylor series is absolutely convergent.



Proof. Denote by apm :=n(n—1)...(n —m+ 1)a, if m > 1. Note that if n > k we have:

(n— k)" = exp(In[(n — k)"/"]) = exp (hl(n—k)> ~ exp <1n(n) +1In(1 — k/n))

n n

and using (3.14):

exp (lnr(ln) N In(1 —k/n)

) —exp(0) =1 when n — oo.
n

It follows that )
lim sup | |V = =, Vm > 1.

n—00 r

Thus the series ) ., opmt" ™™ is absolutely convergent for all |t| < R. Given x such that

|z — x| < p < R < r, there exists some hg > 0 such that |x +h — 20| < (R + p)/2 < R for all
|h| < hg. Using (3.12) with @ =  — x9 and |h| < hy we have:

h? -
flx+h)— than T —x0)" T+ — 5 Zn(n—l)an(x—i—cn’a,h—xo)" 2

n>1 n>2

where ¢, o, lies between 0 and h. Note that both series on the right hand side converge absolutely
because:

[nan (= 20)" | < Jawalp" ™", n(n = Dan(z + enan — 20)" %] < o[ [(R+p)/2]" 72

We conclude that f'(x) =3, 5, nan(z — x9)" ! for all |z — 29| < R. By induction, we obtain:

f(m) Zanm fE—l’O m7 m > 1.
n>m
It follows that we have the identity:

f(m) .
Z an 'm'h (x — x0)

n>m

which holds true for all m > 0.
Now define B,,,, = 0 if m > n and B,m = an(n%}j)!k!hm(aﬁ —xo)" ™™ if m < n. We see that

D [Buml = Z Bl < las| Z i 1 = 0] = lan (1Al + |2 — o))"

m>0

where we used the binomial identity in the last equality. Now if |h| < R — |z — x| it follows that
ano lan|(|h] + |2 — 20])™ < 00, hence:

S 1Buml < 0.

n>0m>0

The conditions of Theorem 1.1 are satisfied, hence

DD Bum =) Pum:

n>0m>0 m>0n>0
Now we observe that

n>0m>0 n>0 m=0 n>0



while

n! i ().,
DD Bm=D D Bam=) Z“nmhm(fv—xo)" =Zf m!( .

m>0n>0 m>0n>m m>0n>m m>0

In other words,

1 @)
m!

flat+h) =3

m>0

Now replace x + h =t and x = b and the theorem is proved.



