Power series are analytic

Horia Cornean ${ }^{1}$

1 Fubini's theorem for double series

Theorem 1.1. Let $\left\{\alpha_{n m}\right\}_{n, m \geq 0}$ be a real sequence indexed by two indices. Assume that the series $\sum_{m \geq 0}\left|\alpha_{n m}\right|$ is convergent for all n and

$$
\begin{equation*}
C:=\sum_{n \geq 0}\left(\sum_{m \geq 0}\left|\alpha_{n m}\right|\right)<\infty . \tag{1.1}
\end{equation*}
$$

Then we have that $\sum_{n \geq 0}\left|\alpha_{n m}\right|$ converges for all m and:

$$
\begin{equation*}
\sum_{m \geq 0}\left(\sum_{n \geq 0}\left|\alpha_{n m}\right|\right)=C . \tag{1.2}
\end{equation*}
$$

Moreover,

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \sum_{m \geq 0}\left(\sum_{n>N}\left|\alpha_{n m}\right|\right)=\lim _{M \rightarrow \infty} \sum_{n \geq 0}\left(\sum_{m>M}\left|\alpha_{n m}\right|\right)=0 . \tag{1.3}
\end{equation*}
$$

Finally,

$$
\begin{equation*}
\sum_{m \geq 0}\left(\sum_{n \geq 0} \alpha_{n m}\right)=\sum_{n \geq 0}\left(\sum_{m \geq 0} \alpha_{n m}\right) \in \mathbb{R} \tag{1.4}
\end{equation*}
$$

Proof. We recall a few fundamental results. If $a_{n} \geq 0$ is a nonnegative sequence, we define $s_{N}=\sum_{n=0}^{N} a_{n}$ to be an increasing sequence of partial sums. Then $\sum_{n \geq 0} a_{n}=\lim _{N \rightarrow \infty} s_{N}$ exists and is finite if and only if the sequence $\left\{s_{N}\right\}_{N \geq 0}$ is bounded from above. Moreover, if s_{N} converges then it is Cauchy, hence for all $\epsilon>0$ there exists $N_{\epsilon} \geq 0$ such that $0 \leq s_{N+k}-s_{N}<\epsilon$ for all $k \geq 1$ and $N \geq N_{\epsilon}$. This implies:

$$
0 \leq s_{N+k}-s_{N}=\sum_{n=N+1}^{N+k} a_{n}<\epsilon, \quad \forall k \geq 1
$$

Taking the supremum over k we get $0 \leq \sum_{n \geq N+1} a_{n} \leq \epsilon$ for every $N \geq N_{\epsilon}$. In other words:

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \sum_{n>N} a_{n}=0 \tag{1.5}
\end{equation*}
$$

If N and M are finite natural numbers, then we have:

$$
\begin{equation*}
\sum_{m=0}^{M} \sum_{n=0}^{N}\left|\alpha_{n m}\right|=\sum_{n=0}^{N} \sum_{m=0}^{M}\left|\alpha_{n m}\right| \leq \sum_{n=0}^{N} \sum_{m \geq 0}\left|\alpha_{n m}\right| \leq C . \tag{1.6}
\end{equation*}
$$

In the last two inequalities we employed the assumption (1.1). Hence

$$
\begin{equation*}
\sum_{m=0}^{M} \sum_{n=0}^{N}\left|\alpha_{n m}\right| \leq C<\infty, \quad \forall N, M \geq 0 \tag{1.7}
\end{equation*}
$$

[^0]In particular,

$$
\sum_{n=0}^{N}\left|\alpha_{n m}\right| \leq C<\infty, \quad \forall N, m \geq 0
$$

This shows that $\sum_{n \geq 0}\left|\alpha_{n m}\right|$ is convergent for all $m \geq 0$. Now we can take the limit $N \rightarrow \infty$ in (1.7) and obtain:

$$
\sum_{m=0}^{M} \sum_{n \geq 0}\left|\alpha_{n m}\right| \leq C<\infty, \quad \forall M \geq 0
$$

But this shows that the sequence of the partial sums generated by $a_{m}:=\sum_{n \geq 0}\left|\alpha_{n m}\right|$ is bounded, hence

$$
D:=\sum_{m \geq 0}\left(\sum_{n \geq 0}\left|\alpha_{n m}\right|\right) \leq C
$$

Now using again the first identity in (1.6) we have:

$$
\sum_{n=0}^{N} \sum_{m=0}^{M}\left|\alpha_{n m}\right|=\sum_{m=0}^{M} \sum_{n=0}^{N}\left|\alpha_{n m}\right| \leq \sum_{m=0}^{M} \sum_{n \geq 0}\left|\alpha_{n m}\right| \leq D
$$

or

$$
\sum_{n=0}^{N} \sum_{m=0}^{M}\left|\alpha_{n m}\right| \leq D, \quad \forall N, M \geq 0
$$

Our hypothesis guarantees that $\lim _{M \rightarrow \infty} \sum_{m=0}^{M}\left|\alpha_{n m}\right|$ exists and is finite, hence:

$$
\sum_{n=0}^{N} \sum_{m \geq 0}\left|\alpha_{n m}\right| \leq D, \quad \forall N \geq 0
$$

Thus by taking $N \rightarrow \infty$ we get:

$$
C=\sum_{n \geq 0} \sum_{m \geq 0}\left|\alpha_{n m}\right| \leq D
$$

which proves that $C=D$.
Now we have to prove (1.3). Define $\beta_{n m}=\alpha_{n m}$ if $n>N$, and $\beta_{n m}=0$ if $0 \leq n \leq N$. Then we have:

$$
\sum_{m \geq 0} \sum_{n \geq 0}\left|\beta_{n m}\right|=\sum_{n \geq 0} \sum_{m \geq 0}\left|\beta_{n m}\right| \quad \text { or } \quad \sum_{m \geq 0} \sum_{n>N}\left|\alpha_{n m}\right|=\sum_{n>N}\left(\sum_{m \geq 0}\left|\alpha_{n m}\right|\right)
$$

Denoting by $a_{n}=\sum_{m \geq 0}\left|\alpha_{n m}\right|$ we see that (use (1.5)):

$$
\sum_{m \geq 0} \sum_{n>N}\left|\alpha_{n m}\right|=\sum_{n>N} a_{n} \rightarrow 0 \quad \text { when } \quad N \rightarrow \infty
$$

In a similar way we can prove the other limit in (1.3).
Now we have to prove (1.4). First of all, because

$$
\left|\sum_{m \geq 0} \alpha_{n m}\right| \leq \sum_{m \geq 0}\left|\alpha_{n m}\right|, \quad \forall n \geq 0
$$

we have that $\sum_{n>0}\left(\sum_{m>0} \alpha_{n m}\right)$ is absolutely convergent. The same holds true for the series in the right hand side of (1.4). Thus we only need to prove that the two double series are equal.

If N and M are finite natural numbers we have:

$$
\begin{equation*}
\sum_{m=0}^{M} \sum_{n=0}^{N} \alpha_{n m}=\sum_{n=0}^{N} \sum_{m=0}^{M} \alpha_{n m} \tag{1.8}
\end{equation*}
$$

which implies:

$$
\begin{equation*}
\sum_{m=0}^{M} \sum_{n \geq 0} \alpha_{n m}-\sum_{n=0}^{N} \sum_{m \geq 0} \alpha_{n m}=\sum_{m=0}^{M} \sum_{n>N} \alpha_{n m}-\sum_{n=0}^{N} \sum_{m>M} \alpha_{n m} \tag{1.9}
\end{equation*}
$$

which leads to:

$$
\begin{equation*}
\left|\sum_{m=0}^{M} \sum_{n \geq 0} \alpha_{n m}-\sum_{n=0}^{N} \sum_{m \geq 0} \alpha_{n m}\right| \leq \sum_{m \geq 0} \sum_{n>N}\left|\alpha_{n m}\right|+\sum_{n \geq 0} \sum_{m>M}\left|\alpha_{n m}\right| \tag{1.10}
\end{equation*}
$$

Now we use (1.3) in (1.10): take both M and N to infinity, and obtain:

$$
\left|\sum_{m \geq 0} \sum_{n \geq 0} \alpha_{n m}-\sum_{n \geq 0} \sum_{m \geq 0} \alpha_{n m}\right| \leq 0
$$

which ends the proof.

2 The binomial identity

Theorem 2.1. Let $a, b \in \mathbb{R}$ and $n \in \mathbb{N}$. Then:

$$
(a+b)^{n}=\sum_{k=0}^{n} \frac{n!}{k!(n-k)!} a^{k} b^{n-k}
$$

Proof. Let $P: \mathbb{R} \mapsto \mathbb{R}$ given by $P(x)=(x+b)^{n}$. We have that $P^{\prime}(x)=n(x+b)^{n-1}, P^{\prime \prime}(x)=$ $n(n-1)(x+b)^{n-2}$, and by induction we can prove:

$$
P^{(k)}(x)=n(n-1) \ldots(n-k+1)(x+b)^{n-k}=\frac{n!}{(n-k)!}(x+b)^{n-k}, \quad 0 \leq k \leq n .
$$

Moreover, $P^{(k)}(x)=0$ if $k>n$. The Taylor formula with remainder provides us with some c between 0 and x such that:

$$
P(x)=P(0)+\sum_{k=1}^{n} \frac{P^{(k)}(0)}{k!} x^{k}+\frac{P^{(n+1)}(c)}{(n+1)!} x^{k}=P(0)+\sum_{k=1}^{n} \frac{P^{(k)}(0)}{k!} x^{k} .
$$

The final result is obtained by replacing x with a.

3 The exponential and the logarithm

For every $x \in \mathbb{R}$ we define

$$
\exp (x):=1+x+\frac{x^{2}}{2}+\cdots+\frac{x^{n}}{n!}+\cdots=\sum_{n \geq 0} \frac{x^{n}}{n!}
$$

assuming for the moment that it converges. If $x=0$ we have $\exp (0)=1$. If $x \neq 0$ consider the series $\sum_{n \geq 0} \alpha_{n}$ given by $\alpha_{n}=\frac{x^{n}}{n!}$. Using the ratio criterion we have:

$$
\frac{\left|\alpha_{n+1}\right|}{\left|\alpha_{n}\right|}=\frac{|x|}{n+1} \rightarrow 0<1 \quad \text { when } \quad n \rightarrow \infty,
$$

which shows that the series defining $\exp (x)$ converges absolutely.

We want to prove that the exponential is everywhere differentiable. Fix $a \in \mathbb{R}$ and let $h \in \mathbb{R}$. Define the function

$$
\begin{equation*}
F(h):=(h+a)^{n}, \quad n \geq 2 . \tag{3.11}
\end{equation*}
$$

The Taylor formula with remainder provides us with a $c=c_{n, a, h}$ between 0 and h such that $F(h)=F(0)+F^{\prime}(0) h+F^{\prime \prime}(c) h^{2} / 2$, or:

$$
\begin{equation*}
(h+a)^{n}-a^{n}=n a^{n-1} h+\frac{n(n-1)}{2} h^{2}\left(c_{n, a, h}+a\right)^{n-2} \tag{3.12}
\end{equation*}
$$

which leads to:

$$
\begin{equation*}
\frac{(h+a)^{n}}{n!}-\frac{a^{n}}{n!}=\frac{a^{n-1}}{(n-1)!} h+\frac{\left(c_{n, a, h}+a\right)^{n-2}}{2(n-2)!} h^{2}, \quad n \geq 2 \tag{3.13}
\end{equation*}
$$

Thus if $h \neq 0$:

$$
\frac{\exp (h+a)-\exp (a)}{h}=1+\sum_{n \geq 2} \frac{a^{n-1}}{(n-1)!}+\frac{h}{2} \sum_{n \geq 2} \frac{\left(c_{n, a, h}+a\right)^{n-2}}{(n-2)!}
$$

Note first that $1+\sum_{n \geq 2} \frac{a^{n-1}}{(n-1)!}=\exp (a)$. Moreover, since $\left|c_{n, a, h}+a\right| \leq|a|+|h|$ we may write:

$$
\left|\frac{\exp (h+a)-\exp (a)}{h}-\exp (a)\right| \leq \frac{|h|}{2} \sum_{n \geq 2} \frac{(|a|+|h|)^{n-2}}{(n-2)!}=\frac{|h| \exp (|a|+|h|)}{2} \leq \frac{|h| \exp (|a|+1)}{2},
$$

which holds for every $0<|h| \leq 1$. It follows that the exponential function is differentiable at a and $\exp ^{\prime}(a)=\exp (a)$.

Theorem 3.1. We have that $\exp (-x) \exp (x)=1$ and $\exp (x)>0$ for all $x \in \mathbb{R}$. Moreover, $\exp (a+b)=\exp (a) \exp (b)$ for all $a, b \in \mathbb{R}$. Define the logarithm function

$$
\ln (x):=\int_{1}^{x} \frac{1}{t} d t, \quad x>0
$$

Then we have $\ln (\exp (x))=x$ for all $x \in \mathbb{R}$, and $\exp (\ln (x))=x$ for all $x>0$.
Proof. We know that $\exp (0)=1$ and $\exp ^{\prime}(x)=\exp (x)$ holds on \mathbb{R}. Define the function $f(x)=$ $\exp (-x) \exp (x)$. Then f is differentiable and

$$
f(0)=1, \quad f^{\prime}(x)=0, \quad \forall x \in \mathbb{R}
$$

Hence $f(x)=1$ on \mathbb{R}, which proves that $\exp (-x) \exp (x)=1$ for all $x \in \mathbb{R}$. The same identity shows that $\exp (x)$ can never be zero. Now since $\exp (0)=1>0$ and because \exp is continuous (being differentiable), it cannot change sign because it would have to go through a zero (remember the intermediate value theorem). Hence $\exp (x)>0$ on \mathbb{R}.

Now define the function $g(x)=\exp (-x-b) \exp (x) \exp (b)$ for some fixed b. We again have $g(0)=1$ and $g^{\prime}(x)=0$ for all $x \in \mathbb{R}$, hence $\exp (-x-b) \exp (x) \exp (b)=1$ on \mathbb{R}. Multiply with $\exp (x+b)$ on both sides and obtain $\exp (x) \exp (b)=\exp (x+b)$ on \mathbb{R}.

The logarithm function is defined to be a primitive of $1 / x$, i.e.:

$$
\ln ^{\prime}(x)=\frac{1}{x}, \quad \ln (1)=0
$$

Define $f(x)=\ln (\exp (x))-x$ on \mathbb{R}, which is possible because $\exp (x)>0$. We have $f(0)=0$ and $f^{\prime}(x)=0$ for all $x \in \mathbb{R}$, hence $\ln (\exp (x))=x$ on \mathbb{R}.

If $x>0$, consider the function $f(x)=\frac{1}{x} \exp (\ln (x))$. We have that $f(1)=1$ and $f^{\prime}(x)=0$ for all $x>0$, hence $\exp (\ln (x))=x$ for all $x>0$.

We have just proved that the exponential and the logarithm are inverses to each other.

Corollary 3.2. We have $\ln (a b)=\ln (a)+\ln (b)$ for all $a, b>0$. Moreover, $\ln \left(y^{x}\right)=x \ln (y)$ for all $y>0$ and $x \in \mathbb{R}$. Thus if $y>0$ and $x \in \mathbb{R}$, we have $y^{x}=\exp (x \ln (y))$.

Proof. Since

$$
\exp (\ln (a b))=a b=\exp (\ln (a)) \exp (\ln (b))=\exp (\ln (a)+\ln (b))
$$

we must have $\ln (a b)=\ln (a)+\ln (b)$ due to the injectivity of exp. If $a b=1$ we have $0=$ $\ln (a)+\ln \left(a^{-1}\right)$, or $\ln \left(a^{-1}\right)=-\ln (a)$. Now if $a=b$ we get $\ln \left(a^{2}\right)=2 \ln (a)$. By induction, we obtain that $\ln \left(a^{n}\right)=n \ln (a)$ for all $n \in \mathbb{N}$. Replacing a in the last identity with $b^{1 / n}$ we obtain $\ln \left(b^{1 / n}\right)=\frac{1}{n} \ln (b)$. Thus $\ln \left(b^{\frac{m}{n}}\right)=\frac{m}{n} \ln (b)$. Moreover, $\ln \left(b^{-\frac{m}{n}}\right)=-\frac{m}{n} \ln (b)$.

Thus we have just proved that for every rational number r and for every positive number $y>0$ we have $\ln \left(y^{r}\right)=r \ln (y)$. This implies $y^{r}=\exp (r \ln (y))$ for every rational number r. Finally, we use that every real number x is the limit of a sequence of rational numbers, together with the continuity of exp.

Corollary 3.3. Let $\alpha, \beta, \gamma>0$. We have that

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \frac{x^{\alpha}}{\exp (\beta x)}=\lim _{x \rightarrow \infty} \frac{\ln (x)}{x^{\gamma}}=0 \tag{3.14}
\end{equation*}
$$

Proof. Let N be an integer such that $\alpha<N$. We have the inequality:

$$
\exp (\beta x) \geq 1+\beta x+\cdots+\frac{\beta^{N} x^{N}}{N!} \geq \frac{\beta^{N} x^{N}}{N!}, \quad \forall x>0
$$

Then:

$$
0 \leq \frac{x^{\alpha}}{\exp (\beta x)} \leq \frac{N!}{\beta^{N} x^{N-\alpha}} \rightarrow 0 \quad \text { when } \quad x \rightarrow \infty
$$

Now if $\gamma>0$ and $x>0$ we have $x^{\gamma}=\exp (\gamma \ln (x))$. Denote by $y=\ln (x)$. Then we have:

$$
\lim _{x \rightarrow \infty} \frac{\ln (x)}{x^{\gamma}}=\lim _{y \rightarrow \infty} \frac{y}{\exp (\gamma y)}=0
$$

4 Power series are analytic functions

Let $\left\{a_{n}\right\}_{n \geq 0} \subset \mathbb{R}$ such that $\lim \sup _{n \rightarrow \infty}\left|a_{n}\right|^{1 / n}<\infty$. Define $r=1 /\left\{\limsup _{n \rightarrow \infty}\left|a_{n}\right|^{1 / n}\right\}$ if $\lim \sup _{n \rightarrow \infty}\left|a_{n}\right|^{1 / n}>0$ and $r=\infty$ if $\lim \sup _{n \rightarrow \infty}\left|a_{n}\right|^{1 / n}=0$.

Let $0<R<r$ and define $f:\left(x_{0}-R, x_{0}+R\right) \mapsto \mathbb{R}$ given by:

$$
f(x):=\sum_{n \geq 0} a_{n}\left(x-x_{0}\right)^{n} .
$$

The series is absolutely convergent because $\lim \sup _{n \rightarrow \infty}\left|a_{n}\left(x-x_{0}\right)^{n}\right|^{1 / n}=\frac{\left|x-x_{0}\right|}{r}<1$.
Theorem 4.1. Let $b \in\left(x_{0}-R, x_{0}+R\right)$ be an arbitrary point. Then f is indefinitely differentiable at b, and for every $t \in\left(x_{0}-R, x_{0}+R\right)$ with $|t-b|<R-\left|b-x_{0}\right|$ we have:

$$
f(t)=\sum_{m \geq 0} \frac{f^{(m)}(b)}{m!}(t-b)^{m},
$$

where the Taylor series is absolutely convergent.

Proof. Denote by $\alpha_{n m}:=n(n-1) \ldots(n-m+1) a_{n}$ if $m \geq 1$. Note that if $n>k$ we have:

$$
(n-k)^{1 / n}=\exp \left(\ln \left[(n-k)^{1 / n}\right]\right)=\exp \left(\frac{\ln (n-k)}{n}\right)=\exp \left(\frac{\ln (n)+\ln (1-k / n)}{n}\right)
$$

and using (3.14):

$$
\exp \left(\frac{\ln (n)}{n}+\frac{\ln (1-k / n)}{n}\right) \rightarrow \exp (0)=1 \quad \text { when } \quad n \rightarrow \infty .
$$

It follows that

$$
\limsup _{n \rightarrow \infty}\left|\alpha_{n m}\right|^{1 / n}=\frac{1}{r}, \quad \forall m \geq 1
$$

Thus the series $\sum_{n \geq m} \alpha_{n m} t^{n-m}$ is absolutely convergent for all $|t|<R$. Given x such that $\left|x-x_{0}\right| \leq \rho<R<r$, there exists some $h_{0}>0$ such that $\left|x+h-x_{0}\right| \leq(R+\rho) / 2<R$ for all $|h| \leq h_{0}$. Using (3.12) with $a=x-x_{0}$ and $|h| \leq h_{0}$ we have:

$$
f(x+h)-f(x)=h \sum_{n \geq 1} n a_{n}\left(x-x_{0}\right)^{n-1}+\frac{h^{2}}{2} \sum_{n \geq 2} n(n-1) a_{n}\left(x+c_{n, a, h}-x_{0}\right)^{n-2},
$$

where $c_{n, a, h}$ lies between 0 and h. Note that both series on the right hand side converge absolutely because:

$$
\left|n a_{n}\left(x-x_{0}\right)^{n-1}\right| \leq\left|\alpha_{n 1}\right| \rho^{n-1}, \quad\left|n(n-1) a_{n}\left(x+c_{n, a, h}-x_{0}\right)^{n-2}\right| \leq\left|\alpha_{n 2}\right|[(R+\rho) / 2]^{n-2} .
$$

We conclude that $f^{\prime}(x)=\sum_{n \geq 1} n a_{n}\left(x-x_{0}\right)^{n-1}$ for all $\left|x-x_{0}\right|<R$. By induction, we obtain:

$$
f^{(m)}(x)=\sum_{n \geq m} \alpha_{n m}\left(x-x_{0}\right)^{n-m}, \quad m \geq 1
$$

It follows that we have the identity:

$$
\frac{f^{(m)}(x)}{m!} h^{m}=\sum_{n \geq m} a_{n} \frac{n!}{(n-m)!m!} h^{m}\left(x-x_{0}\right)^{n-m}
$$

which holds true for all $m \geq 0$.
Now define $\beta_{n m}=0$ if $m>n$ and $\beta_{n m}=a_{n} \frac{n!}{(n-k)!k!} h^{m}\left(x-x_{0}\right)^{n-m}$ if $m \leq n$. We see that

$$
\sum_{m \geq 0}\left|\beta_{n m}\right|=\sum_{m=0}^{n}\left|\beta_{n m}\right| \leq\left|a_{n}\right| \sum_{m=0}^{n} \frac{n!}{(n-m)!m!}|h|^{m}\left|x-x_{0}\right|^{n-m}=\left|a_{n}\right|\left(|h|+\left|x-x_{0}\right|\right)^{n}
$$

where we used the binomial identity in the last equality. Now if $|h|<R-\left|x-x_{0}\right|$ it follows that $\sum_{n \geq 0}\left|a_{n}\right|\left(|h|+\left|x-x_{0}\right|\right)^{n}<\infty$, hence:

$$
\sum_{n \geq 0} \sum_{m \geq 0}\left|\beta_{n m}\right|<\infty
$$

The conditions of Theorem 1.1 are satisfied, hence

$$
\sum_{n \geq 0} \sum_{m \geq 0} \beta_{n m}=\sum_{m \geq 0} \sum_{n \geq 0} \beta_{n m}
$$

Now we observe that

$$
\sum_{n \geq 0} \sum_{m \geq 0} \beta_{n m}=\sum_{n \geq 0} \sum_{m=0}^{n} \beta_{n m}=\sum_{n \geq 0} a_{n}\left(x+h-x_{0}\right)^{n}=f(x+h)
$$

while

$$
\sum_{m \geq 0} \sum_{n \geq 0} \beta_{n m}=\sum_{m \geq 0} \sum_{n \geq m} \beta_{n m}=\sum_{m \geq 0} \sum_{n \geq m} a_{n} \frac{n!}{(n-m)!m!} h^{m}\left(x-x_{0}\right)^{n-m}=\sum_{m \geq 0} \frac{f^{(m)}(x)}{m!} h^{m}
$$

In other words,

$$
f(x+h)=\sum_{m \geq 0} \frac{f^{(m)}(x)}{m!} h^{m}
$$

Now replace $x+h=t$ and $x=b$ and the theorem is proved.

[^0]: ${ }^{1}$ IMF, AAU, March 9, 2013

