ODE exercises

Horia Cornean, d. 18/03/2014.

Exercise 1. Consider a function f : R4t! — R? where f € Cl(]]{d-%l), which obeys the estimate
[£(t, z)|| < Cl)x||, V[t,x] € R,

Consider the equation y’(t) = f(¢,y(¢)), where y(0) = yo. Show that there exists a unique solution
y : R — R? which solves the equation for all t € R.

Hint. Use Lemma 6.3 in my notes in order to prove that f obeys a local Lipschitz condition
on the set [—1,1] x Bi(yo). Then one can apply Theorem 5.3 in my notes (local existence) and
conclude that there exists a positive §; > 0 and a differentiable function y : (—d1,6;) — R% which
is a solution to our ODE and also obeys:

y(t) = y(0) + / B(s,y(s))ds, |t <81

Using the estimate ||f(s,y(s))|| < C||y(s)|| we can write (take ¢t > 0):

ly@I < ||3>'(0)||+C/0 [y (s)llds < IIy(O)II+0tlly(0)ll+02/0 dSI/OSI dsa||y(s2)]|

2
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< Iy (Ol + Ct[ly (0)] + IIY(0)||+C3/ dsl/ d82/ dss|ly(ss)l] < ...
0 0 0

Now assume that we cannot find a global in time solution, i.e. it only exists for a time interval
of the form (—T3,Ty) where T := min{T},T>} < oo and 0 < é; < T. Assume without loss that
T =T, < co. We then have:

y(t) =y(0) +/0 f(s,y(s))ds, |ly@)ll < lly(0)[[e", [t| < T

Consider an arbitrary sequence t,,, € (0,7") which converges to 7. Then the sequence of values
y(tm) € R? is Cauchy, because if p > g we can write (assume without loss that ty, > tq):

tp tp
Iv(ts) =yl =11 [t y(eDasi < [Ny (s)llds < Clly )1t ~ 1
tq tq
which can be made arbitrarily small since ¢,, is also Cauchy. Hence y(¢,) converges to some vector
yr € R%. It s, is some other sequence in (0,T) which converges to T, we have:

[y (sn) —y(ta)|l < O||Y(0)||€CT|5n —ty] =0
which shows that the limit y is independent of the sequence we choose. Thus we have:
y(T'=0)=yr, y(T-0)=£Tyr)

Now consider the initial value problem y'(t) = £(¢,y(¢)), where y(T') = yr. The same local
existence Theorem 5.3 (where we put tg = T and yo = yr) allows us to construct a solution on
an interval (T' — 62,7 + d2) and we have:

Y(T+0)=y(T)=f£(T,yr).



Now we can define a function z : (=77, 7% + d2) where z(t) = y(t) on (—T1,T%) and z(t) = y(¢) on
[T2,T5 + 62). We observe that z is continuously differentiable and solves the ODE. Thus T5 can
be made larger, which provides a contradiction.

Concerning uniqueness: assume that there exist two solutions y; and ys which both solve the
differential equation and y;(0) = y2(0) = yo. We already know that they exist for all ¢. Both of
them obey the bound ||y;(t)]| < |lyo|[e!!!. If yo = 0 then both of them are identically zero (thus
equal). Hence we may assume that yo # 0.

Fix some T > 0. If [t] < T, then both vectors y;(t) and y2(t) will be contained in the closed
ball Br(yo) with R := ||yol[e“T.

We know from Lemma 6.3 that there exists some L < oo such that:

f(s,x) = £(s,2)|| < Ll[x —2[|, V|s|<T, Vx,2z¢€ Br(yo)

We have the identity:

y2(t)—y1(t):/0 [£(s, y2(s)) — £(s,y1(s))lds, V[t| <T.

Let h(t) :=|ly2(t) —y1(t)||, with h(0) = 0. Assume that ¢ > 0. Reasoning as before, we can write:

0 < ht /HfsyQ( )) — £(5,y1(s ))\|ds<L/ h(s ds<L/dsl/ dssh(ss)..

In particular, if m := max|, <7 h(s) we can write:

-1 LNTN
0<h(t) < LN /dsl/ dss.. / dsNh(sN)ng, 0<t<T.

Now the right hand side converges to zero with N, which proves that h(t) is identically zero on
[0,T]. In a similar way, we can prove that h is zero on [T, T}, hence y; and y» coincide on that
interval. Since T was arbitrary, the two solutions are equal everywhere.

Exercise 2. Show that if f(¢,x) = Ax where A is an arbitrary d x d real matrix, its corresponding
ODE has a global in time solution.

Exercise 3. Consider the equation
Y (t)
1—y2(t)’
1. Define g : (-1,1) — R, g(x) = 1_;. Let f : R x (—1,1) — R, f(¢,z) := g(z). Show that
y'(t) = £(¢,y(t)) and identify d, to, I and U.

2. Show that f € C1(R x U) and it obeys a local Lipschitz condition.
3. Show that for ¢ near 0 we can rewrite the equation as:

[y(t) +1/y(t) +t] = 0.

4. Show that y(t) +1/y(t) = 5/2 — ¢ for ¢ near 0. Find y(¢).
5. Can y be extended to ¢t > 1/27

y'(t) =

y(0) =1/2.

Exercise 4. Let f : Rt s R? with f € C*(R9t!). Assume that f obeys a global Lipschitz
condition, i.e. there exists a constant C' > 0 such that

I£(t,x) = £(t,y)[| < Cllx —yll, VtER, ¥x,yeR™

Consider the equation y’(t) = f(¢,y(t)), where y(0) = yo. Show that there exists a unique solution
y : R = R? which solves the equation for all t € R.



Hint. The original differential equation is equivalent with the integral equation:

y(t) =yo +/0 f(s,y(s))ds.

As in Exercise 1, we assume that a solution only exists on an interval of the form (—T3,75) with
T :=Ty, =min{T},T5} < co.
Define h(t) := ||y (t) — yol|. We have:

t

t
y(t) =30 = [ ls.vohds + [ [E(s.¥(5) ~ £(s,yo)lds.
0 0
After taking the norms and using the Lipschitz constant (take ¢ > 0):
t t
he) < [ Gs.yo)llds +C [ his)as,
0 0
If 0 <t < T we have:
T t T
ht) < / I1£(s, yo)|ds + c/ h(s)ds < ... < (/ ||f(s,y0)|ds> T 0<t<T.
0 0 0

This shows that:

T
I.V(t)—YOII<</ If(s7yO)||d8> T, 0<t<T.
0

In other words, the solution always remains inside a closed ball with center at yo and radius
R= ([ 1If(s,yo)llds) e°T. Let

M:= sup sup ||f(s,x)|| < 0.
0=s<T xeBr(yo)

Choose some sequence t,, € (0,T) which converges to T. We have:

y(ty) —y(ts) = / "Hoy(s). lly(t) — y(ta)ll < Mlty — ).

q

This shows that the sequence {y(¢,)}n>1 is Cauchy and converges to some yr. If s, € (0,7T) is
another sequence which converges to T', we have:

y(tn) = y(sn) = / CEy(), Iy(t) — y(sa)ll < Mty — sl

n

which proves that yr is independent of the sequence we choose, hence y(T — 0) exists and equals
yr, and:
y(T = 0) =£(T,yr).

Reasoning as in Exercise 1, we can locally extend y to the interval [T, T + §), thus contradicting
the maximality of the interval (—=77,T).

Now let us prove uniqueness. Assume that both y; and ys solve the integral equation. Define
h(t) == ||ly1(t) — y2(t)||. We have:

yi(t) — ya(t) = / [F(s,y1(5)) — £(5,y2(s))ds, 0 < h(t) < C / h(s)ds.

As in Exercise 1 we can show that h(t) = 0 for all ¢ and we are done.



Exercise 5. Let g : R? — R? be given by g(x) = [~x2, 1] and consider the equation
y'(t) =g(y(t), y(0)=][10]

1. Show that y{(t) = —y2(t) and y4(¢) = y1(t), with y1(0) = 1 and y2(0) = 0.

2. Prove that the solution is unique and global and time, and moreover, y?(t) + y3(t) = 1 for
all ¢.

3. Use uniqueness in order to show that y; () = y2(t/2) — y3(t/2) and ya(t) = 2y1(t/2)y2(t/2).
Prove that there must exist a 7' > 0 such that y;(7) =1 and y2(T") = 0.
Use uniqueness in order to show that y1(t) = y1(t +T) and y2(t) = y2(t + T') for all ¢.
Denote by 2P the smallest positive T' in (5). Show that y;(P) = —1 and y2(P) = 0.
Use uniqueness and (6) to show that y1(t) = —y1 (P — t) and y2(t) = y2( P — 1).
Use uniqueness and (6) to show that y; (t) = —y1(P +t) and y2(t) = —y2(P + t).

9. Use uniqueness and show that y; (¢t) = y1(—t) and ya(t) = —y2(—1).

10. Use (7) and (8) to show that y;(P/2) = 0 and y1(3P/2) = 0.

11. Show that y;(0) = 0, y{(0) = -1, ¥{’(0) = 0, y£4) (0) = 1,... . Compute the Taylor series
of y1(t) around 0 and show that it has an infinite radius of convergence. Can you recognize the
function? What about the number P?
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Hints.

(2). Show that [y3(t) + v

(3). Define 1(t) := y3(t/
and y(0) = [1,0].

(4). Show that when ¢ is slightly larger than zero, y; decreases while y, increases and becomes
positive. This remains true until y; hits zero, and y, necessarily equals 1. Then y; continues to
decrease and becomes more and more negative, making ys to decrease until it hits zero. Simul-
taneously, y; must equal —1. After that, yo becomes negative which makes y; to increase again
until it hits zero. At that point, ¥ must be —1. Finally, y; will continue to increase as long as y»
is negative, reaching the value 1, and necessarily, y» will be zero.

(6) Let t = 2P in (3). We have 1 = y;(2P) = y(P) — y3(P) = 2y3(P) — 1 and 0 = y2(2P) =
2y1(P)y2(P). The first identity implies that |y (P)| = 1; this implies that y2(P) = 0. Hence y;1(P)
equals either +1 or —1. But it cannot equal +1, because we assumed that the smallest positive
value of ¢ for which we come back to the original initial condition was 2P.

+y3(t) — 1) = 0 for all ¢.
2) — y5(t/2) and a(t) := 2y1(t/2)y2(t/2). Prove that ¥'(t) = g(¥(t))



