On the extrema of functions of several variables
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1 Some preparatory results

In this section we only work with the Euclidian space R?, whose norm is defined by |[x|| =

2?21 |z;|2. The scalar product between two vectors x and y is denoted by (x,y) = 2?21 z;Y;.

Lemma 1.1. Let A be a d X d matriz with real components {a;x}. Define the quantity || A||lus :=

d d
\/Zj:l > k=1 lajk®. Then
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Proof. From the Cauchy-Schwarz inequality we have:
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and after summation over j we have:
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Lemma 1.2. Let K := Bs(a) = {y € R?: ||y — a|| < 6} be an open ball in R:. Let ¢ : K — R
be a CY(K) map (which means that ;¢ exist for all j and are continuous functions on K ). Fix
x € Bs(a). Define the real valued function f(t) = ¢(a+t(x —a)), 0 <t < 1. The function f is
continuous on [0, 1], differentiable on (0,1), and we have the formula:

d
=> (z; (9;0)(a+t(x — a)). (1.2)

Jj=1

Proof. Without loss of generality, we assume that d = 2. Define z(t) = a1 + t(z1 — a1) and
y(t) = as + t(ze — az). With this notation we have f(t) = ¢(z(t),y(¢)). Fix to € (0,1). We may
write:

f(t) = f(to) = ¢(2(t), y(t)) — d(x(to), y(to))

oz (), y(t)) — ¢(x(to), y(t)) + d(x(to), y(t)) — ¢(x(to), y(to))- (1.3)
For a fixed t, let us define the real valued function v(s) := ¢(s,y(t)) on the largest interval which
is compatible with the condition that the vector with components [s, ()] belongs to K. If |t — tg]

is small enough, then both () and z(tq) will belong to this interval. We then can apply the mean
value theorem for v: there exists some § situated between x(t) and z(t) such that

o(@(t)) — v(e(to)) = ' (3)(@(t) - 2(to)) = (B16)(5, y(t)) (21 — ar)(t — to).



Thus we constructed some § situated between z(tg) and z(¢) such that

P(z(1),y(t) — ¢(x(to), y(1)) = (619)(5,y (1)) (z1 — ar)(t = to).

Reasoning in a similar way with the function v(s) = ¢(x(to), s), there exists some § between y(¢)
and y(to) such that

¢(2(t0), y(1)) — d(x(to), y(to)) = (920)(z(to), 3)(x2 — az)(t — to).

Introducing the last two identities in (1.3), if ¢ # ¢y but |¢ — ¢o| small enough we obtain:

f(t) = f(to)

— = (21— a1)(019)(3,y(t)) + (22 — a2)(D20)(z(to), 8). (1.4)

The distance between the point [3,y(¢)] and the point [z(tg), y(to)] tends to zero when ¢ tends
to to. The same thing happens with the distance between [z(to), 5] and [z(to),y(t9)]. Thus the
continuity of the partial derivatives of ¢ at [x(to), y(to)] allows us to write:

7(t0) = g TOZTI) () — a0 @16)alt0), 00 + (2 = ) @20 000). (1)
2
Z (9;0)(a+to(x — a)). (1.5)

This proves the lemma if d = 2. The general case is similar.

Lemma 1.3. Assume that the previous function ¢ is C*(K) (i.e. the second order partial deriva-
tives exist and are continuous on K ). Then 0;0,¢ = 0x0;¢ on K, for all1 < 5,k < d.

Proof. Without loss of generality, assume that d = 2, 7 = 1 and k = 2. We will only prove the
equality of 01(02¢)(a) and 02(01¢)(a); the proof is similar for all the other points of K.

If x is sufficiently close to a, the points with coordinates [z1, as] and [a;, z2] belong to K and
we can define:

9(x) = ¢(x1,72) — d(21,02) — P(ar, x2) + (a1, az).

Denote by v(s) = ¢(s,x2) — ¢(s, as) the function defined on the maximal interval compatible with
the condition that the points [s, x2] and [s, as] belong to K. If x is sufficiently close to a, then all
the real numbers between a; and z; belong to this interval. We observe that g(x) = v(z1) —v(aq).
The mean value theorem applied for v gives us some § between a1 and z; such that:

9(x) =v'(3) (21 — 1) = (21 — @1)[(019)(5, w2) — (010)(5, a2)].

Now define the function u(t) := (01¢)(8,t) where t varies between as and z5. We have:

9(x) = (z1 — ar)[u(z2) — ulaz)] = (1 — a1)(z2 — ax)u'(t) = (21 — a1)(2 — a2)02019(5, 1), (1.6)

where 7 lies between ay and 5.
We will now express g in a different way, using the other mixed second order partial derivative.
Define the function w(t) = ¢(z1,t) — ¢(a1,t). We have:

9(x) = w(zs) — wlaz) = w'({)(z2 — a2) = (x2 — a2)[D2d(21, ) — Oadp(ay, t)]

where £ is between as and z». Applying once again the mean value theorem for the function
O20(s,t), we obtain some § between a; and z; such that:

g(X) = (xl — al)(l“g — a2)8182¢(§,f). (17)



Comparing (1.6) and (1.7), we see that if x is close enough to a but z1 # a1 and x5 # as, we must
have

92016(3,1) = 91026(5, 1),

where both points [3,7] and [3,#] converge to a if ||x — a|| converges to zero. The continuity of
both partial derivatives at a finishes the proof. O

If ¢ € C*(K) and x € K, we define the Hessian matrix H(x) as the d x d matrix having
the components Hjx(x) := 0;0r¢(x). Because of the previous lemma, we have that the Hessian
matrix is self-adjoint.

Lemma 1.4. Assume that the function ¢ in Lemma 1.1 is C*(K). Then for every x € K there
exists some ¢, € (0,1) such that:

Bx) — 0la) = {x — 8, V() + 5 (x —a, Hla+ calx — a)(x - a)). (18)

Proof. For a fixed j, the function ;¢ is C' on K. Define the function f;(t) = d;6(a + t(x — a)),
where t € [0, 1]. The function f; is differentiable and we can apply formula (1.2) in order to write:

d
Z Ty — Qg 8k8]¢(a + t(X — a))
k=1

Consider the function f(t) = ¢(a + t(x — a)) as in Lemma 1.1. We see from (1.2) that f’ is
differentiable and we can write:

d d d
Z a;) f;(¢) ZZ )(xk — ar)00jP(a+ t(x — a))

j=1 j=1k=1
x—a,Ha+t(x—a))(x—a)). (1.9)

\

Moreover, f'(0) = Z?Zl(mj —a;)0;0(a) = (x —a, V¢(a)). Now we can apply the Taylor formula
with remainder, which provides the existence of some number ¢, € (0,1) such that f(1) — f(0) =

o)+ % The subscript = in the notation of ¢, underlines the important fact that this number
can change if x changes. Now since f(1) = ¢(x) and f(0) = ¢(a), the proof is over. O

Lemma 1.5. Let ¢ € CY(K). If a is either a local minimum or maximum, then Vé(a) = 0.

Proof. Consider the function u(t) = ¢(t,as,...,aq) defined on the maximal interval I C R which

is compatible with the condition that [t,as,...,a,] € K. This interval contains a;, and a; is an
interior point of I. Thus a; is a local extremum for u, which implies that u'(a;) = 01¢(a) = 0. A
similar argument shows that all other partial derivatives must be zero at a. O

2 The main results

Theorem 2.1. Let ¢ € C*(K) and assume that a is a critical point (i.e. Vé(a) = 0). If all
the eigenvalues of the Hessian matriz H(a) are positive (negative), then a is a local minimum
(mazimum,).

Proof. Using V¢(a) =0 in (1.8) we have:

$(x) =¢(a)+%<X—avH(a+Cx(X—a))(X—a)>o (2.10)



Add and substract 3 (x —a, H(a)(x — a)) on the right hand side:
¢(x) = ¢(a) + 5 (x —a, H(a)(x — a)) + % (x—a [H(a+c(x—a)) - H(a)](x —a)). (2.11)

Since H(a) is a self-adjoint matrix, the (complex) spectral theorem insures the existence of an
orthonormal basis {¥; }?:1 which consists of eigenvectors of H(a). That is, there exist some real

eigenvalues {\; }?:1 such that H(a)¥,; = A\;¥; for all j. Moreover, because all the entries of H(a)
are real, the eigenvectors can also be chosen to have real components.
An arbitrary vector y € R? can be uniquely expressed as y = Z?:1<y,\llj>\lfj. Using the

linearity of H(a), we have H(a)y = Z?ﬂ(y, Ui H(a)¥; = Z?=1<y, Ui)A;¥;. Using the linearity
of the scalar product, we have that for every vector y we can write:

d
(v, H(@)y) =Y [y, ¥;)]*A;. (2.12)

Jj=1

Now assume that all the eigenvalues are positive. Denote by m > 0 the smallest of them. Then
the above equality becomes:

d
(v, H@)y) >mY_|(y,¥;)|* = mllyl]*, (2.13)
j=1
where the last identity is due to the fact that the basis is orthonormal. Replacing y with x —a
we have:
(x —a, H(a)(x —a)) > m||x — a||*. (2.14)

Introducing this inequality in (2.11) we obtain the inequality:

600 2 0(a) + Tl —all? + 3 - a [Hate,(x—a) - H@)x-a),  (21)

2

which holds for every x € K.
Denote by A, the matrix given by H(a + ¢,(x — a)) — H(a). Using the Cauchy-Schwarz
inequality we have:

[ — a, [H(a+ e (x — a)) — H(a))(x — a))| = [(x - a, A,(x — a))| < [|x — al [[4.(x - a)|.
Now using Lemma 1.1, we have:
|(x —a, [H(a+ c:(x — a)) — H(a)l(x — a))| < |Ix - al|?||As||ns.
Introducing this in (2.15) we have:
$(x) > 6(a) + 5|x — al*(m — | ] Ins), (2.16)
which holds true on K. Now when ||x — al| converges to zero, the components a,, of A, given by
ajr = 0;0r0(a+ cx(x —a)) — 0;0r0(a)
will all go to zero independently of the value of ¢, € (0,1) because the second order partial

derivatives of ¢ are continuous at a. It means that if ||x —al| is smaller than some ¢, then || A, ||us
can be made smaller than m/2. Using this in (2.16), we obtain:

6(x) > ¢la) + llx —all? > ¢(a), Vx € B.(a) C K.



This shows that a is a local minimum for ¢.
If all the eigenvalues are negative, denote by —m < 0 the largest of them. Then (2.12) implies
(y,H(a)y) < —m]||y]||? for all y. Using this in (2.11) we obtain:

B0 < 6(a) — T~ all* + 3 (x—a,[H(a+ colx — a)) ~ H(a)](x - a))

m — || Az||ns

S — a2,

< ¢(a) -
inequality which holds on K. As before, if € is small enough, then for all x € B.(a) C K we
have that ||A;|lus < m/2 which shows that ¢(x) < ¢(a) on that small ball, hence a is a local
maximum.

O

Theorem 2.2. Let ¢ € C*(K) and assume that a is a critical point (i.e. V¢(a) = 0). If the
Hessian matriz H(a) has at least one positive eigenvalue Ay > 0 and on the same time at least
one negative eigenvalue A_ < 0, then a is a saddle point.

Proof. Denote by ¥ two real eigenvectors with norm ||¥y|| = 1 corresponding to Ay. We define
the maps x4 (t) := a+ t¥4 on the maximal intervals I1 C R compatible with the condition
x4 (t) € K. Clearly, 0 is an interior point for both I and I_.
Define on I the real valued map ¢4 (t) := ¢(x4(t)). Replacing x with x(¢) in (2.11) we
obtain:
A t? t?
o4(t) = o(a) + 5 T3 (U, [H(a+ W) — H(a)|Wy),
where the number ¢, € (0, 1) got a subscript ¢ in order to explicitly show that it only depends on ¢.
As before, if |t] is smaller than some e, > 0, the continuity of the second order partial derivatives
of ¢ at a insure that ||[H(a + ¢;t¥ ) — H(a)||us can be made smaller than Ay /2. This implies
2

d+(t) > p(a) + )‘Zt , for all |t| < e4. In other words, we have constructed points x € K which lie

arbitrarily close to a and ¢(x) > ¢(a).
Now consider ¢_(t) = ¢(x_(t)). As above, we obtain:

At?t?
O-(t) = ola) + 25+ AW [Hatet¥ )~ H@)W.),
where again ¢; lies somewhere between 0 and 1. Since |A_| = —A_ > 0, there exists e_ > 0 small

enough such that if |¢| < e_ we have that ||H(a+ ¢,tV_) — H(a)||us becomes smaller than |A_|/2.

It follows that we have ¢_(t) < ¢(a) — "\’4“2, for all |[t| < e_. Thus we constructed points y € K

which lie arbitrary close to a such that ¢(y) < ¢(a).
We conclude that a is a saddle point.

O

3 Finding the global minimum of a strictly convex function

Lemma 3.1. Let ¢ € C%(R?) be a real valued function such that H(x) has positive eigenvalues for
all x € R%. Assume that ¢ has a global minimum. Then ¢ has exactly one critical point a € R?,
and moreover, ¢(x) > ¢(a) for all x # a.

Proof. Since ¢ has a global minimum, there must exist some point a € R? such that ¢(x) > ¢(a)
for all x. From Lemma 1.5 we know that a is a critical point, i.e. V¢(a) = 0. From (1.8) and
from the fact that the eigenvalues of H are always positive, we see that ¢(x) > ¢(a) if x # a. This
implies that there can be no other point where the global minimum is taken. As a consequence, no
other critical point can exist, because it would automatically be a point where the global minimum
is taken. O



Lemma 3.2. With the same notation as in the previous lemma, pick some xg # a and assume
that ¢(a) < ¢(xg). Then the set

K :={xeR": ¢(a) < o(x) < ¢(x0)} = ¢~ ([¢(a), $(x0)])
is bounded and closed, thus compact.

Proof. Let us first show that if f : R+ R is convex and C?, then for every ¢ > 1 we have:

70 = F(1)

sy - ) < 29

Indeed, the mean value theorem provides some ¢; € (0,1) and some cp € (1,¢) such that f(1) —

£(0) = f'(c1) and w = f'(c2). Since f” > 0 and ¢; < ca we must have that f'(c1) < f/(c2)

and the inequality is proved.
Now let w € S9! be an arbitrary element of the unit sphere. The real function f(t) := ¢(a-+tw)
is convex with

() = (w,H(a+ tw)w) >0, VteR.
Applying the above inequality for f we get:
pla+iw) > dla+w)+ (t—1[pla+w) —¢(a)], Vi>1. (3.17)

Because S%~1 is compact and ¢ is continuous, the function:

Sl s wis gplatw) €ER
is also continuous and attains its minimum at some wg. Thus:

pla+w) > pla+wy) > da), Ywe S

Using this in (3.17) we have:

pla+tw) > dplat+wy) + (t — 1)[pla+wy) —@(a)], Vt>1. (3.18)

Now let x ¢ Bj(a). Define:

1

= ||X_a‘|(x—a) €Sl ti=|x—all>1

We have ¢(x) = ¢(a + tw) and:

¢(x) = p(a+wo) + ([[x —al| = D¢(a+wo) — ¢(a)], x ¢ Bi(a).

If ||x — al| is larger or equal than some large enough Ry > 1, then the right hand side of the above
inequality can be made larger than ¢(xg). Thus no point outside the open ball Bg,(a) can belong
to K, which shows that K C Bg,(a), hence K is bounded.

Now let us prove that K is also closed. It is enough to prove that it contains all its adherent
points. Let x be such an adherent point; there must exist a sequence {x,}n>1 C K such that x,
converges to x and

o(a) < ¢(x,) < d(x0), n> 1.

Since ¢ is continuous, ¢(x,) converges to ¢(x). Thus ¢(a) < ¢(x) < ¢(xg) and we are done. [

Now we want to find a starting from xg. Consider the initial value problem:

x'(t) = =Vao(x(t)), x(0)=xq, t>0. (3.19)



Since ¢ is a C function, the conditions for the local existence of a solution are satisfied. Moreover,

defining g(t) = ||Vo(x(D)[[2 = 220, [0 6(x(t))]? we have:

=2 N0k0;¢(x(t))] (1) = =2 (Vo(x(t)), H(x(t)) Vo(x(t)) <0, ¢>0.

'M&

J:1

The derivative is non-positive because all the eigenvalues of H (x(t)) are positive, see for comparison
(2.14). Thus g is decreasing, which means that ||Vé(x(t))|| becomes smaller and smaller when ¢
grows. Moreover, we can compute:

d d
) = D l0kp(e(t)]ah(t) = IV (x(t))|]” <0

which shows that the value of ¢(x(t)) decreases with ¢ and stays trapped in [¢(a), ¢(xg)]. We see
that both above derivatives are zero iff V¢ (x(¢)) = 0, otherwise both are negative.

The important extra-information is that x(t) remains in K, thus in Bg,(a). Thus the equation
(3.19) has a (unique) solution which can be continued for all ¢ > 0. Moreover, the eigenvalues of
H(x) are continuous functions of x, and since we assumed that they were positive on K, there
must exist some m > 0 such that A\;(x) > m if x € K. With the same argument as in (2.13) we
obtain ¢'(¢t) < —2mg(t) for all ¢t > 0, and:

d

ﬁ{ethg(t)} =2me?™g(t) +e*™g'(t) <0, t>0

which shows that e*™!g(t) is decreasing. In other words:
0<g(t) <g(0)e®  t>0.

Thus ||Vo(x(t))|| goes to zero with ¢, exponentially fast. This intuitively shows that x(¢) moves
towards a, which is the only point where the gradient of ¢ equals zero.

Lemma 3.3. The solution x(t) of equation (3.19) converges exponentially fast to a when t — co.

Proof. Let us first prove that x(¢) has a limit. Let 1 < #; < to and use the fundamental theorem
of calculus:

x(t) — x(t1) = /t " Y.

Then we have:

Ie(ta) =xen)l| < [ 10t = w Dt < VIO (gmrns =tz < VIO s 90

m

In particular, this shows that the sequence {x(n)},>1 is a Cauchy sequence in K, hence it must
have a limit y € K. Since ||V¢(x)|| is continuous we have:

0= lim g(n) = lim [|Vé(x(n)| = V()]

which shows that V¢ (y) = 0, hence y = a. Finally, let t; = ¢ and t2 = n — oo in (3.20). We
have:

[la —x(t)]] < ﬂe’mt (3.21)

)
m

which proves the exponentially fast convergence. O



If we want to find a in practice, this method is not always very efficient. Let us from now on
assume that we want to determine a up to a given error € > 0 while ¢ is regular enough, i.e. at
least C°. From (3.21) we see that we need to estimate x(¢) for a ¢ of order In(1/¢). Now applying a
fourth-order Runge-Kutta iteration with step h, the number of iterations being given by N = t/h,
we can find x(¢) up to an error of order N h® = t°/N*. Thus we need to choose

N ~ e 4 [In(1/e)]%.

Thus if € ~ 107! then N ~ 5, if £ ~ 1076 then N ~ 850, and if € ~ 1071° then N ~ 16000.

3.1 Newton’s method for finding critical points

Now let us show how we can combine the previous method with another iterative method in order
to increase the computational efficiency. Given 0 < § <« 1, we know that using the previous
method we can find some x5 € K such that ||[Vé(xs)|| <6 and ||a — xs]| < d. The idea is to find
an iteration method which starts from x5 and converges very fast to a.

Lemma 3.4. Let ¢ € C3(R?). There exists a numerical constant C < oo such that for every
u,w € Bi(a) we have:

max {||H (u) — H(w)||us, [[H(w)]™" — [H(wW)] " |lus} < C [[u—w]|.

Proof. Define

hjk(s) == 0;0kp(w +s(u—w)), 0<s<1, u,we By(a).

There exists some sy,w,j i € (0,1) such that hj(1) — hjx(0) = hl) (Suw,jk) or:

d
0;0kp () — ;060 (W) = > 00 Okd(W + Sumw,jo (U — W) (i — wi). (3.22)

m=1
In terms of matrix elements:

d
Hji(u) — Hjp(w) = Z Om0jOkd(W + Su,w,j k(0 — W) (U, — Wipy). (3.23)

The vector W + Syw,jx(u — w)) always belongs to Bi(a). Because ¢ € C3(R?) and Bi(a) is
compact, we have that

Cl1 = max su 8 86 x| < oo.
' m’j,ke{l,...,d}x€%®| m&j k¢( )\
Thus:
|Hyw(w) = Hye(w)| < exVlju—wll, .k € {1,....d},
or

1H(u) = H(w)|[us < e1d®?[[u—wl],
which proves one of the estimates of the lemma. The second one uses the following identity:
[H(w)] ™" = [H(w)] ™" = [H ()]~ {H(w) — H(u)}H(w)] ™,
from which we can bound the norm of the left hand side:

1A ()] = [H (W) lms < [1[H ()]~ las [1H (a) = H(w)llas [|[H (w)] ™ ||s-

The entries of both [H(w)]™! and [H(u)]~! are continuous on B (a), thus their Hilbert-Schmidt
norms can be bounded from above by some numerical constant. The proof is over. O



Lemma 3.5. Let ¢ € C3(R?). There exists a numerical constant C < oo such that for every
v,z € Bi(a) we have:

IVo(y) = Vo(z) — [HW)(y —2)[| < Clly —zl*, zy € Bi(a). (3.24)
Proof. Define

hj(t) == 0;¢(z+t(ly —2z)), 0<t<I1, zye B(a).
There exists some t,,y ; € (0,1) such that h;(1) — h;(0) = hi(tsy,;) or:

9j0(y) = 9;0(2) = {[H (2 + toy;(y —2))(y — 2)};,

9;o(y) = 9;0(z) = {{H(Y)I(y —2)}; +{[H(z + lsy,;(y — 2)) = H(y)I(y — 2)};- (3.25)

Denote by u=z+t,y, ;(y —2z) € Bi(a) and apply Lemma 3.4 to the pair u and w =y. Since
u—w=(1—-t,y;)(y —2), then we have:

I[H (w) = H(w)](y = 2)|| < ||[H (w) — H(w)]||us|ly — 2l| < C |ly — =l

and we are done. O

Lemma 3.6. Let ¢ € C3(R?). For any 0 < § < 1 we define f5 : Bs(a) — R? given by f5(x) :=
x — [H(x)]7}[Vp(x)]. Then there exists a numerical constant Cy < oo such that

Ifs(x) —a|| < C ||x —al|]?, x & Bs(a). (3.26)

Moreover, there exists a small enough 6 such that f5 leaves Bs(a) invariant and

1
15(y) = &)l < Slly — 2l
i.e. f5 is a contraction.

Proof. Because V¢(a) = 0 we have:

15 (x) —al| = [[x—a—[H ()] [Vo(x) - Vo (a)]|| = [|[H (x)]{Ve(x) - Vo(a) - [H (x)](x —a)}]

and using (3.24) with z = x and y = a we obtain (3.26). It follows that if ¢ is small enough such
that C19 < 1, then f5(x) € Bs(a), which means that fs leaves Bs(a) invariant. Moreover, by a
simple computation we obtain:

f5(y) —fs5(2) = —[H(¥)] " {Vo(y)~Vo(2) ~ [H(y)|(y —2)} +{[H(2)] " ~[H(y)] "} Ve(2). (3.27)
From (3.24) we obtain some numerical constant Cz < oo such that
IHE)]{Vo(y) — Vo(z) — [H(y)l(y — 2)}] < Colly — 2)|]* < Cadlly — =,
while from Lemma 3.4 we obtain:
I[H(@)]™" = [H¥)]™}Ve(2)|] < Cllz -yl [[Ve(2)]]

where we can use V¢(a) = 0 and together with (3.24) we obtain some other numerical constant
('3 < oo such that:

I[H ()] = [H(y)] " }Ve(z)l| < Cllz—yl| [[Vo(2)|| = Cllz—y|| [[Vd(z) — Vé(a)l| < Cséllz—y]|-
Putting everything together we obtain:

|Ifs(y) — f5(2)|| < (C2+ C5)d ||z — y|.
Thus if we choose §yp = min{1/2,1/(2C}), 1/(2C5 + 2C3)} the proof is over. O




Thus f5, must have a unique fixed point in By, (a), which we already know: a. Now let us
assume that we run the previous method until we obtain an approximation of a which belongs to

Bs,(a). Denote this approximation by x5,. Now if we define the sequence:

Y1 = X(S(p YTL+1 = féo(yn)a n 2 13

we know that it will converge to a. Let us now investigate how fast it converges. From (3.26) we
have:
lyn+1 —all = |lfs, (yn) — all < Cillyn — alf*.

Thus we have:
n—1_ n—1 _ n—1
lyn —all < Cillyn-1 —al? <CP|lyno —al[* <. <O} “Ylyi—al” <C7H(Ci160)*

inequality which can be proved by induction. This convergence is very fast. If, say, C; = 1 and
dp = 107!, then that after one iteration the error is 1072, after two iterations is 1074, and after
four iterations is already 10716,
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