
Basic properties of limsup and liminf
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1 Equivalent definitions

Let {sn}n≥1 be a bounded real sequence, i.e. there exists M > 0 such that −M ≤ sn ≤M for all
n ≥ 1. Then the sequence

αk := sup{sn : n ≥ k} =: sup
n≥k

sn, k ≥ 1

is a decreasing sequence (αk+1 ≤ αk) bounded below by −M . Thus {αk}k≥1 converges towards
the infimum of its range. Therefore, we can define:

lim sup sn := lim
k→∞

αk = inf
k≥1

sup
n≥k

sn. (1.1)

For every ε > 0 there exists kε such that

lim sup sn ≤ αk = sup
n≥k

sn ≤ αkε < (lim sup sn) + ε, ∀k ≥ kε. (1.2)

Similarly, the sequence

βk := inf{sn : n ≥ k} =: inf
n≥k

sn, k ≥ 1

is an increasing sequence (βk+1 ≥ βk) bounded above by M . Thus {βk}k≥1 converges towards the
supremum of its range. Therefore, we can define:

lim inf sn := lim
k→∞

βk = sup
k≥1

inf
n≥k

sn. (1.3)

For every ε > 0 there exists kε such that

(lim inf sn)− ε < βkε ≤ inf
n≥k

sn = βk ≤ lim inf sn, ∀k ≥ kε. (1.4)

Let S denote the set of all real numbers for which there exists at least one subsequence {snj}j≥1
such that snj converges to x when j →∞. Clearly, S is a subset of [−M,M ].

Theorem 1.1. We have max(S) = lim sup sn and min(S) = lim inf sn.

Proof. We only show the first equality. In order to simplify notation we put L := lim sup sn.
There are two things we have to prove: (1) sup(S) ≤ L and (2) L ∈ S. They would imply:

sup(S) = max(S) = L.

Let us start by proving (1). Assume that it is not true, i.e. L < sup(S). Because sup(S) is the
smallest upper bound of S, it implies that L cannot be an upper bound, thus there exists some
x ∈ S such that L < x ≤ sup(S). Since x ∈ S, there must exist a subsequence {snj}j≥1 such that
|snj − x| → 0 when j →∞. In particular, there exists some K ≥ 1 such that:

x+ L

2
< snj , ∀j ≥ K. (1.5)
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Formula (1.2) can be rewritten in the following way. For every ε > 0, there exists kε large enough
such that:

L ≤ sup
n≥k

sn < L+ ε, ∀k ≥ kε. (1.6)

Now fix ε0 = (x− L)/2. The above inequality insures the existence of some K0 such that:

sn ≤ sup
n≥K0

sn < L+ ε0 =
x+ L

2
, ∀n ≥ K0.

This inequality implies that only finitely many elements (at most K0) of the sequence sn can be
larger than x+L

2 , which contradicts (1.5). Thus (1) is proved.
Now let us prove (2) by constructing a subsequence {snj}j≥1 which has L as its limit. The

idea is to find an increasing sequence n1 < n2 < ... < nj < ... such that

L− 1

j
≤ snj ≤ L+

1

j
, ∀j ≥ 1. (1.7)

We will do this by induction, and the double inequality in (1.6) will play an important role. Let
us start by constructing n1. Let ε = 1 in (1.6) and consider the corresponding k1. We know that
(supn≥k1 sn)− 1 is not an upper bound for the set {sn : n ≥ k1}, hence we may find n1 ≥ k1 such
that:

( sup
n≥k1

sn)− 1 < sn1
.

Using this in (1.6) with k = k1 we get:

L− 1 ≤ ( sup
n≥k1

sn)− 1 < sn1
≤ sup
n≥k1

sn < L+ 1. (1.8)

Now let us assume that (1.7) holds for n1 < ... < nj and we want to construct nj+1. Put ε = 1
j+1

in (1.6) and consider the corresponding k 1
j+1

. Define:

k̃j := max{nj , k 1
j+1
}+ 1.

Clearly, nj < k̃j and k̃j > k 1
j+1

. In particular, we can apply (1.6) if ε = 1
j+1 and k = k̃j and we

obtain:

L ≤ sup
n≥k̃j

sn < L+
1

j + 1
.

Again, (supn≥k̃j sn) − 1
j+1 is not an upper bound for the set {sn : n ≥ k̃j}, hence we may find

nj+1 ≥ k̃j > nj such that:

L− 1

j + 1
≤ ( sup

n≥k̃j
sn)− 1

j + 1
< snj+1

≤ sup
n≥k̃j

sn < L+
1

j + 1
(1.9)

which finishes the induction step and proves (2).

We end this section with two more definitions. If the sequence {sn}n≥1 is not bounded from
above, then by convention we put lim sup sn = +∞. If the sequence is not bounded from below,
we put lim inf sn = −∞.
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2 Computation rules

Proposition 2.1. Let {sn}n≥1 be a bounded real sequence. Then lim inf sn ≤ lim sup sn. More-
over, the sequence is convergent and has the limit L if and only if lim inf sn = lim sup sn = L.

Proof. From Theorem 1.1 we know that lim inf sn = min(S) ≤ max(S) = lim sup sn.
Now let us prove the equivalence between convergence and equality of lim inf with lim sup. If

the sequence is convergent to L, then we know that any subsequence can only converge to L. It
follows that S = {L}, hence min(S) = max(S) = L.

The other way around: assume that lim inf sn = lim sup sn = L. Remember that for every
k ≥ 1 we have:

αk = inf
n≥k

sn ≤ sk ≤ sup
n≥k

sn = βk.

Since both αk and βk have the same limit L, we know that sk also converges and has the same
limit L.

Proposition 2.2. Let {an}n≥1 and {bn}n≥1 be two bounded real sequences. Then we have

lim sup(an + bn) ≤ lim sup(an) + lim sup(bn) and lim inf(an) + lim inf(bn) ≤ lim inf(an + bn).

Proof. For every k ≥ 1 we can write:

inf
n≥k

an + inf
n≥k

bn ≤ aj + bj ≤ sup
n≥k

an + sup
n≥k

bn, ∀j ≥ k.

The first inequality implies:
inf
n≥k

an + inf
n≥k

bn ≤ inf
n≥k

(an + bn),

while the second one gives:
sup
n≥k

(an + bn) ≤ sup
n≥k

an + sup
n≥k

bn.

Now we can take k →∞ and we are done.

Proposition 2.3. Let {an}n≥1 and {bn}n≥1 be two bounded real sequences such that bn converges
to b. Then:

lim sup(an + bn) = lim sup(an) + b and lim inf(an + bn) = lim inf(an) + b.

Proof. We only prove the first identity, by showing a double inequality. From Proposition 2.2 we
have:

lim sup(an + bn) ≤ lim sup(an) + lim sup(bn) = lim sup(an) + b,

where in the second equality we used Proposition 2.1.
By writing an = (an + bn) + (−bn) and use again Proposition 2.2 we have:

lim sup(an) ≤ lim sup(an + bn) + lim sup(−bn) = lim sup(an + bn)− b

where we used that −bn converges to −b. Hence:

lim sup(an) + b ≤ lim sup(an + bn),

and we are done.
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Proposition 2.4. Let {an}n≥1 and {bn}n≥1 be two bounded real sequences such that bn converges
to b ≥ 0. Then:

lim sup(anbn) = b lim sup(an) and lim inf(anbn) = b lim inf(an).

Proof. We only prove the first identity. Remember the following elementary fact: if sn is a bounded
sequence and tn converges to zero, then sntn converges to zero. This covers the case b = 0, thus
we can assume b > 0. We have:

anbn = anb+ an(bn − b).

Since an(bn − b) converges to zero, we can use Proposition 2.3 and obtain:

lim sup(anbn) = lim sup(anb).

Because b > 0 we have supn≥k(anb) = b supn≥k(an) and similarly:

inf
k≥1

(b sup
n≥k

(an)) = b inf
k≥1

sup
n≥k

(an).

Thus lim sup(anb) = b lim sup(an) and we are done.
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