
ODE exercises

Horia Cornean, d. 18/03/2014.

Exercise 1. Consider a function f : Rd+1 7→ Rd where f ∈ C1(Rd+1), which obeys the estimate

||f(t, x)|| ≤ C||x||, ∀[t,x] ∈ Rd+1.

Consider the equation y′(t) = f(t,y(t)), where y(0) = y0. Show that there exists a unique solution
y : R 7→ Rd which solves the equation for all t ∈ R.

Hint. Use Lemma 6.3 in my notes in order to prove that f obeys a local Lipschitz condition
on the set [−1, 1] × B1(y0). Then one can apply Theorem 5.3 in my notes (local existence) and
conclude that there exists a positive δ1 > 0 and a differentiable function y : (−δ1, δ1) 7→ Rd which
is a solution to our ODE and also obeys:

y(t) = y(0) +

∫ t

0

f(s,y(s))ds, |t| < δ1.

Using the estimate ||f(s,y(s))|| ≤ C||y(s)|| we can write (take t > 0):

||y(t)|| ≤ ||y(0)||+ C

∫ t

0

||y(s)||ds ≤ ||y(0)||+ Ct||y(0)||+ C2

∫ t

0

ds1

∫ s1

0

ds2||y(s2)||

≤ ||y(0)||+ Ct||y(0)||+ C2t2

2
||y(0)||+ C3

∫ t

0

ds1

∫ s1

0

ds2

∫ s2

0

ds3||y(s3)|| ≤ ...

≤ ||y(0)||eCt. (0.1)

Now assume that we cannot find a global in time solution, i.e. it only exists for a time interval
of the form (−T1, T2) where T := min{T1, T2} < ∞ and 0 < δ1 < T . Assume without loss that
T = T2 <∞. We then have:

y(t) = y(0) +

∫ t

0

f(s,y(s))ds, ||y(t)|| ≤ ||y(0)||eCT , |t| < T.

Consider an arbitrary sequence tm ∈ (0, T ) which converges to T . Then the sequence of values
y(tm) ∈ Rd is Cauchy, because if p > q we can write (assume without loss that tp > tq):

||y(tp)− y(tq)|| = ||
∫ tp

tq

f(s,y(s))ds|| ≤
∫ tp

tq

||f(s,y(s))||ds ≤ C||y(0)||eCT |tp − tq|

which can be made arbitrarily small since tn is also Cauchy. Hence y(tn) converges to some vector
yT ∈ Rd. It sn is some other sequence in (0, T ) which converges to T , we have:

||y(sn)− y(tn)|| ≤ C||y(0)||eCT |sn − tn| → 0

which shows that the limit yT is independent of the sequence we choose. Thus we have:

y(T − 0) = yT , y′(T − 0) = f(T,yT ).

Now consider the initial value problem ỹ′(t) = f(t, ỹ(t)), where ỹ(T ) = yT . The same local
existence Theorem 5.3 (where we put t0 = T and y0 = yT ) allows us to construct a solution on
an interval (T − δ2, T + δ2) and we have:

ỹ′(T + 0) = ỹ′(T ) = f(T,yT ).
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Now we can define a function z : (−T1, T2 + δ2) where z(t) = y(t) on (−T1, T2) and z(t) = ỹ(t) on
[T2, T2 + δ2). We observe that z is continuously differentiable and solves the ODE. Thus T2 can
be made larger, which provides a contradiction.

Concerning uniqueness: assume that there exist two solutions y1 and y2 which both solve the
differential equation and y1(0) = y2(0) = y0. We already know that they exist for all t. Both of
them obey the bound ||yj(t)|| ≤ ||y0||eC|t|. If y0 = 0 then both of them are identically zero (thus
equal). Hence we may assume that y0 6= 0.

Fix some T > 0. If |t| ≤ T , then both vectors y1(t) and y2(t) will be contained in the closed
ball BR(y0) with R := ||y0||eCT .

We know from Lemma 6.3 that there exists some L <∞ such that:

||f(s,x)− f(s, z)|| ≤ L||x− z||, ∀|s| ≤ T, ∀x, z ∈ BR(y0).

We have the identity:

y2(t)− y1(t) =

∫ t

0

[f(s,y2(s))− f(s,y1(s))]ds, ∀|t| ≤ T.

Let h(t) := ||y2(t)−y1(t)||, with h(0) = 0. Assume that t > 0. Reasoning as before, we can write:

0 ≤ h(t) ≤
∫ t

0

||f(s,y2(s))− f(s,y1(s))||ds ≤ L
∫ t

0

h(s)ds ≤ L2

∫ t

0

ds1

∫ s1

0

ds2h(s2)...

In particular, if m := max|s|≤T h(s) we can write:

0 ≤ h(t) ≤ LN

∫ t

0

ds1

∫ s1

0

ds2...

∫ sN−1

0

dsNh(sN ) ≤ mLNTN

N !
, 0 ≤ t ≤ T.

Now the right hand side converges to zero with N , which proves that h(t) is identically zero on
[0, T ]. In a similar way, we can prove that h is zero on [−T, T ], hence y1 and y2 coincide on that
interval. Since T was arbitrary, the two solutions are equal everywhere.

Exercise 2. Show that if f(t,x) = Ax where A is an arbitrary d×d real matrix, its corresponding
ODE has a global in time solution.

Exercise 3. Consider the equation

y′(t) =
y2(t)

1− y2(t)
, y(0) = 1/2.

1. Define g : (−1, 1) 7→ R, g(x) = x2

1−x2 . Let f : R × (−1, 1) 7→ R, f(t, x) := g(x). Show that
y′(t) = f(t, y(t)) and identify d, t0, I and U .

2. Show that f ∈ C1(R× U) and it obeys a local Lipschitz condition.
3. Show that for t near 0 we can rewrite the equation as:

[y(t) + 1/y(t) + t]′ = 0.

4. Show that y(t) + 1/y(t) = 5/2− t for t near 0. Find y(t).
5. Can y be extended to t ≥ 1/2?

Exercise 4. Let f : Rd+1 7→ Rd with f ∈ C1(Rd+1). Assume that f obeys a global Lipschitz
condition, i.e. there exists a constant C > 0 such that

||f(t,x)− f(t,y)|| ≤ C||x− y||, ∀t ∈ R, ∀x,y ∈ Rd.

Consider the equation y′(t) = f(t,y(t)), where y(0) = y0. Show that there exists a unique solution
y : R 7→ Rd which solves the equation for all t ∈ R.

2



Hint. The original differential equation is equivalent with the integral equation:

y(t) = y0 +

∫ t

0

f(s,y(s))ds.

As in Exercise 1, we assume that a solution only exists on an interval of the form (−T1, T2) with
T := T2 = min{T1, T2} <∞.

Define h(t) := ||y(t)− y0||. We have:

y(t)− y0 =

∫ t

0

f(s,y0)ds+

∫ t

0

[f(s,y(s))− f(s,y0)]ds.

After taking the norms and using the Lipschitz constant (take t > 0):

h(t) ≤
∫ t

0

||f(s,y0)||ds+ C

∫ t

0

h(s)ds.

If 0 ≤ t < T we have:

h(t) ≤
∫ T

0

||f(s,y0)||ds+ C

∫ t

0

h(s)ds ≤ ... ≤

(∫ T

0

||f(s,y0)||ds

)
eCT , 0 ≤ t < T.

This shows that:

||y(t)− y0|| ≤

(∫ T

0

||f(s,y0)||ds

)
eCT , 0 ≤ t < T.

In other words, the solution always remains inside a closed ball with center at y0 and radius

R =
(∫ T

0
||f(s,y0)||ds

)
eCT . Let

M := sup
0≤s≤T

sup
x∈BR(y0)

||f(s,x)|| <∞.

Choose some sequence tn ∈ (0, T ) which converges to T . We have:

y(tp)− y(tq) =

∫ tp

tq

f(s,y(s)), ||y(tp)− y(tq)|| ≤M |tp − tq|.

This shows that the sequence {y(tn)}n≥1 is Cauchy and converges to some yT . If sn ∈ (0, T ) is
another sequence which converges to T , we have:

y(tn)− y(sn) =

∫ tn

sn

f(s,y(s)), ||y(tn)− y(sn)|| ≤M |tn − sn|

which proves that yT is independent of the sequence we choose, hence y(T − 0) exists and equals
yT , and:

y′(T − 0) = f(T,yT ).

Reasoning as in Exercise 1, we can locally extend y to the interval [T, T + δ), thus contradicting
the maximality of the interval (−T1, T ).

Now let us prove uniqueness. Assume that both y1 and y2 solve the integral equation. Define
h(t) := ||y1(t)− y2(t)||. We have:

y1(t)− y2(t) =

∫ t

0

[f(s,y1(s))− f(s,y2(s))]ds, 0 ≤ h(t) ≤ C
∫ t

0

h(s)ds.

As in Exercise 1 we can show that h(t) = 0 for all t and we are done.
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Exercise 5. Let g : R2 7→ R2 be given by g(x) = [−x2, x1] and consider the equation

y′(t) = g(y(t)), y(0) = [1, 0].

1. Show that y′1(t) = −y2(t) and y′2(t) = y1(t), with y1(0) = 1 and y2(0) = 0.
2. Prove that the solution is unique and global and time, and moreover, y21(t) + y22(t) = 1 for

all t.
3. Use uniqueness in order to show that y1(t) = y21(t/2)− y22(t/2) and y2(t) = 2y1(t/2)y2(t/2).
4. Prove that there must exist a T > 0 such that y1(T ) = 1 and y2(T ) = 0.
5. Use uniqueness in order to show that y1(t) = y1(t+ T ) and y2(t) = y2(t+ T ) for all t.
6. Denote by 2P the smallest positive T in (5). Show that y1(P ) = −1 and y2(P ) = 0.
7. Use uniqueness and (6) to show that y1(t) = −y1(P − t) and y2(t) = y2(P − t).
8. Use uniqueness and (6) to show that y1(t) = −y1(P + t) and y2(t) = −y2(P + t).
9. Use uniqueness and show that y1(t) = y1(−t) and y2(t) = −y2(−t).
10. Use (7) and (8) to show that y1(P/2) = 0 and y1(3P/2) = 0.

11. Show that y′1(0) = 0, y′′1 (0) = −1, y′′′1 (0) = 0, y
(4)
1 (0) = 1,... . Compute the Taylor series

of y1(t) around 0 and show that it has an infinite radius of convergence. Can you recognize the
function? What about the number P?

Hints.
(2). Show that [y21(t) + y22(t)− 1]′ = 0 for all t.
(3). Define ỹ1(t) := y21(t/2)− y22(t/2) and ỹ2(t) := 2y1(t/2)y2(t/2). Prove that ỹ′(t) = g(ỹ(t))

and ỹ(0) = [1, 0].
(4). Show that when t is slightly larger than zero, y1 decreases while y2 increases and becomes

positive. This remains true until y1 hits zero, and y2 necessarily equals 1. Then y1 continues to
decrease and becomes more and more negative, making y2 to decrease until it hits zero. Simul-
taneously, y1 must equal −1. After that, y2 becomes negative which makes y1 to increase again
until it hits zero. At that point, y2 must be −1. Finally, y1 will continue to increase as long as y2
is negative, reaching the value 1, and necessarily, y2 will be zero.

(6) Let t = 2P in (3). We have 1 = y1(2P ) = y21(P )− y22(P ) = 2y21(P )− 1 and 0 = y2(2P ) =
2y1(P )y2(P ). The first identity implies that |y1(P )| = 1; this implies that y2(P ) = 0. Hence y1(P )
equals either +1 or −1. But it cannot equal +1, because we assumed that the smallest positive
value of t for which we come back to the original initial condition was 2P .
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