On the extrema of functions of several variables

Horia Cornean, 24/03/2014.

1 Some preparatory results

In this section we only work with the Euclidian space \mathbb{R}^d , whose norm is defined by $||\mathbf{x}|| = \sqrt{\sum_{j=1}^d |x_j|^2}$. The scalar product between two vectors \mathbf{x} and \mathbf{y} is denoted by $\langle \mathbf{x}, \mathbf{y} \rangle = \sum_{j=1}^d x_j y_j$.

Lemma 1.1. Let A be a $d \times d$ matrix with real components $\{a_{jk}\}$. Define the quantity $||A||_{HS} := \sqrt{\sum_{j=1}^{d} \sum_{k=1}^{d} |a_{jk}|^2}$. Then

$$||A\mathbf{x}|| \le ||A||_{\mathrm{HS}} ||\mathbf{x}||, \quad \forall \mathbf{x} \in \mathbb{R}^d.$$
 (1.1)

Proof. From the Cauchy-Schwarz inequality we have:

$$|(A\mathbf{x})_j|^2 = \left(\sum_{k=1}^d a_{jk} x_k\right)^2 \le \sum_{m=1}^d |a_{jm}|^2 \sum_{n=1}^d |x_n|^2 = \sum_{m=1}^d |a_{jm}|^2 ||\mathbf{x}||^2,$$

and after summation over j we have:

$$||A\mathbf{x}||^2 = \sum_{j=1}^d |(A\mathbf{x})_j|^2 \le \left(\sum_{j=1}^d \sum_{m=1}^d |a_{jm}|^2\right) ||\mathbf{x}||^2.$$

Lemma 1.2. Let $K := B_{\delta}(\mathbf{a}) = \{\mathbf{y} \in \mathbb{R}^d : ||\mathbf{y} - \mathbf{a}|| < \delta\}$ be an open ball in \mathbb{R}^d . Let $\phi : K \mapsto \mathbb{R}$ be a $C^1(K)$ map (which means that $\partial_j \phi$ exist for all j and are continuous functions on K). Fix $\mathbf{x} \in B_{\delta}(\mathbf{a})$. Define the real valued function $f(t) = \phi(\mathbf{a} + t(\mathbf{x} - \mathbf{a}))$, $0 \le t \le 1$. The function f is continuous on [0,1], differentiable on (0,1), and we have the formula:

$$f'(t) = \sum_{j=1}^{d} (x_j - a_j)(\partial_j \phi)(\mathbf{a} + t(\mathbf{x} - \mathbf{a})). \tag{1.2}$$

Proof. Without loss of generality, we assume that d=2. Define $x(t)=a_1+t(x_1-a_1)$ and $y(t)=a_2+t(x_2-a_2)$. With this notation we have $f(t)=\phi(x(t),y(t))$. Fix $t_0\in(0,1)$. We may write:

$$f(t) - f(t_0) = \phi(x(t), y(t)) - \phi(x(t_0), y(t_0))$$

= $\phi(x(t), y(t)) - \phi(x(t_0), y(t)) + \phi(x(t_0), y(t)) - \phi(x(t_0), y(t_0)).$ (1.3)

For a fixed t, let us define the real valued function $v(s) := \phi(s, y(t))$ on the largest interval which is compatible with the condition that the vector with components [s, y(t)] belongs to K. If $|t - t_0|$ is small enough, then both x(t) and $x(t_0)$ will belong to this interval. We then can apply the mean value theorem for v: there exists some \tilde{s} situated between $x(t_0)$ and x(t) such that

$$v(x(t)) - v(x(t_0)) = v'(\tilde{s})(x(t) - x(t_0)) = (\partial_1 \phi)(\tilde{s}, y(t))(x_1 - a_1)(t - t_0).$$

Thus we constructed some \tilde{s} situated between $x(t_0)$ and x(t) such that

$$\phi(x(t), y(t)) - \phi(x(t_0), y(t)) = (\partial_1 \phi)(\tilde{s}, y(t))(x_1 - a_1)(t - t_0).$$

Reasoning in a similar way with the function $v(s) = \phi(x(t_0), s)$, there exists some \hat{s} between y(t) and $y(t_0)$ such that

$$\phi(x(t_0), y(t)) - \phi(x(t_0), y(t_0)) = (\partial_2 \phi)(x(t_0), \hat{s})(x_2 - a_2)(t - t_0).$$

Introducing the last two identities in (1.3), if $t \neq t_0$ but $|t - t_0|$ small enough we obtain:

$$\frac{f(t) - f(t_0)}{t - t_0} = (x_1 - a_1)(\partial_1 \phi)(\tilde{s}, y(t)) + (x_2 - a_2)(\partial_2 \phi)(x(t_0), \hat{s}). \tag{1.4}$$

The distance between the point $[\tilde{s}, y(t)]$ and the point $[x(t_0), y(t_0)]$ tends to zero when t tends to t_0 . The same thing happens with the distance between $[x(t_0), \hat{s}]$ and $[x(t_0), y(t_0)]$. Thus the continuity of the partial derivatives of ϕ at $[x(t_0), y(t_0)]$ allows us to write:

$$f'(t_0) = \lim_{t \to t_0} \frac{f(t) - f(t_0)}{t - t_0} = (x_1 - a_1)(\partial_1 \phi)(x(t_0), y(t_0)) + (x_2 - a_2)(\partial_2 \phi)(x(t_0), y(t_0))$$
$$= \sum_{j=1}^{2} (x_j - a_j)(\partial_j \phi)(\mathbf{a} + t_0(\mathbf{x} - \mathbf{a})). \tag{1.5}$$

This proves the lemma if d=2. The general case is similar.

Lemma 1.3. Assume that the previous function ϕ is $C^2(K)$ (i.e. the second order partial derivatives exist and are continuous on K). Then $\partial_j \partial_k \phi = \partial_k \partial_j \phi$ on K, for all $1 \leq j, k \leq d$.

Proof. Without loss of generality, assume that d=2, j=1 and k=2. We will only prove the equality of $\partial_1(\partial_2\phi)(\mathbf{a})$ and $\partial_2(\partial_1\phi)(\mathbf{a})$; the proof is similar for all the other points of K.

If **x** is sufficiently close to **a**, the points with coordinates $[x_1, a_2]$ and $[a_1, x_2]$ belong to K and we can define:

$$q(\mathbf{x}) := \phi(x_1, x_2) - \phi(x_1, a_2) - \phi(a_1, x_2) + \phi(a_1, a_2).$$

Denote by $v(s) = \phi(s, x_2) - \phi(s, a_2)$ the function defined on the maximal interval compatible with the condition that the points $[s, x_2]$ and $[s, a_2]$ belong to K. If \mathbf{x} is sufficiently close to \mathbf{a} , then all the real numbers between a_1 and a_2 belong to this interval. We observe that $g(\mathbf{x}) = v(x_1) - v(a_1)$. The mean value theorem applied for a_2 gives us some a_3 between a_4 and a_4 such that:

$$g(\mathbf{x}) = v'(\tilde{s})(x_1 - a_1) = (x_1 - a_1)[(\partial_1 \phi)(\tilde{s}, x_2) - (\partial_1 \phi)(\tilde{s}, a_2)].$$

Now define the function $u(t) := (\partial_1 \phi)(\tilde{s}, t)$ where t varies between a_2 and x_2 . We have:

$$g(\mathbf{x}) = (x_1 - a_1)[u(x_2) - u(a_2)] = (x_1 - a_1)(x_2 - a_2)u'(\tilde{t}) = (x_1 - a_1)(x_2 - a_2)\partial_2\partial_1\phi(\tilde{s}, \tilde{t}), \quad (1.6)$$

where t lies between a_2 and x_2 .

We will now express g in a different way, using the other mixed second order partial derivative. Define the function $w(t) = \phi(x_1, t) - \phi(a_1, t)$. We have:

$$q(\mathbf{x}) = w(x_2) - w(a_2) = w'(\hat{t})(x_2 - a_2) = (x_2 - a_2)[\partial_2 \phi(x_1, \hat{t}) - \partial_2 \phi(a_1, \hat{t})]$$

where \hat{t} is between a_2 and x_2 . Applying once again the mean value theorem for the function $\partial_2 \phi(s, \hat{t})$, we obtain some \hat{s} between a_1 and x_1 such that:

$$g(\mathbf{x}) = (x_1 - a_1)(x_2 - a_2)\partial_1\partial_2\phi(\hat{s}, \hat{t}). \tag{1.7}$$

Comparing (1.6) and (1.7), we see that if **x** is close enough to **a** but $x_1 \neq a_1$ and $x_2 \neq a_2$, we must have

$$\partial_2 \partial_1 \phi(\tilde{s}, \tilde{t}) = \partial_1 \partial_2 \phi(\hat{s}, \hat{t}),$$

where both points $[\tilde{s}, \tilde{t}]$ and $[\hat{s}, \hat{t}]$ converge to **a** if $||\mathbf{x} - \mathbf{a}||$ converges to zero. The continuity of both partial derivatives at **a** finishes the proof.

If $\phi \in C^2(K)$ and $\mathbf{x} \in K$, we define the Hessian matrix $H(\mathbf{x})$ as the $d \times d$ matrix having the components $H_{jk}(\mathbf{x}) := \partial_j \partial_k \phi(\mathbf{x})$. Because of the previous lemma, we have that the Hessian matrix is self-adjoint.

Lemma 1.4. Assume that the function ϕ in Lemma 1.1 is $C^2(K)$. Then for every $\mathbf{x} \in K$ there exists some $c_x \in (0,1)$ such that:

$$\phi(\mathbf{x}) - \phi(\mathbf{a}) = \langle \mathbf{x} - \mathbf{a}, \nabla \phi(\mathbf{a}) \rangle + \frac{1}{2} \langle \mathbf{x} - \mathbf{a}, H(\mathbf{a} + c_x(\mathbf{x} - \mathbf{a}))(\mathbf{x} - \mathbf{a}) \rangle.$$
(1.8)

Proof. For a fixed j, the function $\partial_j \phi$ is C^1 on K. Define the function $\tilde{f}_j(t) = \partial_j \phi(\mathbf{a} + t(\mathbf{x} - \mathbf{a}))$, where $t \in [0, 1]$. The function \tilde{f}_j is differentiable and we can apply formula (1.2) in order to write:

$$\tilde{f}'_j(t) = \sum_{k=1}^d (x_k - a_k) \partial_k \partial_j \phi(\mathbf{a} + t(\mathbf{x} - \mathbf{a})).$$

Consider the function $f(t) = \phi(\mathbf{a} + t(\mathbf{x} - \mathbf{a}))$ as in Lemma 1.1. We see from (1.2) that f' is differentiable and we can write:

$$f''(t) = \sum_{j=1}^{d} (x_j - a_j) \tilde{f}'_j(t) = \sum_{j=1}^{d} \sum_{k=1}^{d} (x_j - a_j) (x_k - a_k) \partial_k \partial_j \phi(\mathbf{a} + t(\mathbf{x} - \mathbf{a}))$$
$$= \langle \mathbf{x} - \mathbf{a}, H(\mathbf{a} + t(\mathbf{x} - \mathbf{a})) (\mathbf{x} - \mathbf{a}) \rangle. \tag{1.9}$$

Moreover, $f'(0) = \sum_{j=1}^{d} (x_j - a_j) \partial_j \phi(\mathbf{a}) = \langle \mathbf{x} - \mathbf{a}, \nabla \phi(\mathbf{a}) \rangle$. Now we can apply the Taylor formula with remainder, which provides the existence of some number $c_x \in (0,1)$ such that $f(1) - f(0) = f'(0) + \frac{f''(c_x)}{2}$. The subscript x in the notation of c_x underlines the important fact that this number can change if \mathbf{x} changes. Now since $f(1) = \phi(\mathbf{x})$ and $f(0) = \phi(\mathbf{a})$, the proof is over.

Lemma 1.5. Let $\phi \in C^1(K)$. If **a** is either a local minimum or maximum, then $\nabla \phi(\mathbf{a}) = 0$.

Proof. Consider the function $u(t) = \phi(t, a_2, \dots, a_d)$ defined on the maximal interval $I \subset \mathbb{R}$ which is compatible with the condition that $[t, a_2, \dots, a_n] \in K$. This interval contains a_1 , and a_1 is an interior point of I. Thus a_1 is a local extremum for u, which implies that $u'(a_1) = \partial_1 \phi(\mathbf{a}) = 0$. A similar argument shows that all other partial derivatives must be zero at \mathbf{a} .

2 The main results

Theorem 2.1. Let $\phi \in C^2(K)$ and assume that **a** is a critical point (i.e. $\nabla \phi(\mathbf{a}) = 0$). If all the eigenvalues of the Hessian matrix $H(\mathbf{a})$ are positive (negative), then **a** is a local minimum (maximum).

Proof. Using $\nabla \phi(\mathbf{a}) = 0$ in (1.8) we have:

$$\phi(\mathbf{x}) = \phi(\mathbf{a}) + \frac{1}{2} \langle \mathbf{x} - \mathbf{a}, H(\mathbf{a} + c_x(\mathbf{x} - \mathbf{a}))(\mathbf{x} - \mathbf{a}) \rangle.$$
 (2.10)

Add and substract $\frac{1}{2} \langle \mathbf{x} - \mathbf{a}, H(\mathbf{a})(\mathbf{x} - \mathbf{a}) \rangle$ on the right hand side:

$$\phi(\mathbf{x}) = \phi(\mathbf{a}) + \frac{1}{2} \langle \mathbf{x} - \mathbf{a}, H(\mathbf{a})(\mathbf{x} - \mathbf{a}) \rangle + \frac{1}{2} \langle \mathbf{x} - \mathbf{a}, [H(\mathbf{a} + c_x(\mathbf{x} - \mathbf{a})) - H(\mathbf{a})](\mathbf{x} - \mathbf{a}) \rangle.$$
(2.11)

Since $H(\mathbf{a})$ is a self-adjoint matrix, the (complex) spectral theorem insures the existence of an orthonormal basis $\{\Psi_j\}_{j=1}^d$ which consists of eigenvectors of H(a). That is, there exist some real eigenvalues $\{\lambda_j\}_{j=1}^d$ such that $H(\mathbf{a})\Psi_j = \lambda_j\Psi_j$ for all j. Moreover, because all the entries of $H(\mathbf{a})$ are real, the eigenvectors can also be chosen to have real components.

An arbitrary vector $\mathbf{y} \in \mathbb{R}^d$ can be uniquely expressed as $\mathbf{y} = \sum_{j=1}^d \langle \mathbf{y}, \Psi_j \rangle \Psi_j$. Using the linearity of $H(\mathbf{a})$, we have $H(\mathbf{a})\mathbf{y} = \sum_{j=1}^d \langle \mathbf{y}, \Psi_j \rangle H(\mathbf{a})\Psi_j = \sum_{j=1}^d \langle \mathbf{y}, \Psi_j \rangle \lambda_j \Psi_j$. Using the linearity of the scalar product, we have that for every vector \mathbf{y} we can write:

$$\langle \mathbf{y}, H(\mathbf{a})\mathbf{y} \rangle = \sum_{j=1}^{d} |\langle \mathbf{y}, \Psi_j \rangle|^2 \lambda_j.$$
 (2.12)

Now assume that all the eigenvalues are positive. Denote by m > 0 the smallest of them. Then the above equality becomes:

$$\langle \mathbf{y}, H(\mathbf{a})\mathbf{y} \rangle \ge m \sum_{j=1}^{d} |\langle \mathbf{y}, \Psi_j \rangle|^2 = m||\mathbf{y}||^2,$$
 (2.13)

where the last identity is due to the fact that the basis is orthonormal. Replacing y with x - a we have:

$$\langle \mathbf{x} - \mathbf{a}, H(\mathbf{a})(\mathbf{x} - \mathbf{a}) \rangle \ge m||\mathbf{x} - \mathbf{a}||^2.$$
 (2.14)

Introducing this inequality in (2.11) we obtain the inequality:

$$\phi(\mathbf{x}) \ge \phi(\mathbf{a}) + \frac{m}{2} ||\mathbf{x} - \mathbf{a}||^2 + \frac{1}{2} \langle \mathbf{x} - \mathbf{a}, [H(\mathbf{a} + c_x(\mathbf{x} - \mathbf{a})) - H(\mathbf{a})](\mathbf{x} - \mathbf{a}) \rangle, \qquad (2.15)$$

which holds for every $\mathbf{x} \in K$.

Denote by A_x the matrix given by $H(\mathbf{a} + c_x(\mathbf{x} - \mathbf{a})) - H(\mathbf{a})$. Using the Cauchy-Schwarz inequality we have:

$$|\langle \mathbf{x} - \mathbf{a}, [H(\mathbf{a} + c_x(\mathbf{x} - \mathbf{a})) - H(\mathbf{a})](\mathbf{x} - \mathbf{a})\rangle| = |\langle \mathbf{x} - \mathbf{a}, A_x(\mathbf{x} - \mathbf{a})\rangle| < ||\mathbf{x} - \mathbf{a}|| ||A_x(\mathbf{x} - \mathbf{a})||.$$

Now using Lemma 1.1, we have:

$$|\langle \mathbf{x} - \mathbf{a}, [H(\mathbf{a} + c_x(\mathbf{x} - \mathbf{a})) - H(\mathbf{a})](\mathbf{x} - \mathbf{a})\rangle| \le ||\mathbf{x} - \mathbf{a}||^2 ||A_x||_{HS}.$$

Introducing this in (2.15) we have:

$$\phi(\mathbf{x}) \ge \phi(\mathbf{a}) + \frac{1}{2}||\mathbf{x} - \mathbf{a}||^2(m - ||A_x||_{HS}),$$
 (2.16)

which holds true on K. Now when $||\mathbf{x} - \mathbf{a}||$ converges to zero, the components a_{jk} of A_x given by

$$a_{ik} = \partial_i \partial_k \phi(\mathbf{a} + c_x(\mathbf{x} - \mathbf{a})) - \partial_i \partial_k \phi(\mathbf{a})$$

will all go to zero independently of the value of $c_x \in (0,1)$ because the second order partial derivatives of ϕ are continuous at **a**. It means that if $||\mathbf{x} - \mathbf{a}||$ is smaller than some ϵ , then $||A_x||_{HS}$ can be made smaller than m/2. Using this in (2.16), we obtain:

$$\phi(\mathbf{x}) \ge \phi(\mathbf{a}) + \frac{m}{4}||\mathbf{x} - \mathbf{a}||^2 \ge \phi(\mathbf{a}), \quad \forall \mathbf{x} \in B_{\epsilon}(\mathbf{a}) \subset K.$$

This shows that **a** is a local minimum for ϕ .

If all the eigenvalues are negative, denote by -m < 0 the largest of them. Then (2.12) implies $\langle \mathbf{y}, H(\mathbf{a})\mathbf{y} \rangle \leq -m||\mathbf{y}||^2$ for all \mathbf{y} . Using this in (2.11) we obtain:

$$\phi(\mathbf{x}) \le \phi(\mathbf{a}) - \frac{m}{2} ||\mathbf{x} - \mathbf{a}||^2 + \frac{1}{2} \langle \mathbf{x} - \mathbf{a}, [H(\mathbf{a} + c_x(\mathbf{x} - \mathbf{a})) - H(\mathbf{a})](\mathbf{x} - \mathbf{a}) \rangle$$

$$\le \phi(\mathbf{a}) - \frac{m - ||A_x||_{HS}}{2} ||\mathbf{x} - \mathbf{a}||^2,$$

inequality which holds on K. As before, if ϵ is small enough, then for all $\mathbf{x} \in B_{\epsilon}(\mathbf{a}) \subset K$ we have that $||A_x||_{\mathrm{HS}} < m/2$ which shows that $\phi(\mathbf{x}) \leq \phi(\mathbf{a})$ on that small ball, hence \mathbf{a} is a local maximum.

Theorem 2.2. Let $\phi \in C^2(K)$ and assume that **a** is a critical point (i.e. $\nabla \phi(\mathbf{a}) = 0$). If the Hessian matrix $H(\mathbf{a})$ has at least one positive eigenvalue $\lambda_+ > 0$ and on the same time at least one negative eigenvalue $\lambda_- < 0$, then **a** is a saddle point.

Proof. Denote by Ψ_{\pm} two real eigenvectors with norm $||\Psi_{\pm}|| = 1$ corresponding to λ_{\pm} . We define the maps $\mathbf{x}_{\pm}(t) := \mathbf{a} + t\Psi_{\pm}$ on the maximal intervals $I_{\pm} \subset \mathbb{R}$ compatible with the condition $\mathbf{x}_{\pm}(t) \in K$. Clearly, 0 is an interior point for both I_{+} and I_{-} .

Define on I_+ the real valued map $\phi_+(t) := \phi(\mathbf{x}_+(t))$. Replacing \mathbf{x} with $\mathbf{x}_+(t)$ in (2.11) we obtain:

$$\phi_{+}(t) = \phi(\mathbf{a}) + \frac{\lambda_{+}t^{2}}{2} + \frac{t^{2}}{2} \langle \Psi_{+}, [H(\mathbf{a} + c_{t}t\Psi_{+}) - H(\mathbf{a})]\Psi_{+} \rangle,$$

where the number $c_x \in (0,1)$ got a subscript t in order to explicitly show that it only depends on t. As before, if |t| is smaller than some $\epsilon_+ > 0$, the continuity of the second order partial derivatives of ϕ at \mathbf{a} insure that $||H(\mathbf{a} + c_t t \Psi_+) - H(\mathbf{a})||_{\mathrm{HS}}$ can be made smaller than $\lambda_+/2$. This implies $\phi_+(t) \ge \phi(\mathbf{a}) + \frac{\lambda_+ t^2}{4}$, for all $|t| < \epsilon_+$. In other words, we have constructed points $\mathbf{x} \in K$ which lie arbitrarily close to \mathbf{a} and $\phi(\mathbf{x}) > \phi(\mathbf{a})$.

Now consider $\phi_{-}(t) = \phi(\mathbf{x}_{-}(t))$. As above, we obtain:

$$\phi_{-}(t) = \phi(\mathbf{a}) + \frac{\lambda_{-}t^{2}}{2} + \frac{t^{2}}{2} \langle \Psi_{-}, [H(\mathbf{a} + c_{t}t\Psi_{-}) - H(\mathbf{a})]\Psi_{-} \rangle,$$

where again c_t lies somewhere between 0 and 1. Since $|\lambda_-| = -\lambda_- > 0$, there exists $\epsilon_- > 0$ small enough such that if $|t| < \epsilon_-$ we have that $||H(\mathbf{a} + c_t t \Psi_-) - H(\mathbf{a})||_{\text{HS}}$ becomes smaller than $|\lambda_-|/2$. It follows that we have $\phi_-(t) \le \phi(\mathbf{a}) - \frac{|\lambda_-|t^2|}{4}$, for all $|t| < \epsilon_-$. Thus we constructed points $\mathbf{y} \in K$ which lie arbitrary close to \mathbf{a} such that $\phi(\mathbf{y}) < \phi(\mathbf{a})$.

We conclude that \mathbf{a} is a saddle point.

3 Finding the global minimum of a strictly convex function

Lemma 3.1. Let $\phi \in C^2(\mathbb{R}^d)$ be a real valued function such that $H(\mathbf{x})$ has positive eigenvalues for all $\mathbf{x} \in \mathbb{R}^d$. Assume that ϕ has a global minimum. Then ϕ has exactly one critical point $\mathbf{a} \in \mathbb{R}^d$, and moreover, $\phi(\mathbf{x}) > \phi(\mathbf{a})$ for all $\mathbf{x} \neq \mathbf{a}$.

Proof. Since ϕ has a global minimum, there must exist some point $\mathbf{a} \in \mathbb{R}^d$ such that $\phi(\mathbf{x}) \geq \phi(\mathbf{a})$ for all \mathbf{x} . From Lemma 1.5 we know that \mathbf{a} is a critical point, i.e. $\nabla \phi(\mathbf{a}) = 0$. From (1.8) and from the fact that the eigenvalues of H are always positive, we see that $\phi(\mathbf{x}) > \phi(\mathbf{a})$ if $\mathbf{x} \neq \mathbf{a}$. This implies that there can be no other point where the global minimum is taken. As a consequence, no other critical point can exist, because it would automatically be a point where the global minimum is taken.

Lemma 3.2. With the same notation as in the previous lemma, pick some $\mathbf{x}_0 \neq \mathbf{a}$ and assume that $\phi(\mathbf{a}) < \phi(\mathbf{x}_0)$. Then the set

$$K := \{ \mathbf{x} \in \mathbb{R}^d : \phi(\mathbf{a}) \le \phi(\mathbf{x}) \le \phi(\mathbf{x}_0) \} = \phi^{-1}([\phi(\mathbf{a}), \phi(\mathbf{x}_0)])$$

is bounded and closed, thus compact.

Proof. Let us first show that if $f: \mathbb{R} \to \mathbb{R}$ is convex and C^2 , then for every t > 1 we have:

$$f(1) - f(0) \le \frac{f(t) - f(1)}{t - 1}.$$

Indeed, the mean value theorem provides some $c_1 \in (0,1)$ and some $c_2 \in (1,t)$ such that $f(1) - f(0) = f'(c_1)$ and $\frac{f(t) - f(1)}{t - 1} = f'(c_2)$. Since $f'' \ge 0$ and $c_1 < c_2$ we must have that $f'(c_1) \le f'(c_2)$ and the inequality is proved.

Now let $\omega \in S^{d-1}$ be an arbitrary element of the unit sphere. The real function $f(t) := \phi(\mathbf{a} + t\omega)$ is convex with

$$f''(t) = \langle \omega, H(\mathbf{a} + t\omega)\omega \rangle > 0, \quad \forall t \in \mathbb{R}.$$

Applying the above inequality for f we get:

$$\phi(\mathbf{a} + t\omega) \ge \phi(\mathbf{a} + \omega) + (t - 1)[\phi(\mathbf{a} + \omega) - \phi(\mathbf{a})], \quad \forall t > 1.$$
(3.17)

Because S^{d-1} is compact and ϕ is continuous, the function:

$$S^{d-1} \ni \omega \mapsto \phi(\mathbf{a} + \omega) \in \mathbb{R}$$

is also continuous and attains its minimum at some ω_0 . Thus:

$$\phi(\mathbf{a} + \omega) \ge \phi(\mathbf{a} + \omega_0) > \phi(\mathbf{a}), \quad \forall \omega \in S^{d-1}.$$

Using this in (3.17) we have:

$$\phi(\mathbf{a} + t\omega) \ge \phi(\mathbf{a} + \omega_0) + (t - 1)[\phi(\mathbf{a} + \omega_0) - \phi(\mathbf{a})], \quad \forall t > 1.$$
(3.18)

Now let $\mathbf{x} \notin \overline{B_1(\mathbf{a})}$. Define:

$$\omega := \frac{1}{||\mathbf{x} - \mathbf{a}||} (\mathbf{x} - \mathbf{a}) \in S^{d-1}, \quad t := ||\mathbf{x} - \mathbf{a}|| > 1.$$

We have $\phi(\mathbf{x}) = \phi(\mathbf{a} + t\omega)$ and:

$$\phi(\mathbf{x}) \ge \phi(\mathbf{a} + \omega_0) + (||\mathbf{x} - \mathbf{a}|| - 1)[\phi(\mathbf{a} + \omega_0) - \phi(\mathbf{a})], \quad \mathbf{x} \notin \overline{B_1(\mathbf{a})}.$$

If $||\mathbf{x} - \mathbf{a}||$ is larger or equal than some large enough $R_0 > 1$, then the right hand side of the above inequality can be made larger than $\phi(\mathbf{x}_0)$. Thus no point outside the open ball $B_{R_0}(\mathbf{a})$ can belong to K, which shows that $K \subset B_{R_0}(\mathbf{a})$, hence K is bounded.

Now let us prove that K is also closed. It is enough to prove that it contains all its adherent points. Let \mathbf{x} be such an adherent point; there must exist a sequence $\{\mathbf{x}_n\}_{n\geq 1}\subset K$ such that \mathbf{x}_n converges to \mathbf{x} and

$$\phi(\mathbf{a}) \le \phi(\mathbf{x}_n) \le \phi(\mathbf{x}_0), \quad n \ge 1.$$

Since ϕ is continuous, $\phi(\mathbf{x}_n)$ converges to $\phi(\mathbf{x})$. Thus $\phi(\mathbf{a}) \leq \phi(\mathbf{x}) \leq \phi(\mathbf{x}_0)$ and we are done. \square

Now we want to find a starting from \mathbf{x}_0 . Consider the initial value problem:

$$\mathbf{x}'(t) = -\nabla \phi(\mathbf{x}(t)), \quad \mathbf{x}(0) = \mathbf{x}_0, \ t > 0. \tag{3.19}$$

Since ϕ is a C^2 function, the conditions for the local existence of a solution are satisfied. Moreover, defining $g(t) := ||\nabla \phi(\mathbf{x}(t))||^2 = \sum_{j=1}^d [\partial_j \phi(\mathbf{x}(t))]^2$ we have:

$$g'(t) = 2\sum_{j=1}^{d} [\partial_j \phi(\mathbf{x}(t))] [\partial_k \partial_j \phi(\mathbf{x}(t))] x'_k(t) = -2 \langle \nabla \phi(\mathbf{x}(t)), H(\mathbf{x}(t)) \nabla \phi(\mathbf{x}(t)) \rangle \le 0, \quad t > 0.$$

The derivative is non-positive because all the eigenvalues of $H(\mathbf{x}(t))$ are positive, see for comparison (2.14). Thus g is decreasing, which means that $||\nabla \phi(\mathbf{x}(t))||$ becomes smaller and smaller when t grows. Moreover, we can compute:

$$\frac{d}{dt}\phi(\mathbf{x}(t)) = \sum_{i=1}^{d} [\partial_k \phi(\mathbf{x}(t))] x_k'(t) = -||\nabla \phi(\mathbf{x}(t))||^2 \le 0$$

which shows that the value of $\phi(\mathbf{x}(t))$ decreases with t and stays trapped in $[\phi(\mathbf{a}), \phi(\mathbf{x}_0)]$. We see that both above derivatives are zero iff $\nabla \phi(\mathbf{x}(t)) = 0$, otherwise both are negative.

The important extra-information is that $\mathbf{x}(t)$ remains in K, thus in $B_{R_0}(\mathbf{a})$. Thus the equation (3.19) has a (unique) solution which can be continued for all t > 0. Moreover, the eigenvalues of $H(\mathbf{x})$ are continuous functions of \mathbf{x} , and since we assumed that they were positive on K, there must exist some m > 0 such that $\lambda_j(\mathbf{x}) \geq m$ if $\mathbf{x} \in K$. With the same argument as in (2.13) we obtain $g'(t) \leq -2mg(t)$ for all t > 0, and:

$$\frac{d}{dt}\{e^{2mt}g(t)\} = 2me^{2mt}g(t) + e^{2mt}g'(t) \le 0, \quad t > 0$$

which shows that $e^{2mt}g(t)$ is decreasing. In other words:

$$0 \le g(t) \le g(0)e^{-2mt}, \quad t \ge 0.$$

Thus $||\nabla \phi(\mathbf{x}(t))||$ goes to zero with t, exponentially fast. This intuitively shows that $\mathbf{x}(t)$ moves towards \mathbf{a} , which is the only point where the gradient of ϕ equals zero.

Lemma 3.3. The solution $\mathbf{x}(t)$ of equation (3.19) converges exponentially fast to \mathbf{a} when $t \to \infty$.

Proof. Let us first prove that $\mathbf{x}(t)$ has a limit. Let $1 \le t_1 < t_2$ and use the fundamental theorem of calculus:

$$\mathbf{x}(t_2) - \mathbf{x}(t_1) = \int_{t_1}^{t_2} \mathbf{x}'(t)dt.$$

Then we have:

$$||\mathbf{x}(t_2) - \mathbf{x}(t_1)|| \le \int_{t_1}^{t_2} ||\mathbf{x}'(t)|| dt = \int_{t_1}^{t_2} \sqrt{g(t)} dt \le \frac{\sqrt{g(0)}}{m} (e^{-mt_1} - e^{-mt_2}) \le \frac{\sqrt{g(0)}}{m} e^{-mt_1}.$$
 (3.20)

In particular, this shows that the sequence $\{\mathbf{x}(n)\}_{n\geq 1}$ is a Cauchy sequence in K, hence it must have a limit $\mathbf{y} \in K$. Since $||\nabla \phi(\mathbf{x})||$ is continuous we have:

$$0 = \lim_{n \to \infty} g(n) = \lim_{n \to \infty} ||\nabla \phi(\mathbf{x}(n))|| = ||\nabla \phi(\mathbf{y})||$$

which shows that $\nabla \phi(\mathbf{y}) = 0$, hence $\mathbf{y} = \mathbf{a}$. Finally, let $t_1 = t$ and $t_2 = n \to \infty$ in (3.20). We have:

$$||\mathbf{a} - \mathbf{x}(t)|| \le \frac{\sqrt{g(0)}}{m} e^{-mt},\tag{3.21}$$

which proves the exponentially fast convergence.

If we want to find **a** in practice, this method is not always very efficient. Let us from now on assume that we want to determine **a** up to a given error $\varepsilon > 0$ while ϕ is regular enough, i.e. at least C^5 . From (3.21) we see that we need to estimate $\mathbf{x}(t)$ for a t of order $\ln(1/\varepsilon)$. Now applying a fourth-order Runge-Kutta iteration with step h, the number of iterations being given by N = t/h, we can find $\mathbf{x}(t)$ up to an error of order N $h^5 = t^5/N^4$. Thus we need to choose

$$N \sim \varepsilon^{-\frac{1}{4}} [\ln(1/\varepsilon)]^{\frac{5}{4}}.$$

Thus if $\varepsilon \sim 10^{-1}$ then $N \sim 5$, if $\varepsilon \sim 10^{-6}$ then $N \sim 850$, and if $\varepsilon \sim 10^{-10}$ then $N \sim 16000$.

3.1 Newton's method for finding critical points

Now let us show how we can combine the previous method with another iterative method in order to increase the computational efficiency. Given $0 < \delta \ll 1$, we know that using the previous method we can find some $\mathbf{x}_{\delta} \in K$ such that $||\nabla \phi(\mathbf{x}_{\delta})|| \leq \delta$ and $||\mathbf{a} - \mathbf{x}_{\delta}|| \leq \delta$. The idea is to find an iteration method which starts from \mathbf{x}_{δ} and converges very fast to \mathbf{a} .

Lemma 3.4. Let $\phi \in C^3(\mathbb{R}^d)$. There exists a numerical constant $C < \infty$ such that for every $\mathbf{u}, \mathbf{w} \in \overline{B_1(\mathbf{a})}$ we have:

$$\max\{||H(\mathbf{u}) - H(\mathbf{w})||_{HS}, ||[H(\mathbf{u})]^{-1} - [H(\mathbf{w})]^{-1}||_{HS}\} \le C ||\mathbf{u} - \mathbf{w}||_{HS}$$

Proof. Define

$$h_{jk}(s) := \partial_j \partial_k \phi(\mathbf{w} + s(\mathbf{u} - \mathbf{w})), \quad 0 \le s \le 1, \ \mathbf{u}, \mathbf{w} \in \overline{B_1(\mathbf{a})}.$$

There exists some $s_{\mathbf{u},\mathbf{w},j,k} \in (0,1)$ such that $h_{jk}(1) - h_{jk}(0) = h'_{jk}(s_{\mathbf{u},\mathbf{w},j,k})$ or:

$$\partial_j \partial_k \phi(\mathbf{u}) - \partial_j \partial_k \phi(\mathbf{w}) = \sum_{m=1}^d \partial_m \partial_j \partial_k \phi(\mathbf{w} + s_{\mathbf{u}, \mathbf{w}, j, k}(\mathbf{u} - \mathbf{w}))](u_m - w_m). \tag{3.22}$$

In terms of matrix elements:

$$H_{jk}(\mathbf{u}) - H_{jk}(\mathbf{w}) = \sum_{m=1}^{d} \partial_m \partial_j \partial_k \phi(\mathbf{w} + s_{\mathbf{u}, \mathbf{w}, j, k}(\mathbf{u} - \mathbf{w}))](u_m - w_m). \tag{3.23}$$

The vector $\mathbf{w} + s_{\mathbf{u},\mathbf{w},j,k}(\mathbf{u} - \mathbf{w})$ always belongs to $\overline{B_1(\mathbf{a})}$. Because $\phi \in C^3(\mathbb{R}^d)$ and $\overline{B_1(\mathbf{a})}$ is compact, we have that

$$c_1 := \max_{m,j,k \in \{1,\dots,d\}} \sup_{\mathbf{x} \in \overline{B_1(\mathbf{a})}} |\partial_m \partial_j \partial_k \phi(\mathbf{x})| < \infty.$$

Thus:

$$|H_{jk}(\mathbf{u}) - H_{jk}(\mathbf{w})| \le c_1 \sqrt{d} ||\mathbf{u} - \mathbf{w}||, \quad j, k \in \{1, ..., d\},$$

or

$$||H(\mathbf{u}) - H(\mathbf{w})||_{HS} \le c_1 d^{3/2} ||\mathbf{u} - \mathbf{w}||,$$

which proves one of the estimates of the lemma. The second one uses the following identity:

$$[H(\mathbf{u})]^{-1} - [H(\mathbf{w})]^{-1} = [H(\mathbf{u})]^{-1} \{ H(\mathbf{w}) - H(\mathbf{u}) \} [H(\mathbf{w})]^{-1},$$

from which we can bound the norm of the left hand side:

$$||[H(\mathbf{u})]^{-1} - [H(\mathbf{w})]^{-1}||_{HS} \le ||[H(\mathbf{u})]^{-1}||_{HS} ||H(\mathbf{u}) - H(\mathbf{w})||_{HS} ||[H(\mathbf{w})]^{-1}||_{HS}.$$

The entries of both $[H(\mathbf{w})]^{-1}$ and $[H(\mathbf{u})]^{-1}$ are continuous on $\overline{B_1(\mathbf{a})}$, thus their Hilbert-Schmidt norms can be bounded from above by some numerical constant. The proof is over.

Lemma 3.5. Let $\phi \in C^3(\mathbb{R}^d)$. There exists a numerical constant $C < \infty$ such that for every $\mathbf{y}, \mathbf{z} \in \overline{B_1(\mathbf{a})}$ we have:

$$||\nabla \phi(\mathbf{y}) - \nabla \phi(\mathbf{z}) - [H(\mathbf{y})](\mathbf{y} - \mathbf{z})|| \le C ||\mathbf{y} - \mathbf{z}||^2, \quad \mathbf{z}, \mathbf{y} \in \overline{B_1(\mathbf{a})}.$$
 (3.24)

Proof. Define

$$h_i(t) := \partial_i \phi(\mathbf{z} + t(\mathbf{y} - \mathbf{z})), \quad 0 \le t \le 1, \ \mathbf{z}, \mathbf{y} \in \overline{B_1(\mathbf{a})}.$$

There exists some $t_{\mathbf{z},\mathbf{y},j} \in (0,1)$ such that $h_j(1) - h_j(0) = h'_j(t_{\mathbf{z},\mathbf{y},j})$ or:

$$\partial_j \phi(\mathbf{y}) - \partial_j \phi(\mathbf{z}) = \{ [H(\mathbf{z} + t_{\mathbf{z}, \mathbf{y}, j}(\mathbf{y} - \mathbf{z}))](\mathbf{y} - \mathbf{z}) \}_j,$$

or even more:

$$\partial_j \phi(\mathbf{y}) - \partial_j \phi(\mathbf{z}) = \{ [H(\mathbf{y})](\mathbf{y} - \mathbf{z}) \}_j + \{ [H(\mathbf{z} + t_{\mathbf{z}, \mathbf{y}, j}(\mathbf{y} - \mathbf{z})) - H(\mathbf{y})](\mathbf{y} - \mathbf{z}) \}_j.$$
(3.25)

Denote by $\mathbf{u} = \mathbf{z} + t_{\mathbf{z},\mathbf{y},j}(\mathbf{y} - \mathbf{z}) \in \overline{B_1(\mathbf{a})}$ and apply Lemma 3.4 to the pair \mathbf{u} and $\mathbf{w} = \mathbf{y}$. Since $\mathbf{u} - \mathbf{w} = (1 - t_{\mathbf{z},\mathbf{y},j})(\mathbf{y} - \mathbf{z})$, then we have:

$$||[H(\mathbf{u}) - H(\mathbf{w})](\mathbf{y} - \mathbf{z})|| \le ||[H(\mathbf{u}) - H(\mathbf{w})]||_{HS}||\mathbf{y} - \mathbf{z}|| \le C ||\mathbf{y} - \mathbf{z}||^2$$

and we are done. \Box

Lemma 3.6. Let $\phi \in C^3(\mathbb{R}^d)$. For any $0 < \delta < 1$ we define $\mathbf{f}_{\delta} : \overline{B_{\delta}(\mathbf{a})} \mapsto \mathbb{R}^d$ given by $\mathbf{f}_{\delta}(\mathbf{x}) := \mathbf{x} - [H(\mathbf{x})]^{-1}[\nabla \phi(\mathbf{x})]$. Then there exists a numerical constant $C_1 < \infty$ such that

$$||\mathbf{f}_{\delta}(\mathbf{x}) - \mathbf{a}|| \le C_1 ||\mathbf{x} - \mathbf{a}||^2, \quad \mathbf{x} \in \overline{B_{\delta}(\mathbf{a})}.$$
 (3.26)

Moreover, there exists a small enough δ such that \mathbf{f}_{δ} leaves $\overline{B_{\delta}(\mathbf{a})}$ invariant and

$$||\mathbf{f}_{\delta}(\mathbf{y}) - \mathbf{f}_{\delta}(\mathbf{y})|| \leq \frac{1}{2}||\mathbf{y} - \mathbf{z}||,$$

i.e. \mathbf{f}_{δ} is a contraction.

Proof. Because $\nabla \phi(\mathbf{a}) = 0$ we have:

$$||\mathbf{f}_{\delta}(\mathbf{x}) - \mathbf{a}|| = ||\mathbf{x} - \mathbf{a} - [H(\mathbf{x})]^{-1}[\nabla \phi(\mathbf{x}) - \nabla \phi(\mathbf{a})]|| = ||[H(\mathbf{x})]^{-1}\{\nabla \phi(\mathbf{x}) - \nabla \phi(\mathbf{a}) - [H(\mathbf{x})](\mathbf{x} - \mathbf{a})\}||$$

and using (3.24) with $\mathbf{z} = \mathbf{x}$ and $\mathbf{y} = \mathbf{a}$ we obtain (3.26). It follows that if δ is small enough such that $C_1\delta < 1$, then $\mathbf{f}_{\delta}(\mathbf{x}) \in \overline{B_{\delta}(\mathbf{a})}$, which means that \mathbf{f}_{δ} leaves $\overline{B_{\delta}(\mathbf{a})}$ invariant. Moreover, by a simple computation we obtain:

$$\mathbf{f}_{\delta}(\mathbf{y}) - \mathbf{f}_{\delta}(\mathbf{z}) = -[H(\mathbf{y})]^{-1} \{ \nabla \phi(\mathbf{y}) - \nabla \phi(\mathbf{z}) - [H(\mathbf{y})](\mathbf{y} - \mathbf{z}) \} + \{ [H(\mathbf{z})]^{-1} - [H(\mathbf{y})]^{-1} \} \nabla \phi(\mathbf{z}). \quad (3.27)$$

From (3.24) we obtain some numerical constant $C_2 < \infty$ such that

$$||[H(\mathbf{y})]^{-1}\{\nabla\phi(\mathbf{y}) - \nabla\phi(\mathbf{z}) - [H(\mathbf{y})](\mathbf{y} - \mathbf{z})\}|| \le C_2||\mathbf{y} - \mathbf{z})||^2 \le C_2\delta||\mathbf{y} - \mathbf{z}||,$$

while from Lemma 3.4 we obtain:

$$||[H(\mathbf{z})]^{-1} - [H(\mathbf{y})]^{-1}\}\nabla\phi(\mathbf{z})|| \le C||\mathbf{z} - \mathbf{y}|| ||\nabla\phi(\mathbf{z})||$$

where we can use $\nabla \phi(\mathbf{a}) = 0$ and together with (3.24) we obtain some other numerical constant $C_3 < \infty$ such that:

$$||[H(\mathbf{z})]^{-1} - [H(\mathbf{y})]^{-1}\}\nabla\phi(\mathbf{z})|| \le C||\mathbf{z} - \mathbf{y}|| ||\nabla\phi(\mathbf{z})|| = C||\mathbf{z} - \mathbf{y}|| ||\nabla\phi(\mathbf{z}) - \nabla\phi(\mathbf{a})|| \le C_3\delta||\mathbf{z} - \mathbf{y}||.$$

Putting everything together we obtain:

$$||\mathbf{f}_{\delta}(\mathbf{y}) - \mathbf{f}_{\delta}(\mathbf{z})|| \le (C_2 + C_3)\delta ||\mathbf{z} - \mathbf{y}||.$$

Thus if we choose $\delta_0 = \min\{1/2, 1/(2C_1), 1/(2C_2 + 2C_3)\}$ the proof is over.

Thus \mathbf{f}_{δ_0} must have a unique fixed point in $\overline{B_{\delta_0}(\mathbf{a})}$, which we already know: \mathbf{a} . Now let us assume that we run the previous method until we obtain an approximation of \mathbf{a} which belongs to $\overline{B_{\delta_0}(\mathbf{a})}$. Denote this approximation by \mathbf{x}_{δ_0} . Now if we define the sequence:

$$\mathbf{y}_1 := \mathbf{x}_{\delta_0}, \quad \mathbf{y}_{n+1} := \mathbf{f}_{\delta_0}(\mathbf{y}_n), \ n \ge 1,$$

we know that it will converge to \mathbf{a} . Let us now investigate how fast it converges. From (3.26) we have:

$$||\mathbf{y}_{n+1} - \mathbf{a}|| = ||\mathbf{f}_{\delta_0}(\mathbf{y}_n) - \mathbf{a}|| \le C_1 ||\mathbf{y}_n - \mathbf{a}||^2.$$

Thus we have:

$$||\mathbf{y}_n - \mathbf{a}|| \le C_1 ||\mathbf{y}_{n-1} - \mathbf{a}||^2 \le C_1^3 ||\mathbf{y}_{n-2} - \mathbf{a}||^4 \le \dots \le C_1^{2^{n-1}-1} ||\mathbf{y}_1 - \mathbf{a}||^{2^{n-1}} \le C_1^{-1} (C_1 \delta_0)^{2^{n-1}},$$

inequality which can be proved by induction. This convergence is very fast. If, say, $C_1=1$ and $\delta_0=10^{-1}$, then that after one iteration the error is 10^{-2} , after two iterations is 10^{-4} , and after four iterations is already 10^{-16} .