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These notes are strongly inspired by the books Principles of Mathematical Analysis by Walter
Rudin and Topology from the Differentiable Viewpoint by John Milnor. Some of the theorems
below can be formulated in a more general setting than the one of metric spaces, but the metric
space structure brings important simplifications and clarity. Fundamental results like the Brouwer,
Schauder and Kakutani Fixed Point Theorems, the Hairy Ball Theorem, the Tietze Extension
Theorem, and the Jordan Curve Theorem are not in the curriculum, but this does not make
them less important. All proofs are quite detailed and self-contained, and are at the level of
hard-working second year undergraduate students.

In the first chapter we construct the field of real numbers as decimals in the spirit of Otto
Stolz (1885). Several comments on the actual construction can be found at the beginning of the
chapter.

The next two chapters deal with point set topology in metric spaces. In particular we prove
the equivalence between compact and sequentially compact sets in general metric spaces, and the
Bolzano-Weierstrass and Heine-Borel Theorems in Euclidean spaces.

Chapter four deals with continuous functions on metric spaces. We show the equivalence
between continuity, sequential continuity, and ’returning open sets into open sets’. We show that
a continuous function defined on a compact set is uniformly continuous.

Chapter five proves the Banach Fixed Point Theorem. Chapter six is based on the previous one
and investigates the local existence and uniqueness of solutions to first order differential equations.

Chapter seven contains the Implicit Function Theorem. Its proof is based on Banach’s Fixed
Point Theorem. Chapter eight deals with the Inverse Function Theorem, whose proof is shown to
be a consequence of the Implicit Function Theorem.

Chapter nine contains the proof of the Brouwer Fixed Point Theorem. We follow the strategy
of C.A. Rogers from the paper A Less Strange Version of Milnor’s Proof of Brouwer’s Fized Point
Theorem, appeared in Amer. Math. Monthly. 87 525-527 (1980). We give many more details and
the presentation is completely analytic and self-contained, based on the previous six chapters. We
also prove that any convex body is homeomorphic with the closed unit ball.

Chapter ten contains the Schauder Fixed Point Theorem, presented as a consequence of
Brouwer’s Fixed Point Theorem.

Chapter eleven presents the Kakutani Fixed Point Theorem. Its proof is an adaptation of that
of S. Kakutani in A generalization of Brouwer’s fized point theorem, Duke Mathematical Journal
8(3), 457-459 (1941). This theorem is another consequence of Brouwer’s Fixed Point Theorem.

Chapter twelve contains the proof of the existence of a Nash equilibrium for a finite game with
two players. The original paper of J. Nash is Non-cooperative games, Annals of Math. 54 (2),
286-295 (1951). Our proof is based on the ideas of J. Geanakoplos in Nash and Walras equilibrium
via Brouwer, Economic Theory 21, 585-603 (2003).

Chapter thirteen contains an analytic proof of the Hairy Ball Theorem, and follows the strategy
used by J. Milnor in the paper Analytic proofs of the hairy ball theorem and the Brouwer fized
point theorem, appeared in Amer. Math. Monthly 85, 521-524 (1978).

Chapter fourteen contains the Jordan Curve Theorem and is inspired by a paper of R. Maehara
entitled The Jordan curve theorem via the Brouwer fixed point theorem, which appeared in Amer.
Math. Monthly 91(10), 641-643 (1984). We give many more details and in particular, we prove
a simple version of the Tietze Extension Theorem in R? based on an extension formula due to
Hausdorff.



1 On the construction of real numbers as decimals

This chapter is inspired by Martin Klazar’s manuscript entitled Real numbers as infinite decimals
and irrationality of v/2, available at http://arxiv.org/abs/0910.5870. Note that the main ideas can
be traced back at least to Otto Stolz in Vorlesungen tiber Allgemeine Arithmetik. Erster Theil:
Allgemeines und Arithmetik der Reelen Zahlen, published in 1885.

The construction we give here is elementary but it might be difficult to follow without a road-
map. Here is a short description of what we do:

e We assume that the order relation and the properties of operations involving the natural
numbers N and integers Z are known.

e We define the set of decimals D together with the natural lexicographic order relation on it.
We use the decimal representation from pedagogical reasons. The ordered set of real numbers
R is introduced in Definition 1.1. Proposition 1.2 shows that the terminating decimals are
dense in R.

e We introduce the notions of supremum and infimum, and we prove in Theorem 1.6 that any
bounded set of real numbers has a supremum and an infimum. Thus in this construction,
the completeness axiom is a theorem.

e In paragraph 1.1.3 we identify N and Z with a certain class of terminating decimals and
we define their addition and multiplication. Moreover, we implement the multiplication and
division with powers of 10 by right/left shifts of the comma.

e Paragraph 1.2 studies sequences of terminating decimals, which will be later used in para-
graph 1.3 in order to define addition and multiplication of arbitrary real numbers. The main
ingredients are the Cauchy property, strong and formal convergence.

e In paragraph 1.4 we define addition and multiplication of arbitrary real numbers; the idea is
the following: given two real numbers, we approximate them with sequences of terminating
decimals which we know how to add and multiply from paragraph 1.2, then we show that
the result we get converges to some unique real number. Commutativity of addition and
multiplication, distributivity and compatibility with the order relation are also proved there.

e The last ingredient is to show that every non-zero real number has a multiplicative inverse.
We first show in (1.9) that we can compute the inverse of any integer. Then we can define
the set of rational numbers, and in Theorem 1.28 we prove that a number is rational if
and only if it corresponds to an eventually periodic decimal. In the very end, we construct
a multiplicative inverse for any non-zero real number through a limiting procedure using
rational approximants.

1.1 The set of real numbers

Let D denote the set of all semi-infinite sequences (called decimals from now on) of the type
d=+dndy_1...do,d_1d_5...

where n > 0 is finite, each d; € {0,1,2,...,9} and d,, > 0 if n > 0. By convention, if j > n we put
d; =0.

The zero element in D is also denoted by 0 and corresponds to choosing all coefficients equal to
zero. All non-zero decimals with a ’+’ sign are called positive (from now on we will omit writing
'+ in front of a positive decimal), while those with '—’ are called negative. By convention, if d is
negative, then —d is positive (i.e. the minus sign of d is erased).

Let T C D be the set of all (terminating) decimals which have the property that there exists
some integer J € Z such that d; = 0 for all j < J. In other words, if d € T then only a finite
number of coefficients d; are different from zero. In order to simplify notation, we shall omit



writing the infinitely many zeros of such a decimal. For example, instead of writing 1,10000... we
only write 1,1. We also denote by T the set of decimals for which there exists some J € Z such
that d; =9 for all j < J.

1.1.1 An order relation on D

We introduce a transitive order relation << on D (called ’less than’) in the following way. If d is
positive, then 0 << d. If d is negative, then d << 0. Due to the transitivity property we want to
impose, any negative decimal must be ’less than’ any positive decimal.

If d and t are two positive decimals, then by definition, we have that d << t if there exists
some J € Z such that d; < t; while d; = t; for j > J. For example, if d = 34,555546 and
t = 117,00399999... then d << t; here J = 2 and do = 0 < 1 = t5. Another important example:
if d =0,9999999... and ¢t = 1 then d << ¢; here J =0 and dy =0 < tg = 1.

The second example is particularly important. We see that we cannot find any decimal e € D
such that:

0,9999... << e << 1.

For any terminating decimal in ¢ € T where the last non-zero coefficient is t; € {1,...,9}, we can
find an element d € T such that dj =t;forj>J,dy=t;—1and d; =9 forall j <J. Let us
call such a pair a jump. The two elements of a given jump will be identified as one element.

A decimal does not belong to a jump if and only if it contains infinitely many coefficients
which obey 1 < d; <8.

Concerning negative decimals: if both d and ¢ are negative, then we say that d << t if we have
—t << —d.

Definition 1.1. The set of real numbers R is defined to be the collection containing the decimal
0 and all the elements of D which are neither in T nor in T, together with all the possible jumps.

In order to make clear that we work with real numbers and not just decimals, we shall use
the notation [d] which means just d if the decimal is not an element of a jump. For example, if
d =0,1111... then [d] = d; at the same time,

[0,099999....] = [0,1000...].

The order relation induced by << in R is simply denoted by <. Thus if we write [d] < [t] it means
that d << t and d,t do not belong to the same jump. Moreover, given any two different real
numbers [d] # [t] we either have [d] < [t] or [t] < [d]. Now we can prove the density of terminating
decimals:

Proposition 1.2. Given any two real numbers [d] < [t], we can find a terminating decimal e € T
such that [d] < [e] < [t].

Proof. If [d] is negative and [t] positive, then we can take [e] = 0. Now assume that 0 < [d] < [t].
Two alternatives are possible:

e [d] is a jump and we can choose d to be a terminating decimal. We also have d << t because
t and d are not in the same jump. Thus there exists some J € Z such that d; = ¢; for j > J
and dj < tj. Because d € T, there exists some n < J such that d; = 0 if j < n. Now
choose e € T to be identical with d up to the coefficient with index n, then put e,,_1 :=1
and e; :=0for j <n—1. Wehavee € T, e << t and [d] < [e] < [t].

e [d] is not a jump, i.e. it contains infinitely many coefficients which obey 1 < d; < 8 for
j < J. Then define e € T to be identical with d up to the coefficient J, then turn the first
1 < d; < 8into a 9, then set all its following coefficients to be zero. Again we have e € T,
e << tand[d < [e] <[t]

Finally, if [d] < [t] < 0 then we have 0 < [—t] < [—d], hence there exists [¢] > 0 with e € T
such that [—t] < [e] < [—d]. By changing signs we have [d] < [—e] < [t] and the proof is over. [



1.1.2 Supremum and infimum

Until now we only defined an order relation on R. We say that [d] < [t] if either [d] = [¢] or
[d] < [t]. This order relation is total.

We say that a set S C R is bounded from above if there exists some [M] € R such that [z]
for all [z] € S. A set S C R is bounded from below if there exists some [m] € R such that [z]
for all [x] € S.

[M]

<
> [m]

Definition 1.3. We say that [a] € R is a supremum of a set S C R if two properties hold true:
1. [a] is an upper bound for S, which means that [z] < [a] for all [z] € S;

2. [a] is the smallest possible upper bound, i.e. no [b] < [a] can be an upper bound; in other
words, given [b] < [a], we can find some element [xp] € S such that [b] < [xp] < [a].

If it exists, the supremum of a set S is unique; let us prove it. Assume that there exist
two different real numbers [] and [5] which both obey the above two conditions. Assume that
[] < [B]. Then the second property applied for [3] provides us with an element [z] € S such that
[a] < [z] < [B]. But this contradicts the fact that [«] is an upper bound for S. In a similar way,
one can prove that [§] < [a] also leads to a contradiction. Hence they cannot be different.

The supremum is denoted by sup(S).

Definition 1.4. We say that [a] € R is an infimum of a set S C R if two properties hold true:
1. [a] is a lower bound for S, which means that [z] > [a] for all [z] € S;

2. [a] is the largest possible lower bound, i.e. no [b] > [a] can be a lower bound; in other words,
given [b] > [a], we can find some element [xy] € S such that [a] < [xp] < [b].

If it exists, the infimum of a set S is unique (the proof is similar as for the supremum) and
denoted by inf(.S).

Lemma 1.5. If S C R, we denote by —S the set {[z] € R: [—z] € S}. Then if S has a supremum,
the set —S has an infimum and inf(—S) = —sup(S); moreover, if S has an infimum, the set —S
has a supremum and sup(—S) = —inf(S).

Proof. We only prove the first part, the second one being analogous. If S has a supremum, let
[a] := —sup(S). Since [z] < sup(S) for all [z] € S, we have [a] < [—z] for all [z], hence [a] is a
lower bound for —S.

Now let us show that [a] is the largest lower bound. Take some [b] larger than [a]. Then
[—b] < [—a] = sup(S). Thus we may find some [x3] € S such that [—b] < [zp] < —[a]. This implies
[a] < [—zp] < [b] with [—xp] € —S which shows that [b] cannot be a lower bound for —S and we
are done. 0

Theorem 1.6. Let S C R be nonempty and bounded from above (below). Then the supremum
(infimum) of S exists.

Proof. We first consider the case when S only contains positive numbers, the general case being
treated at the end of the proof.

Since S is bounded from above, there exists a decimal M such that x << M for every decimal
x such that [z] € S. We can choose M = M,,000...0,000... with a finite n. Thus given any decimal
x with [z] € S we must have z; = 0 if j > n, i.e. every such decimal has at most n nonzero
coefficients with positive index. Therefore, all decimals corresponding to the elements of S have
the form

r=TnTp-1.---L0y L 1L _2...

where the coefficient z,, is allowed to be zero. Now define a,, to be the largest possible x,, when
[x] takes all possible values in S. Note that a,, may be zero.



Define the set
Sy ={[z] € S:x,=0an} CS.

Define a,,—1 to be the largest possible component z,,_; when [z] € S;. In general, if & > 2 we
have:

S :={[z] €S :Tp =an, Tn-1=an_1, s Tn_k+1 = pn_gt1} C Sk_1 C ... C S,

and then we define a,_j to be the largest possible x,,_; when [z] takes all possible values in S.
In this way we define the decimal ¢ = ana,—1...a9,a—_1....

Let us show that [a] is an upper bound for S. Take any x with [z] € S. If z,, < a, then
z << a and [z] < [a]. If 2, = a,, then [z] € Sy, thus z,—1 < a,—1. If we have a strict inequality
then we are done, otherwise we continue. In this way we show that z; < a; for every j < n, hence
[z] < [a].

Let us show that [a] is the smallest upper bound. Take any [b] € R with [b] < [a]. From
Proposition 1.2 we know that there exists a terminating decimal e = eje,_1...€g,6_1...e_y € T
such that [b] < [e] < [a]. Here J is finite. Now choosing k large enough (compared to .J), we have
that any decimal = with [z] € S}, will have its first k coefficients equal to the first k coefficients of
a, hence [e] < [z] and we are done.

In a similar way we can construct the infimum of S when S only contains positive numbers.

Now let us extend the result to the case in which S only contains negative numbers. Define
the set —S := {[—z] : [x] € S}; it will only contain positive numbers. If S is bounded from below,
then —S' is bounded from above and Lemma 1.5 implies that inf(S) = —sup(—S). Clearly, S is
bounded from above by zero and sup(S) = — inf(—5).

If S contains both positive and negative numbers, we can write S = Sy U S_ where Sy
includes the positive elements and eventually 0, while S_ includes the negative numbers. Then
sup(S) = sup(S4) and inf(S) = inf(S_).

O

As an example, let us consider the set S = (0,1), i.e. the open interval containing all real
numbers such that 0 < [z] < [1]. The above construction gives us a = 0,9999..., i.e. sup(S) = [1].
Note that the supremum of a set is not necessarily an element of it. If it belongs to it, then it is
called maximum.

1.1.3 Adding and multiplying terminating decimals

Any terminating decimal of the type +z,2,_1...20,000... can be uniquely identified with the
integer

+(10"2, + 10"z, 1 + ... + 1021 + 20) € Z.
Thus we can define the sum and the product of any two terminating integers of the above type

through the identification with integers. Note that the effect of multiplying with 10* with & > 1
is a shift of the comma with k places to the right, like for example:

10% - TpTp_1..-2g,000... = £, _1...2000, 000.

By definition, we denote the terminating decimal 0, 1000... with 107!, the decimal 0,01000...
with 1072 and so on. By convention, when we multiply a terminating decimal with 107, the
comma is shifted k places to the left.

Given two decimals * = zyxN_1...20,T—1...2_37000... and y = ypyp—_1...20,Yy—1...y—000...
with @ > M then we have:

z=10"¢ “TNTN_1.--ZoZ_1...2_370...00,00..., y = 1079 “YpYpP—1..-ToY—1-..Y—q, 000

hence:
x + Y= 1O_Q . (Z‘NJ}N_l....1303]‘_1....13_]\/[0...00 + ypyp_l...xoy_l...y_Q)



and
z-y:=107%9. (enzN—1..0T—1..2-3£0...00 - ypyp_1..ToY—1.-.Y—Q),

according to the previously introduced rules. Also, when we multiply two negative numbers we
get a positive one, and when we multiply a negative terminating decimal with a positive one, the
result is negative.

Until now we have defined how to add, subtract and multiply any two terminating decimals,
hence to real numbers which are jumps. In the next sections we shall extend these operations to all
real numbers, and define division. From now on, we will not make a notational distinction
between a terminating decimal and its corresponding real number (jump).

1.2 Strong and formal convergence of sequences in T

The absolute value of any decimal is defined in the natural way (by ”throwing away the sign”):
0< |+ 2pTp1.20, To1.Z—ppove| i= [TnTp—1-.-T0, T—1...T_py...] € R.
For terminating decimals we also have the triangle inequality:
[z +yl <z +]yl, Vo,yeT,

and
|z -yl = |z] - |yl

properties which can be easily inferred using the properties of Z. Given any decimal x =
+rNTN_1..-To,T_1Z_3... nOt necessarily terminating, we define its n’th order truncation:

To(x) := txNTN_1..20, 1L —2...2_,000... € T, n >1.

We have the following very useful representation of jumps. Given two decimals z and y which
belong to the same jump, then we must have:

VE>1, AN, > 1: |Th(z) — Tu(y)| <107, Vo > Ny (1.1)

As an example, let x = 1,000... and y = 0,9999.... Then we have Ty (z) — Ty (y) = 1071, Ta(x) —
To(y) = 1072, ..., T,(z) — T,(y) = 10~™. Thus given any k, by choosing for example Ny := k,
then for every n > Ny we have 107" < 107k,

The reversed implication is also true, but this fact is more complicated; let us prove it now.
Assume that (1.1) holds true, but « and y do not belong to the same jump. Let us assume that
0 < [z] < [y]. From Proposition 1.2 we obtain some e € T such that x << e and e << y. Assume
that e = eyen_1...€9,€_1...6_ps. Then we must have

107M <<e—To(x), 107771 << T,(y)—e, VYn>M.

Thus:
107M72 << 2. 10771 << T, (y) — Tulz), Vn > M,

hence the right hand side cannot be made arbitrarily small as stated in (1.1). In other words, we
have just proved that if x and y are not in the same jump, then:

IM eN: 107772 < T, (z) — To.(y)|, Vn > M. (1.2)

1.2.1 Strong convergence

We denote by {z(n)}n>1 C T any sequence consisting of terminating decimals, i.e. (z(n))—; =0
if j is large enough.



Definition 1.7. We say that such a sequence has a strong limit [x] € R if:

VEk €N, AN, >1: |z(n) — Th(z)] <107F, ¥n > Nj. (1.3)

In this case we write:
slim,, 0oz (n) = [].

There is an apparent ambiguity in this definition, because [z] might be a jump, hence there are
two possibilities for choosing x in (1.3). But the strong limit [x] seen as a real number is unique
if it exists; let us prove this. Assume that (1.3) hold true both for [z] and [y]. Then using the
triangle inequality we have:

Tn(2) = Tu(y)| < |Tn(2) — x(n)| + |2(n) = Tuly)l,

where the right hand side can be made arbitrarily small when n is large enough. Thus according
to (1.1), z and y must be in the same jump, hence they both define the same real number.

As an example, let us consider the sequence z(1) = 0,9, z(2) = 0,99, xz(3) = 0,999, .... Then
the strong limit of this sequence exists and equals [1].

Lemma 1.8. Let {z(n)},>1 C T be such that slim,,_,cz(n) = [z]. Then the sequence is bounded,
i.e. there exists some J € N such that |z(n)| < 107 for alln > 1.

Proof. We can find some J; such that |z| < 10”1, hence |T;, ()| < 107t for every n. Choose k = 0
in (1.3). This implies the existence of some Ny such that |z(n) — T,(z)] < 1if n > Ny. The
triangle inequality leads to:

lz(n)] < T, (z)] +1 <107 +1 <107+ vn > N,

Thus we have:
lz(n)| < max{|z(1)|, ..., |2(No)|, 10T} vn >1,

where the right hand side can be bounded from above by some positive power of 10. O

Lemma 1.9. Let {x(n)}n,>1 C T and {y(n)}n>1 C T be such that slim, ,.cx(n) = 0 and
slim,, ., ooy(n) = [y]. Then z(n) := z(n)+y(n) is also strongly convergent and slim,,_,..z(n) = [y].

Proof. We have:
|z(n) = Th(y)| < [z(n)| + [y(n) = Tu(y)l, n=>1.

Fix k € N. There exists N,gl) such that |z(n)| < 107*~! for all n > N,El). Also, there exists N]iz)
such that |y(n) — T, (y)| < 107%~1 for all n > N,EQ). Hence if n > max{N,El), N,EQ)} we have:

|2(n) — Tn(y)] <2-107F"1 <107

and we are done.

Lemma 1.10. Let {z(n)},>1 C T be bounded and {y(n)},>1 C T be such that slim,,_,y(n) = 0.
Then z(n) := z(n) - y(n) is also strongly convergent and slim,_,~.z(n) = 0.

Proof. Because {x(n)},>1 is bounded, there exists J € N such that |z(n)| < 107. Then:
|2(n)| < [z(n)] - [y(n)| <107 -[y(n)], n>1.
Fix k € N. There exists N, such that |y(n)| < 107*=7 for all n > N,. Hence if n > N, we have:
|2(n)] < 107"

and we are done.



Lemma 1.11. Assume that {z(n)},>1 C T converges strongly to [x] and {y(n)}n>1 C T converges
strongly to [y]. If y(n) < z(n) for all n, then [y] < [z].

Proof. Assume that the conclusion is not true, i.e. [x] < [y]. According to (1.2), there must exist
some M such that
To(z) — Tp(y) < 10072 vn> M.

We have:
0 <z(n) —y(n) = (z(n) — T (x)) + Tn(z) — T(y) + (Tuly) — y(n))
< —107M72 4 (2(n) — Ta(x)) + (Tn(y) —y(n)), ¥n > M.

Due to (1.3), by choosing n large enough we can make both z(n) — T, (z) and T),(y) — y(n) less
than 10~M =3, hence we arrive at a contradiction.

O
1.2.2 Formal convergence
Definition 1.12. We say that {x(n)}n>1 C T has a formal limit x € D if:

In this case we write:
flim,, ox(n) = x.

The formal convergence tells us that given some j and if n becomes larger than some critical
value M;, the decimal z(n) will coincide with x at least up to the coefficient of index —j. It is
easy to prove that the formal limit is unique if it exists.

Lemma 1.13. Assume that {x(n)}n,>1 C T has a formal limit x € D. Then the sequence is also
strongly convergent, with the strong limit [x] € R.

Proof. If n,j € N we have:
w(n) = Tn(x) = x(n) = Tj(z(n)) + Tj(z(n)) — Tj(z) + T;(x) — Ta(x).

If we impose that n > j, then we see that both decimals z(n) — T;(z(n)) and T;(z) — T),(x) will
have zero coefficients at least up to the index —j. Hence:

j2(n) = Tu(2)| < 21077 +[Tj(x(n)) = Ty(2), n >
If n > Mj as given by (1.4), then:
lz(n) — Th(z)] <2-1077, n> M;.

Now it is enough to choose j =k + 1 and (1.3) is proved. O

Definition 1.14. We say that {x(n)}n,>1 C T is increasing if x(n) < x(n+1) for alln > 1. The
sequence is decreasing if x(n + 1) < xz(n) for alln > 1. A sequence is called monotone if it is
either increasing or decreasing.

Lemma 1.15. Assume that {x(n)},>1 C T is bounded from above (below) and is increasing
(decreasing). Then the sequence has a formal limit.



Proof. Assume that the sequence is increasing and bounded from above by some 107. Then the set
S :={x(n): n > 1} is bounded from above, hence according to Theorem 1.6 it has a supremum
[a] € R, where a = ajaj_1...ap,a_1.... The decimal a was constructed in the following way: a; was
the largest possible J’th coefficient among all decimals z(n). In particular, there must exist some
ny such that x(ns) has a; as its J'th coefficient. Because the sequence is increasing, z(ny) < z(n)
if n > ny, hence the J'th coefficient of such an x(n) will remain equal to a;. Reasoning in the
same way, there must exist some njy_; > ny such that the J — 1’th coeflicient of z(ns_1) equals
aj_1, hence all decimals with n > nj;_; will have the J’th and J — 1’th coefficients equal to a;
and aj_1, respectively. By induction, we can prove that given j > 1 there must exist some M;
such that Tj(z(M;)) = Tj(a). Since x(M;) < x(n) if n > M; we must have that Tj(z(n)) = T}(a)
and (1.4) follows.

The decreasing case is proved analogously, and the formal limit is related to the infimum of
the set S. O

1.2.3 Sequences with the Cauchy property
Definition 1.16. We say that {x(n)},>1 C T has the Cauchy property if

VkeN, M, e N:  |z(m) —z(n)] <107%, Vm,n > Mj. (1.5)
We first show that strongly convergent sequences also have the Cauchy property.

Proposition 1.17. Assume that {x(n)}n,>1 C T has a strong limit [x] € R. Then the sequence
has the Cauchy property.

Proof. According to (1.3), given j > 1 we can find N; such that |z(n) — T, (z)| < 1077 for all
n > N;. If m > n > j we have |T,,(z) — T, (x)| < 1077. Using the triangle inequality we have:

jz(m) =z (n)| < |2(m) =T (@) +|Ton (@) = T (2) | +| T (2) —2(n)| < 31077, ¥m > n > max{j, N;}.

Now choose j = k + 1 and M}, := max{k + 1, Ny41} and we are done. O

In the rest of this subsection we shall show that the reverse of the above lemma also holds true,
i.e. any sequence with the Cauchy property is strongly convergent. This fact is more complicated
and needs some preparatory results.

Lemma 1.18. Assume that {x(n)}n,>1 C T has the Cauchy property. Then the sequence is
bounded, i.e. there exists J € N such that |z(n)| < 107 for alln > 1.

Proof. Let k = 1in (1.5). Then |z(m)—x(M;)| < 107! for all m > Ny, hence by using the triangle
inequality:
[2(m)] < [ (M| + 107, Vi > My,

Thus
|z(n)] < max{|z(1),|z(2)], ..., |z(N1)| + 10_1}7 Vn > 1,

and we are done. O

Lemma 1.19. Assume that {x(n)},>1 C T is bounded. Then there exists a monotone subsequence
{z(n;)}j=1 C{z(n)}nz1
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Proof. We know that the set S = {z(n) : n > 1} is bounded from above, thus it must have a
supremum [a]. There are two alternatives: either a does not belong to S, or a belongs to S.

We first assume that a does not belong to S. In this case, we put n; := 1 and we have
x(n1) < [a]. From the second property of being a supremum (see Definition 1.3), there must
exist some ny > 1 such that z(1) < z(n2) < [a]. Now let N2 € {1,...,n2} be such that z(ng) lies
closest to [a], i.e. x(n) < xz(n2) < [a] for all 1 < n < ny. Thus we can find nz > ng such that
z(n2) < z(n3) < [a]. By induction we get n; < ny < n3 < ... such that:

z(n1) < z(n2) < z(n2) < z(ns) < x(ns) < z(ng) < x(N4) < ...[al,

and this is our increasing subsequence.

Now we assume that a belongs to S. Thus we can find m; > 1 such that z(n) < z(m1) = a
for all n. We discard the first my elements of our sequence and consider {z(n)}n>m,+1 C T.
The new sequence also has a supremum [b] < [a] = z(mq). If b does not belong to the set
{z(n) : n > my + 1} then we can reason as before and construct an increasing subsequence with
ny = my + 1. If b belongs to this set, then it must equal some x(msy) with msy > mq; we also have
x(mso) < x(my). After k steps, then either there exists some set {x(n): n > my + 1} which does
not contain its supremum (and we are done), or we can go on to step k+1. If this can be continued
indefinitely for all k, then we have just constructed a decreasing subsequence {z(my)}r>1 with
my41 > my and we are done. O

Proposition 1.20. Assume that {z(n)},>1 C T has the Cauchy property. Then it is strongly
convergent.

Proof. From Lemma 1.18 we know that the sequence is bounded, while from Lemma 1.19 we that
that it admits a monotone subsequence {z(n;)};>1. From Lemma 1.15 we know that {z(n;)};>1
has a formal limit z € D, which due to Lemma 1.13 is also a strong limit. From (1.3) it follows
that given k > 1, there exists some J; > 1 such that

|z(n;) — Ty(x)| <1077 V5 > ;.
Because the original sequence has the Cauchy property, given k& > 1 we can find My such that
lz(n) — z(m)| < 107871 Vn,m > My,

Now put j = Ny := max{k + 1, Ji, My41} and take n > Nj. We also have that n; > j > My
hence:

j2(n) = Tu(@)] < [a(n) — x(nj)] + |2(n;) = T(2)] + |T;(2) = Tu(2)] <3-107F71 < 107"

and we are done. O

The following result will allow us to define addition and multiplication of arbitrary real num-
bers:

Proposition 1.21. Assume that {x(n)}n>1 C T and {y(n)}n>1 C T have the Cauchy property.
Then u(n) := x(n) + y(n) and w(n) := x(n) - y(n) also have the Cauchy property.

Proof. We only prove that {w(n)},>1 is Cauchy. According to Lemma 1.18, both {z(n)},>1 and
{y(n)}n>1 are bounded, i.e. there exists J € N such that

max{|z(n)|,|y(n)|} <107, VneN.

We have the identity:

w(n) —w(m) = z(n) - (y(n) —y(m)) + (z(n) —z(m)) - y(m)
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in which we apply the triangle inequality and get:
w(n) —w(m)| <107 (ly(n) — y(m)| + |z(n) — 2(m)[), Vn,m eN.

There exists M; such that |[z(n) —x(m)| < 107/=*=1if n,m > M;, and there exists M such that
ly(n) —y(m)| <1077 =*=1if n,m > MJ. Hence:

lw(n) —w(m)| <107%  Vn,m > max{M;, M;},

and we are done.

1.3 Addition and multiplication of real numbers

We can finally define the addition and multiplication of two arbitrary real numbers. Let [z], [y] € R.
We define the sequences z(n) := T, (x) and y(n) := T, (y). Then x(n) converges strongly to [x] and
y(n) converges strongly to [y]. From Lemma 1.17 we know that both z(n) and y(n) are Cauchy
while Proposition 1.21 implies that z(n) - y(n) and z(n) + y(n) are also Cauchy, hence according
to Proposition 1.20 they have a strong limit. We can therefore make the following definition:

Definition 1.22.
[z] + [y] == slimy o0 (Tn(z) + Tn(y)), [2] - [y] == slimy o0 (Tn(z) - Tn(y)).

The limits are well defined and do not depend on the choice of the decimal if « and/or y belong
to a jump. Also, all the relevant properties of addition and multiplication of terminating decimals
can be transferred to arbitrary real numbers. For example, let us prove the commutativity:

Proposition 1.23. For every [z],[y] € R we have:
[z] + [y] = [v] + [z],  [2]-[y] = [y] - [].

Proof. We have T, (z) + T, (y) = Tn(y) + Tn(x) and Ty, (2) - Tr(y) = Th(y) - Tn(z) for all n. We
only need to take the strong limit on both sides. O

We also prove the distributivity property:

Proposition 1.24. For every [x],[y], [2] € R we have:

Proof. We know that [z] + [y] := slim,,— oo (T (x) + T5.(y)). Let w € D be a decimal such that
[w] = [z] + [y]. Then we also have that slim,,_, o7, (w) = [z] + [y], hence

slimy o0 [T (w) — (Tn(x) 4+ Tn(y))] = 0.
According to the definition:

We have:

12



Because T, (w) — (T (z) + T,.(y)) converges strongly to zero and T,,(z) is bounded, Lemma 1.10
implies that their product converges strongly to zero. Then Lemma 1.9 implies that:

slimy, oo { T (w) - T (2) } = slimy, oo {[Tn(z) + Tr ()] - Tn(2) }-

But on the right hand side we can apply the distributivity for terminating decimals which leads
to:

slimy, oo {Th(w) - Ty, (2)} = slimy, 0o {Tn(x) - T (2) + Tr(y) - Tn(2) }.

Now T, (z) - T,,(2) converges strongly to [z] - [z] while T,,(y) - T.(z) converges strongly to [y] - [z].
Hence we may replace T, (x) - Ty, (2) with T,,([z] - [2]) and T, (y) - Tr,(2) with T, ([y] - [2]) and get:

slitny, o0 {Tn (W) - T (2)} = slimy oo {Tn([2] - [2]) + To(ly] - [2])} = [2] - [2] + [y] - [2]

and we are done. O

Now we prove the compatibility between the order relation and addition:
Proposition 1.25. For every [z], [y], [2] € R with [z] < [y] we have:
[2] + [] < [2] + [y]-
Proof. Because [z] < [y], (1.2) implies that there exists some M such that:
107M=2 4 T, (2) < To(y), n> M.

Hence:
107M=2 £ Ty (2) + T(2) < To(y) + Tu(2), n> M.

Taking the strong limit on both sides and using Lemma 1.11 we get:
10772 4 [a] + [e] < [y + [2]:

An important remark is that for every real number [u] and J € N we have that [u] < [u] + 1077.
This is because T}, (u) + 10~ converges formally to [u] + 10~/ and its components up to index
—J do not change anymore if n > J. Hence

[2] + [2] < 107M72 1 [z] 4 [2] < [y] + [2]

and the proof is over. O

Finally, we prove the compatibility of multiplication with the order relation:

Proposition 1.26. For every [z],[y], [2] € R with 0 < [z] and [z] < [y] we have:
[2] - [2] < [2] - [y]-
Proof. Because [z] < [y], (1.2) implies that there exists some M such that:
10772 < T, (y) — To(z), n> M.
Applying the same idea for 0 < [z] we obtain some M’ such that:
107M-2 < T.(z), n>M.
We have that

Tn(z) Tn(y) - Tn(z) Tn(x) = Tn(z) : (Tn(x) - Tn(y))v Vn > 1.



Hence:
107M7M/74 < Tn('z) ’ (Tn(y) - Tn(x)) = Tn(z) : Tn(y) - Tn(Z) ~Tn($), nz= maX{M’ M/}’

or:
To(2) - Tn(z) + 10~ M-M'—4 < To(2) - Tow(y), n >max{M,M'}.

Taking the strong limit on both sides and using Lemma 1.11 we get:
[2] - [2] < [2] - [2] + 107 M4 < [2] - [y)

which ends the proof.

]
1.4 Division of real numbers
Let J > 1 be a natural number. We have the identity:
1-10")-A+1077 +107% + .. +107) =1 10"+ pn>o0. (1.6)

The sequence z(n) = 14+ 1077 + 1072/ + ... + 10~/ converges formally (hence strongly) to the
real number given by the decimal

1,000...01000..01... := 1, (000..01) s

where we have exactly J — 1 zeros between two consecutive 1’s. We denoted in parenthesis the
periodic part of the decimal, containing J — 1 zeros and a 1. The length of the period is J. Taking
the strong limit in (1.6) we have:

(1-10"7)-1,(000..01); = 1, (000..01); - (1 —10~7) = 1. (1.7)

In other words, we have just proved that (1 — 10~7)~! = 1,(000..01);. Moreover, using that
(107 — 1) =107 - (1 — 10~7) we have:

(107 —=1)"' =1 —-10"7)"' 1077 = 1,(000..01) s - 10~/ = 0, (000..01) . (1.8)

In what follows we will show how to construct the inverse of any positive natural numbers g € N,
g > 1. If g is a power of 10, we already know that its inverse is implemented by a translation of
the comma.

Now assume that ¢ is not a power of 10. Then we know that it exists exactly one natural
number k£ > 0 such that 10¥ < ¢ < 10¥*!. From the Quotient Remainder Theorem we can write:

10+ 10%+2

:a1~q—|—r1, :a2~q—|—r2, g eeny 1Ok+j:aj-q+7‘j,...

where 0 < 7; < ¢ for all j. Because there are only ¢ different possible values for r;, then if j > ¢
it must happen that at least two remainders are equal to each other. Assume that r; = r; with
1 <7< j <q. Denote by d =35 —i > 0. We have:

105 = aq + 7y, 107 =ajq+7;, 1077 (104 = 1) = (a; — a;) - q.
The number a; — a; can be written as:
aj—a;=m-(10"=1)+r, 0<r<(10°-1), meN.
Thus:
105 (104 — 1) = (aj —a;) - ¢ = [m - (10 = 1) + 7] - ¢,
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or: )
1=10""[m+r-(10"=1)""].q.

Since (104 — 1)~ = 0,(000..1)4 and because r has at most d nonzero digits, we have 1 =
10~%=% . [m, (7)4] - ¢, which implies:

¢t =10""""[m, (7)d] (1.9)

and this shows that we can compute the multiplicative inverse of any integer.
We are now ready to introduce the rational numbers:

Definition 1.27. The set of rational numbers is defined as:

Q:={z]eR: [z]=%p-¢~", p,gEN, ¢#0}.

Clearly, Z C Q. The following theorem describes the decimal structure of any nonzero rational
number.

Theorem 1.28. A real number [x] # 0 is rational if and only if x = 105 - xx...x0, (P) where

K e€Z, N >0 and (P) denotes a periodically repeated sequence of a certain finite length.

Proof. We only consider positive numbers. Let us first prove that any positive real number which
has the form given by the theorem, is rational.

If the periodic sequence P only consists of zeros, then the number is either natural if K > 0
or we can take p = zy...z¢ and ¢ = 10~ ¥ if K < 0. Hence we may assume that P is a non-trivial
sequence of length [ > 1. Moreover, we can also assume that P does not start with a zero. If it
does, we can multiply with a power of 10 and shift the comma, like in the following example:

10° - 4, (00313) = 10* - 400, (31300).

Hence let © = 105 - xx...2¢, (P) with P = P =t;_;...tg and t;_; # 0. Using (1.8) with J =1 we
have: -
0,(P)=P-0,(00.01); = P- (10" — 1)},

and
IN...ZQ, (?) =ZN...Zo + P- (].Ol - ].)_1 = {{EN...xo . (1OZ - 1) + P} . (10l - 1)_1,

hence z = p- ¢! with p = 10X - {zy...z¢ - (10' — 1) + P} and ¢ = 10’ — 1.

Now let us prove the reversed implication: any rational number has an eventually periodic
decimal. We have already shown in (1.9) that this holds true if p = 1; now we slightly modify
that argument in order to allow p > 1. We also assume that p and ¢ have no common divisors
(are relatively prime), and ¢ is not a power of 10 because if ¢ = 107 then z = p - ¢~! would be a
terminating decimal.

Moreover, let us show that we may take p < ¢q. Indeed, if p > ¢ then we can write p=a-q+p’
with p’ < ¢ and a a natural number, hence p- ¢! = a4+ p’ - ¢~!. Thus if we can prove the claim
for p’ - ¢!, adding a natural number to it will preserve its structure after the comma.

If p < q there exists a unique k € N such that 10* - p < ¢ < 10**! . p. Applying again the
Quotient Remainder Theorem we have:

10 p=ay-q4ry, o, 1009 p=a;-q+rj,...,

where again 0 < r; < ¢ for all j, and 1 < a; < 10, 10 < as < 10? and so on. As before, because ¢
is finite, we must have two equal remainders among the first ¢; assume without loss of generality
that 7, = r; with 1 <4 < j < ¢. Denote by d = j —i > 0. Then 10***- (104 = 1) -p = (a; —a;) - ¢.
We write as before

aj—a;=m- (10 =1)4+r, 0<r<(10?—1), meN,
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which implies:
p-gt=[m-(10"=1)+7]-107"". (104 = )7L =107 [m, (F)d]

and the proof is over.
O

Finally, we can prove that every non-zero real number has a multiplicative inverse. Let [z] > 0.
The sequence {T},(x)}n>1 converges formally to x hence strongly to [z]. There exists some J > 0
such that 1077 < [z] hence we can find some N large enough such that

1077 < T.(z), n>N.

We have T C Q due to the previous theorem, hence T}, (z) is rational and (7, (x))~! exists. Due
to the above estimate we must have 0 < (T,,(x))~! < 107 for all n > N. Define y(n) := (T,,(z)) !
for all n > N. Let us prove that the sequence {y(n)},>n has the Cauchy property. Indeed, we
may write:

y(m) —y(n) = (T(2) ™" - (Tu(2) = Tn(2)) - (Ta(2)) ™", Jy(m) —y(n)| < 10*7 - |T(2) — Tn(2)].

Since {7}, (z)}n>1 is Cauchy, it implies the same property for {y(n)},>n. Thus it converges
strongly to some real number [y]. Therefore, taking the strong limit in the identity 1 = T,,(z) -
(T (x)) ™t we get:

=] - [y] = 1.
If [#] < 0 then [z]7! = —(—[z])~ .

2 The natural topology of a metric space

Let (X, d) be a metric space. We define the open ball of radius r > 0 and center at a € X the set
By(a) :={z € X : d(z,a) < r}.

Given aset A C X and a € A, we say that a is an interior point of A if there exists r > 0 such
that B,(a) C A. The set of all interior points of A is denoted by Int(A). We say that A is an open
set if all its points are interior points, i.e. Int(A) = A. By convention, the empty set @) is open.

Lemma 2.1. Any ball B,(a) is an open set.

Proof. Let x¢ € B,(a). We have that d(zg,a) < r. Define rq := (r — d(xg,a))/2 > 0. Then for all
x € By, (zo) we have that d(x,z9) < ro and:

d(z,a) < d(z,z9) + d(xg,a) < (r —d(xo,0a))/2 + d(zg,a) = (r + d(zg,a))/2 < r,
which shows that By, (z9) C Br(a). Thus B,(a) has only interior points. O

Lemma 2.2.
i). Let {Vata e an arbitrary collection of open sets. Then A :=U,V, is open.
(i). Let {Vodacr b bitrary collection of open sets. Then A V., is op
(ii). Let {V;}}_; be a finite collection of open sets. Then B :=N}_,V; is open.

Proof. We start with (i). Let a € U,V,. There must exist o, € F such that a € V,,_. Since V,,
is open, there exists r, > 0 such that

B, (a) CV,, CUV,=A4

hence «a is an interior point of A.

We continue with (ii). Let a € Nj_;V;. Thus a € V; for all j. Hence there exists r; > 0
such that B, (a) C V;. Let 7 := min{ry,...7,} > 0. Thus B,.(a) C B,,(a) C Vj for all j, hence
B, (a) C B and we are done.

O
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We say that a set A C X is closed if A°:={x € X : = ¢ A} is open. Given a set B C X and
b € X, we say that b is an adherent point of B if there exists a sequence {z,},>1 C B such that

Zp € B1(b) (hence lim,, o, z, = b). The set of all adherent points of B is denoted by B.

Theorem 2.3. Let B C X. Then B C B. Moreover, B = B if and only if B is closed.

Proof. If a € B we can define the constant sequence z,, = a € B which converges to a, thus a € B
and B C B.

Now assume that B = B. We want to prove that B is closed, i.e. B®is open. Let a € B¢ = B'.
Then a is not an adherent point, which means that there exists € > 0 such that no point of B lies
in the ball B.(a). In other words, B¢(a) C B¢, hence B¢ is open.

Now assume that B is closed. We want to prove that B = B. Assume that this is not true; it
would imply the existence of a point b € B such that b € B°. Since B¢ is open, there exists ¢ > 0
such that B,(b) C B¢, i.e. B.(b)N B = (). But this is incompatible with b € B.

O

3 Compact and sequentially compact sets

Definition 3.1. Let A be a subset of a metric space (X, d). Let F be an arbitrary set of indices,
and consider the family of sets {Oq}acr, where each O, C X is open. This family is called an
open covering of A if A C U,cr Oa-

Definition 3.2. Assume that {Oq}tacr is an open covering of A. If F' is a subset of F, we say
that {Oa}acF is a subcovering if we still have the property A C U,cz Oa. A subcovering is
called finite, if F' contains finitely many elements.

Definition 3.3. Let A be a subset of a metric space (X,d). Then we say that A is covered by a
finite e-net if there exists a natural number N < oo and the points {x1,...,xn.} C A such that
ACU;Z Belx))-

Definition 3.4. A subset A C X is called compact, if from any open covering of A one can extract
o finite subcovering.

Definition 3.5. A C X is called sequentially compact if from any sequence {x,}n>1 C A one can
extract a subsequence {xn, }x>1 which converges to some point To € A.

We will see that in metric spaces the two notions of compactness are equivalent.

3.1 Compact implies sequentially compact
We begin with two lemmas:

Lemma 3.6. Assume that the sequence {z,}n>1 C A has a range consisting of finitely many
points. Then it admits a convergent subsequence whose limit is one of the elements in the range.

Proof. Assume that the range of the sequence consists of the distinct points a1, as, . ..,an. At least
one of these points, say a1, is taken infinitely many times by the sequence elements. Denote by ny
(with k& > 1) the increasing sequence of indices for which z,, = a;. This defines our convergent
subsequence. O

We say that ¢ € X is an accumulation point for a sequence {xy},>1 if for every € > 0 there
exists some x,, # a such that z,, € B.(a).

Lemma 3.7. Assume that the sequence {Tn}n>1 has an accumulation point a. Then {Zn}n>1
admits a convergent subsequence whose limit is a.
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Proof. Since a is an accumulation point, there exists an index j > 1 such that x; # a and
xz; € Bi(a). Denote by ni the smallest index for which these two properties hold true. Let
r1:=d(n,,a) > 0. Define ny to be the smallest index j for which x; # a and z; € By, 11(a).
We must have ny > ny since z,, € Bj(a); moreover, because ry := d(zp,,a) < ri, we cannot
have n; = no. In general, if & > 2 we define n; to be the smallest index j for which z; # a
and z; € B (a); moreover, since ry = d(zp,,a) < Tp—1 < -+ < r;, we must have
ng > --- > n1. Then {ny}r>1 is a strictly increasing sequence and 0 < d(z,,,a) < 1/k. This
shows that {x,, }x>1 is a subsequence which converges to a. O

min{ry_1,%}

Theorem 3.8. Let A C X be compact. Then A is sequentially compact.

Proof. We will assume the opposite, i.e. there exists a sequence {z,},>1 with no convergent
subsequence in A. Such a sequence must have an infinite number of distinct points in the range,
due to Lemma 3.6. Moreover, we can assume that {z,},>1 has no accumulation points in A
(otherwise such a point would be the limit of a subsequence according to Lemma 3.7).

Since no x € A can be an accumulation point for {z,}n>1, there exists €, > 0 such that the
ball B, (x) contains at most one element of the range of {z,,}n>1.

Clearly, { B, (z)}zc4 is an open covering for A. Because A is compact, we can extract a finite
subcovering from it:

N
Ac Be, (yj), N <oo, {y1,....yn} CA
j=1

Now remember that {z,},>1 € A C U;yzl B, (y;) and at the same time, there are at most N

distinct points of the range of {z,},>1 in the union U;\;l Beyj (y;). We conclude that {z,}n>1
can only have a finite number of distinct points in its range, thus it must admit a convergent

subsequence according to Lemma 3.6. This contradicts our hypothesis. O

3.2 Sequentially compact implies compact
The proof of this fact is slightly more complicated. We need two preparatory results:

Proposition 3.9. Let A be a sequentially compact set. Then for every e > 0, A can be covered
by a finite e-net (see Definition 3.3).

Proof. If A contains finitely many points, then the proof is obvious, thus we may assume that
#(4) = oc.

Now suppose that there exists some ¢y > 0 such that A cannot be covered by a finite eyg-net.
This means that for any N points of A, {x1,...,xx}, we have:

N
A ¢ | Beylaj). (3.1)

j=1
We will now construct a sequence with elements in A which cannot have a convergent subse-
quence. Choose an arbitrary point 3 € A. We know from (3.1), for N = 1, that we can find
2 € A such that o € A\ Be,(z1). This means that d(zi,z2) > €. We use (3.1) again, for
N = 2, in order to get a point 23 € A\ [Be,(21) U Be,(22)]. This means that d(xs3,z1) > €y and
d(zs,x2) > €o. Thus we can continue with this procedure and construct a sequence {x, },>1 C A

which obeys
d(zj,xp) > €0, J# k-

In other words, we constructed a sequence in A which cannot have a Cauchy subsequence. This
contradicts Definition 3.5. O

The second result states that a compact set is bounded:
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Lemma 3.10. Let A be a (sequentially) compact set. Then there exists a ball which contains A.

Proof. We know that A can be covered by any finite e-net; choose ¢ = 1. Then here exist N points
of A denoted by {z1,...,xn} such that A C Uj-vzl By (xj).

Denote by R = max{l + d(z;,z) : 1 < j,k < N}. Then we have B;(z;) C Br(x1) for every
j, thus A C Bgr(x1) and we are done. O

Let us now prove the theorem:
Theorem 3.11. Assume that A C X is sequentially compact. Then A is compact.

Proof. Consider an arbitrary open covering of A:

AC an.

aEF

We will show that we can extract a finite subcovering from it.

For every x € A, there exists at least one open set O, ;) such that x € Oy (,). Because Oy (4)
is open, we can find € > 0 such that B(z) C Oq(y).-

For a fixed x, we define the set

E, :={r > 0: there exists & € F such that B.(z) C O,} C R.

From the above argument we conclude that no F, is empty. Moreover, if r € E,, then the open
interval (0, r) is included in E,.

If for some z in A we have an unbounded E,, it follows that for every r > 0 we can find some
open set O, such that B,.(x) C O,. But if 7 is chosen to be large enough, it will contain the ball
we constructed in Lemma 3.10, thus O, will also contain A. In this case we found our subcovering,
which consists of just one open set.

It follows that we may assume that all the sets E, are bounded intervals admitting a positive
and finite supremum sup F,. Define 0 < ¢, := %sup E, < sup E,. Note the important thing that
€, € E,. Let us also observe that:

AC | B, (x)C | Oa. (3.2)

z€A acF

The first inclusion is obvious, while the second one follows from the above discussion.
We now need to prove a lemma:

Lemma 3.12. If A is sequentially compact, then

inf e, =: 2¢9 > 0.
T€A

In other words, there exists g > 0 such that B, (x) C B, (), for every x € A.

Proof. Assume that inf,c 4 €, = 0. This implies that there exists a sequence {x,,},>1 C A such
that e,, < 1/n for every n > 1. Since A is sequentially compact, there exists a convergent
subsequence {x,, }r>1 which converges to a point 2y € 4, i.e.
lim z,, = . (3.3)
k—o0

Because zo belongs to A, we can find an open set Oy (y,) which contains zg, thus we can find
€1 > 0 such that

B61 (l‘o) - Oa(zg)- (34)
Now (3.3) implies that there exists K > 0 large enough such that:
d(xn,, ,x0) < €1/4, whenever k> K. (3.5)
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If y belongs to B, 4(zy,,) (i-e. d(y,xn,) < €1/4), then the triangle inequality implies (use also

(3.5)):
d(y, o) < d(y,xpn,) + d(Tn,,x0) < €1/2 < €1, k>K.

But this shows that we must have y € B, (zg), or:
361/4(xnk) C B, (l‘o) - Oa(mo), Vk > K. (36)

Thus we got the inclusion
Bel/4<xnk) C Oa(zg)v vk > K,

which shows that €; /4 must be less or equal than 2ez,, , OF €1/8 < €z, for every k > K. But
this is in contradiction with the fact that e, < 1/n for every n > 1. O
Finishing the proof of Theorem 3.11. We now use Proposition 3.9, and find a finite €y-net for A.
Thus we can choose {y1,...yn} C A such that

N N N
AcC L_Jl Be,(yn) C L_Jl Be, (yn) C L_Jl Oy,

where O,, is one of the possibly many open sets which contain B, (y,). We have thus extracted
our finite subcovering of A and the proof of the theorem is over. O

3.3 The Bolzano-Weierstrass Theorem
We start with the case in which the metric space is R with the Euclidean distance.

Theorem 3.13. Let {z,} C R be a bounded real sequence, i.e. there exists M > 0 such that
|zn| < M for all m > 1. Then there exists a subsequence {Tn, }r>1 and some s € R such that
limg o0 Tn, = S.

Proof. We have that —M < z,, < M for all n. Define by a; := —M and by := M. Since either
—M <z, <0o0r0<uxz, <M for any given n, it follows that at least one of the two intervals
[-M, 0] and [0, M] must contain x,, for infinitely many different values of n. If there are infinitely
many indices such that x, € [—M,0], then define as := a; and by := (a1 + b1)/2. If this is not
true, then define as := (a1 +b1)/2 and by := by. If the first case holds true, we define n; to be the
smallest index n for which —M = as < x,, < by = 0, while if the second case is true, we define n,
to be the smallest index n for which 0 = ay < z,, < by = M.

In either case, we know that there exist infinitely many indices n such that as < x,, < by, and
ny is the smallest of them. If the interval [ag, (a2 + b2)/2] contains x,, for infinitely many values
of n, then define ag := ay and bs := (ag + b2)/2. If this is not true, then define a3 := (ag + b3)/2
and bs := by; the interval [as, bs] will thus contain z,, infinitely many times. We can thus choose
ny to be the smallest index n > n; for which a3 < z,, < b3. By induction, for a given k& > 1,
we can construct ng > ng_1 > --- > ny such that axy1 < z,, < bpt1, where either agy1 := ag
and bgy1 = (ar + bg)/2 (if the interval [ax, (ar + bg)/2] contains x, infinitely many times),
or agt+1 := (ag + br)/2 and bgy1 := by otherwise. By construction we have that ap < ax41 and
biy1 < by for all k. Moreover, ay < by, for all k, and in particular ap, < by = M and a1 = —M < by.
By induction, we can also prove that by — aj, = (by — a1)/2F 1.

Thus {ay}r>1 is increasing and bounded from above, hence it converges to a := supj>q G-
The sequence {by}x>1 is decreasing and bounded from below, thus it converges to 3 := inf;él by
By taking the limit k& — oo in the equality by — ar, = (b1 — a1)/2¥~! we conclude that a = j.
Since ay < xy, < by, by the comparison theorem it follows that {z,, }x>1 is convergent and has
the limit s ;== a = g.

O

We can generalize this result to R%, with d > 2. Without loss of generality, assume that d = 2;
the general case follows by induction. If x = [u,v] € R?, then we define ||x|| = Vu2 + v2. Clearly,
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max{|ul, |[v|} < [|x|| < |u| + |v|. The Euclidean distance between two vectors x = [u1,v;] and
y = [ug,v0] is given by d(x,y) =[x — y|| = v/(u1 — u2)? + (v1 — v2)2. It is easy to check that
d(x,y) < |uy — us| + |v1 — val.

Now assume that the sequence {x,}n>1 C R? is bounded, i.e. there exists M > 0 such
that ||x,]| < M for all n. We denote the components of x,, with [u,,v,]. The real sequence
{tn}tn>1 C R is also bounded by M, thus from Theorem 3.13 it follows that we can find a
subsequence {u,, }x>1 which is convergent to some ¢ € R, i.e. limg o0 uy, =t. Define zi 1= vy, ;
then {zx}r>1 is also bounded by M and according to Theorem 3.13 we can find a subsequence
{zkj }]—21 which is convergent to some s € R, i.e. lim; ;o 2k, = 5. Thus we have that Uny, cOnverges

to s while Uny,, still converges to ¢, as a subsequence of the convergent sequence {uy, }x>1-
Define y := [t, s]. We have 0 < d(xnkj,y) < |unk7 —t|+ |vnk7 — s for all j > 1, which shows
that y is the limit of {xnkj Fis1-

3.4 The Heine-Borel Theorem
Lemma 3.14. Let A be a compact set in a metric space (X,d). Then A is bounded and closed.

Proof. We already know that a compact set A is bounded (see Lemma 3.10). Let us prove that it
is closed. Assume it is not. According to Theorem 2.3 it means that there exists an adherent point
a € A which does not belong to A. Being an adherent point, there exists a sequence {z,, },>1 C A
which converges to a, thus all of its subsequences must converge to the same limit. Since A is
(sequentially) compact, there exists a subsequence {z,, }x>1 which converges to some point of A,
which has to be a. This contradicts the fact that a & A.

O

Theorem 3.15. Consider RY with the Euclidean distance. In this metric space, a set A is (se-
quentially) compact if and only if A is both bounded and closed.

Proof. The previous lemma showed that a compact set is always bounded and closed; this fact
holds for all metric spaces, not just for the Euclidean ones.

If the space is Euclidean, then we can also show the reversed implication. Assume that A
is bounded and consider an arbitrary sequence {z,}n>1 C A. The Bolzano-Weierstrass theorem
implies the existence of a subsequence {,, }1>1 which converges to some point a € R?. Thus
a € A, and due to Theorem 2.3 we know that A = A, thus a € A. This proves that A is sequentially
compact, therefore compact.

O

4 Continuous functions on metric spaces
Let (X, d) and (Y, p) be two metric spaces. If A C X, the image of A through f is the set

f(A) :={y € Y : there exists 2, € A such that f(z,) =y} C Y.
If B C Y the preimage of B through f is the set

f~YB):={x € X : such that f(z) € B} C X.

Note that the notation f~!(B) does not imply that f is invertible.
Lemma 4.1. If A; C Ay C X and By C By CY then f(A1) C f(A2) and f~1(B1) C f~1(B2).
Proof. We only prove the first inclusion. Assume that y € f(A;). Then there exists z, € A; such

that f(z,) =y. But at the same time x, € Ag, hence y € f(As). O
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A map f: X — Y is said to be continuous at a point a € X if for every € > 0 there exists
0 > 0 such that

Bs(a) C 71 (Be(f(a))), (4.1)

which implies that f(Bs(a)) C Be(f(a)). The function is continuous on X if it is continuous at
all the points of X.

Theorem 4.2. A function between two metric spaces f: X — Y is continuous on X if and only
if for every nonempty open set V.C'Y we have that f=*(V) is open in X.

Proof. First we assume that f is continuous on X. Let V a nonempty open set in Y. If f=1(V) is
empty then we know that it is open. Otherwise, let a € f~*(V). Thus f(a) € V. Since V is open,
f(a) is an interior point of V| thus there exists € > 0 such that B.(f(a)) C V. Applying Lemma
4.1 we get that f~1(B.(f(a))) C f~1(V). But from (4.1) it follows that Bs(a) C f~*(V), thus a
is an interior point.

We now assume that f returns any nonempty open set V of Y in an open set f~*(V) of X.
Fix a € X. Let € > 0 and consider the ball B.(f(a)). Lemma 2.1 implies that V = B.(f(a))
is open in Y. Thus f~!(B.(f(a))) must be open in X. Since a € f~*(B.(f(a))), it must be an
interior point. Thus there exists § > 0 such that Bs(a) C f~1(B.(f(a))), which shows that f is
continuous at a.

O

Let (X, d) and (Y, p) be two metric spaces and consider a subset A C X. We can organize A
as a metric space with the natural distance d4 induced by d. We say that the map f: A— Y is
continuous on A if it is continuous between the metric spaces (A, d4) and (Y, p).

We say that f : A — Y is sequentially continuous at a point a € A if for every sequence
{Zn}n>1 C A which converges to a we have that {f(x,)}n>1 C Y converges to f(a). We say that
f: A—Y is sequentially continuous on A if it is sequentially continuous at all points of A.

Theorem 4.3. With the above notation, consider a map f: A—Y. Then f is continuous on A
if and only if it is sequentially continuous on A.

Proof. First, assume that f is continuous at a € A. Consider any sequence {z,},>1 C A which
converges to a. From (4.1) we know that for every € > 0 we have that p(f(z,), f(a)) < € if
d(z,,a) < . But the second inequality holds if » is larger than some N5 > 1. Thus {f(z,)}n>1 C
Y converges to f(a).

Second, assume that f is sequentially continuous at a € A. We will show that f must be
continuous at a. Suppose this is not true: it means that there exists €y > 0 such that for all § > 0
we have that Bs(a) ¢ f~1(Be,(f(a))). By letting § = 1/n for all n > 1, we can find a point
zn € Bi(a) such that f(zn) & Be,(f(a)), or p(f(zn), f(a)) = €. In this way we constructed
a sequence {T,}n>1 C A which converges to a while {f(2,)}n>1 does not converge to f(a),
contradiction.

O

Theorem 4.4. With the above notation, consider a continuous map f : Aw—Y where A C X is
compact. Then f(A) is compact.

Proof. We show that f(A) is sequentially compact. Let {y, }n>1 C f(A) be an arbitrary sequence.
There exists {, }n>1 C A such that f(z,) = y,. Since A is sequentially compact, there exists
a subsequence {zn, }x>1 C {Zn}n>1 which converges to some point a € A. But f is sequentially
continuous at a, hence y,, = f(xn,) converges to f(a) € f(A). Hence f(A) is sequentially
compact.

O
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The next lemma recalls a general result which says that real continuous functions defined on
compact sets attain their extremal values.

Lemma 4.5. Let (X,d) be a metric space and let H C X be a compact set. Let f : H — R
be continuous on H. Then there exist x,,, and xar in H such that f(xy) = sup,cy f(z) and

f(wm) = inmeH f(ZL')

Proof. We only prove this for sup,cy f(z). Let B := f(H) C R. Let us show that there exists a
sequence {z, },>1 C H such that lim,_, f(z,) = sup,cy f(zx) = sup(B).

Since B is compact, it is bounded. Thus sup(B) = sup,cy f(z) < oo. For every n > 1 we
know that sup(B) — 1/n is not an upper bound for B, thus there must exist x,, € H such that
sup(B) — 1/n < f(x,) < sup(B). Thus lim,_,c f(2,) = sup(B).

Because H is compact, we can find a subsequence {zy, }r>1 which converges towards some
point @ € H. Since f is continuous, we have that limy_,oo f(zn,) = f(a). Since {f(xn,)}r>1 is a
subsequence of the convergent sequence {f(x,)}n>1, we must have f(a) = sup(B). Thus we can

choose x s to be a.
O

We say that f: A+ Y is uniformly continuous on A if for every € > 0 there exists § > 0 such
that p(f(x), f(y)) < € as soon as x,y € A and d(x,y) < §. Clearly, if f is uniformly continuous on
A then it is also continuous. The next result gives sufficient conditions for the reciprocal statement:

Lemma 4.6. Let (X,d) and (Y, p) be two metric spaces and let H C X be a compact set. Let
f:Hw—Y be continuous on H. Then f is uniformly continuous on H.

Proof. Assume that the conclusion is false. Then there exists €y > 0 such that regardless how large
n > 1is, we may find two points @,, and y,, in H which obey d(y,y,) < + and p(f(zn), f(yn)) =

€o. Since H is sequentially compact, there exists a subsequence {z,, },x>1 which converges to some
point a € H. Because d(yn, ,a) < % + d(zp,,a) for all k > 1, it follows that y,, also converges to
a. The function f is sequentially compact at a, thus both f(x,, ) and f(yn,) converge to f(a). In
particular, this contradicts our assumption that p(f(xy, ), f(yn,)) > €o for all k.

O

5 Banach’s fixed point theorem

Definition 5.1. Let (X, d) be a metric space. A map F : X — X is called a contraction if there
exists o € [0,1) such that:

d(F(z), F(y)) < ad(z,y), Vz,yeX. (5.2)
A point x € X is a fized point for F if F(z) = x.

Theorem 5.2. Let (X, d) be a complete metric space and F : X — X a contraction. Then F has
a unique fixed point.

Proof. Vi start by showing uniqueness. Assume that there exist a,b € X such that F(a) = a and
F(b) =b. Then (5.2) implies that

0 <d(a,b) = d(F(a), F(b)) < ad(a,b), (1—a)d(a,b) <0,

ie. d(a,b) =0and a =b.
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Now let us construct such a fixed point. Consider the sequence {y,}n,>1 C X, where y; is
arbitrary and y,, := F(yn,—1) for every n > 2. If yo = F(y1) = y1 then y; is our fixed point and
we are done; hence we may assume that d(y2,y1) > 0.

We will now show two things:

(i). The sequence is Cauchy in X, thus convergent to a limit y., because we assumed X to be
complete;

(ii). Yo is a fixed point for F'.

Let us start with (i). For every € > 0 we will construct N(e) > 0 such that for all p > g > N(e)
we have d(yq, yp) < €. In other words:

d(Yq: Yg+r) <€, Yk =0, Vg=>N(e). (5.3)
If kK > 1, the triangle inequality implies:

d(Ygs Yg+1) + A(Yg+1, Yg+k)

d(Yq Ygrr) <
< (qayq—‘rl) A(Yg11,Ygr2) + dYgr25 Ygrk)

k—
S d(Yqvis Ygrit1)- (5.4)

For every n > 1 we have:
AYn, Yns1) = A(F(Yn-1), F(yn)) < ad(yn-1,yn) < --- < " td(y1,y2), Yn>1,

Thus d(Ygtis Ygrit1) < @@ d(y1,y0) for all ¢ > 1 and ¢ > 0. Together with (5.4), this implies:

\Y > .
] (y17y2)) -

d(Ygs Yg+r) < aq_ld(yl,yQ)(l NI ak—l) <

Because a < 1, we have lim,_,, @ = 0. In other words, we can find some large enough N (¢) such
that for every ¢ > N(e) to have
a(l —a)

d(yl ) y2)
and (5.3) follows. We conclude that there exists y € X such that

al <e

Jim_d(yn,y) = 0. (5.5)

Now we prove (ii). For every n > 1 we have:

d(F(y),y) < d(F(y), Fyn)) + d(F(yn),y)-

But d(F(y), F(yn)) < ad(y,yn) — 0 and d(F(yn),y) = d(yn+1,y) — 0 when n — oo, thus
d(F(y),y) = 0 and F(y) = y. O

6 Local existence and uniqueness for first order ODE’s
We start with some general facts about functional spaces.

6.1 Spaces of bounded/continuous functions

Let Y be a real vector space. The map ||-|| : Y — R is called a norm if it fulfills three conditions:
(1) [yl = 0 iff y = 0;
(2). 1|Ayll = |A| lly]l, for all A e R and y € Y;
@) My + 2l < llyl| + |z[] for all y, z € Y.
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Proposition 6.1. Let (A,d) be a metric space, (Y,||-||) a normed space, and H an arbitrary
non-empty subset of A. We define

BH;Y):={f:H—Y: sgg”f(x)“ < o0}

Define || - ||o : BIH;Y) = Ry, || flloc :=supgep [|f(x)]|. Then the space (B(H;Y),||-|lsc) is a
normed space, and the map doo(f,q) := ||f — 9|l defines a metric.

Proof. We first check the three conditions for being a norm. We have ||f||oc = 0 if and only if
[|f(z)|| =0 for all x € H, which is equivalent with f = 0 and this proves (1).

If A=0, (2) follows from (1). Hence we may assume that A # 0. Since ||[Af(z)|| = |A| ||f(z)]|
for all z we have

A @) = AL @) < AL sup (@)1 = AL f ]l
yeH
which shows that |A] || f]|e is an upper bound for all the numbers of the form ||Af(z)||. Hence:
[IAMflloe = sup [IAf(@)[] < [A[ [].f]]oo-
reH

On the other hand,
1 1
f@Il = lIM @) < Al
1@ = @I < 7l

which means that ﬁﬂ)\fﬂw is an upper bound for all the numbers of the form ||f(x)||. Hence:

1

fllso <
1Flle < 1

A floos or A [ flloo < [[Aflloo-

Thus |A| [|fllee = |IAf]leo and (2) is proved.
Finally, let us prove the triangle inequality (3). Fix f,g € B(H;Y) and for every x € H we
apply the triangle inequality in (Y, || - ||):

f (@) + g@) < |1F @)+ [lg@)II < 1 Flloo +[lg]loo-

Thus || f]loo + ||9]|co is an upper bound for the set {||f(x) + g(z)|| : « € H}, hence

sup [|f(@) + g(@)|| = [If + glloc < |[flloc + [19]]oc-
xeH

Note that doo(f, g) :=||f — g||co is the metric induced by the norm. O

Proposition 6.2. Denote by C(H;Y') the subset of B(H;Y') where the functions are also contin-
uous. Assume that (Y, ||-]|) is a Banach space (a complete normed space). Then (C(H;Y),||"|lo0)
is a Banach space, too.

Proof. We need to prove that every Cauchy sequence is convergent. Assume that {f,},>1 C
C(H;Y) is Cauchy, i.e. for every € > 0 one can find N¢(e) > 0 such that ||f, — f4llec < € if
p,q > Nc(e). We have to show that the sequence has a limit f which belongs to C(H;Y).

We first construct f. For every x € H we consider the sequence {f,(x)},>1 C Y. Note the
conceptual difference between { f,,(x)}n>1 (a sequence of vectors from Y') and {f,, }n>1 (a sequence
of functions from C'(H;Y’)). Because

fp(2) = fa(@)I] < |Ifp = falloo

we have that the sequence {f,(z)}n>1 is Cauchy in Y. Since Y is complete, then {f,(z)}n>1
must have a limit in Y. We denote it with f(x). Moreover, since {f,}n>1 is Cauchy it must be
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bounded, i.e. there exists a constant M < oo such that ||fn|lcc < M < oo for all n > 1. The
triangle inequality gives:

@I < [1f (@) = fa(@)l + |1 fu()]] < N1f (@) = fo(2)]] + M,
and after taking the limit n — oo we get:

f (@) <M, Ve H,

hence || f|loc < M < 0.
The function f we have just constructed is our candidate for the limit in the norm || - ||o.. Now
we want to show that for every € > 0 we can find Ny (¢) > 0 so that:

sup ||f(x) — fu(x)|| < e whenever n > Nj(e). (6.1)
reH

In order to do that, take an arbitrary point x € H. For every p,n > 1 we have

1f (@) = fu(@)ll < [[f(2) = fo@)| + || fp(2) = ful2)]]
< If@) = fo@l +[1fp = falloo- (6.2)

If we choose n,p > N¢(e/2), then we have ||f, — fu|lso < €/2 and

1f (@) = fu()ll < | f(2) = fp(@)l| +€/2,  Vn,p> No(e/2).

But the above left hand side does not depend on p, thus if we take p — oo on the right hand side,
we get:

1f (@) = fa(@)l| < €/2 <&, n> No(e/2). (6.3)
Note that this inequality holds true for every x. This means that €/2 is an upper bound for the
set {||f(x) — fu(x)|| : € H}, hence (6.1) holds true with Ny(e) = Ne(e/2).

Until now we have proved that f is bounded. Now we want to prove that f is a continuous
function on H. Fix some point a € H. Choose ¢ > 0. We define n; := Ny(¢/3) = N¢(e/6).
Because fp, is continuous at a, we can find d(e,a) > 0 so that for every x € H with d(z,a) < 0
we have || fn, () — fn,(a)|| < €/3. Thus if x € H with d(z,a) < § we have:

1f (@) = F(@)l] < |[f(2) = fr, @] + [ fns () = frr (@) + 1| fn, (@) = f(a)]]

<2/f = farlloo + I1fny (2) = fr, (a)]] <e (6.4)
Since a is arbitrary, we can conclude that f is continuous on H, thus belongs to C(H;Y'). Therefore
the space is complete. O

6.2 The main theorem

Let U be an open set in R%, d > 1, and I C R an open interval. Assume that there exist yo € U
and rg, dp > 0 such that B,,(yo) C U and [to — do,to + o] C I.
We consider a continuous function f : I x U — R? for which there exists L > 0 such that

1£(t, ) — £t y)ll < Llx =yl V¢ € [to—do,to +dol, VX, y € Bry(¥o)- (6.5)

We define the set Hy := [tg — 6o, t0 + do] X B, (yo) C R¥*L. Since Hy is bounded and closed, it
must be compact.
Using the triangle inequality we obtain:

LECE )] = [[£Cs I < [[E(E %) = £(s,y)]

which shows that the continuity of f implies continuity for [|f||. Since ||f|| is a real valued con-
tinuous function defined on a compact set, according to Lemma 4.5 we can find M < oo such
that
sup ||f(t,x)| =: M < oc. (6.6)
[t,x]€Ho
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Theorem 6.3. Consider the initial value problem:

y'(t) =f£(t,y(®), y(to) =yo. (6.7)

Define 81 := min{dy,ro/M,1/L}. Then there exists a solution 'y : (to — d1,t0 + 01) — Br(¥0),
which is unique.

Proof. Take some 0 < § < 0; and define the compact interval K := [tg — d,tp + 6] C R. Then

any continuous function ¢ : K — R? is automatically bounded, and since the Euclidean space

Y = R% is a Banach space, we can conclude from Proposition 6.2 that the space (C(K;R?),dw)

of continuous functions defined on the compact K with values in R? is a complete metric space.
Define

X = {ge CUKRY :  g(t) € Brylyo), Vi € K}, (6.8)
Lemma 6.4. The metric space (X,d) is complete.

Proof. Consider a Cauchy sequence {g,},>1 C X. Because (C(K;R%),d,) is complete, we can
find g € O(K;R?) such that lim,, o doo (g, &) = 0. Thus for every t € K we have

g(t) = lim gn(t), lim [gn(t) —g(?)]| = 0.
Since by assumption ||g, (t) — yol| < 7o for all ¢ and n, we have
I8(t) = yol = lim [|gn(t) —yoll < 7o, Vte€K,
n—oo

which implies that g € X. O
Lemma 6.5. Define the map F : X — C(K;R?)
t
F@)(t) = yo + / £(s.8(s))ds, Vi€ K,
to
where £ obeys (6.5). Then (i) the range of F belongs to X and (ii) F : X — X is a contraction.

Proof.
(i). Since f; are continuous real valued functions, we have that

K>s— fi(s,g8(s)) €R

are also continuous, thus Riemann integrable. Because g(s) € By, (yo) for all s € K, we have that
(s,g(s)) € Hy. The integral from the definition of F' defines a vector u(t) with components

ui(t) = / fi(s.g(s)ds, 1<j<d.

Denote by t; := min{tg, t} and t3 := max{tg,t} . Then we have:

d t d ta
ol =Y w0 = [ | Sustrsits.(e)) | ds < [ ol it )l

where in the last inequality we used the Cauchy-Schwarz inequality. Hence we may write:

From (6.6) we have sup,cx ||f(s,g(s))|| < M, hence:

< / 16(s. g(s)) [ ds.

t1

/ 65, g(s))ds

to

I[F(g)](t) = yoll = [[u(®)]] S/t2\|f(5,g(8))||d5§M5<7“07 vt € K,
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which shows that [F(g)](t) € By, (yo) for all t € K, thus the range of F is contained in X.
(ii). Consider two functions g,h € X. We have

doo (F(g), F'(h)) = sup [|[F(g)](*) — [F ()]l

The Lipschitz condition from (6.5) implies:

IF(g)](t) = [F()](@)]| = ’/t [£(s,8(5)) = £(s, h(s))lds|| < (9 L) sup |g(s) — h(s)l|

< (6 L)dso(g,h), VteK. (6.9)

It means that doo(F(g),F(h)) < § L dw(g,h) for all g;h € X, and 6L < 1. Thus F is a
contraction. 0

Finishing the proof of Theorem 6.3. Vi have seen that F' is a contraction on X. Then
Theorem 5.2 implies that there exists a continuous function y : K — B,,(yo) such that

y(t) = [F(y)I(t) = yo + / f(s,y(s))ds, t€[to—0d,to+d].

to

But the right hand side is differentiable for ¢ € (to — 0, %o + ¢) due to the fundamental theorem of
calculus, and moreover,

% (/tt f(s,y(s))ds) =f(t,y(t)).

Thus (6.7) is satisfied. Finally, let us prove uniqueness. Assume that there exists another solution
z obeying the conditions of the theorem. We have z(ty) = yo and z is continuous because it
is differentiable; moreover, z’ is also continuous because it equals f(s,z(s)), and z € X. Thus
applying once again the fundamental theorem of calculus we obtain:

z(t) = z(to) —|—/t z' (s)ds = [F(2)|(t), z=F(z), ze€X.

Since F has a unique fixed point, we must have z = y. O

Remark 6.6. Choose 0 < § < 0;. Define the sequence of functions yy, : [to — 6,t0 + 6] — RY,
k > 1, where yi(t) = yo and

t
WHW=W+/f@m@W&k2L

to

We see that yi+1 = F(yx), where F is given by Lemma 6.5. A direct use of Lemma 6.5 (ii) implies
that {yx}r>1 converges uniformly on the interval [to — 0,to + 6] towards a continuous function y
which obeys the fixed point equation

t

y®=m+tf@wmm

thus solving (6.7). This is Picard’s iteration method.

7 The implicit function theorem

The Euclidean space R™ has a norm defined by ||x|| = Z;":l |z;]2.
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Lemma 7.1. Let A be a m x n matriz with real components {a;i}. Define the quantity || A||us :=
\/Z;‘n:l > k=1 lajkl?. Then

Atz < [[Allus [[ullzn,  Vu € R™. (7.1)

Proof. From the Cauchy-Schwarz inequality we have:

n 2 n n n
(Au);|* = <Z ajk“k) < (Z |ajk|2> > el = lajillul[za,
k=1 k=1 k=1 k=1

and the lemma follows after summation with respect to j. O

Lemma 7.2. Let O C R? be an open set and Ks := Bs(xo) = {x € R? : ||x — x¢|| < 6} be a
closed ball included in O. Let ¢ : O — R be a C*(Ks) map (which means that 0;¢ exist for all
J and are continuous functions on Ks). Denote by ||0;¢||cc = supPyex, [0j0(x)| < co. Then for
every x,x’ € Ks we have:

|6(x) — o(x')] <

d
> 056112 11x = x| (7.2)
j=1

Proof. Define the real valued map f(t) = ¢((1 —t)x' +1tx), 0 < ¢ < 1. Applying the chain rule we

obtain:
d

F(t) = (25— 2)(0;6)((1 - t)x' + tx),

j=1
thus the Cauchy-Schwarz inequality implies:

d

P @< | D 100((1 = t)x' + tx) 2 ||x — || <

j=1

Since ¢(x) — ¢(x') = f(1) — f(0) = [ f'(t)dt, we obtain:

d
STl0i0lI% lx x|, Yo<t<1.
7j=1

1 d
|6(x) — ¢(x')] S/O L @)]dt < | > 11059112 Ix — x|
j=1

which proves (7.2). O

Lemma 7.3. Let O and Ks be as above. Let £ : O — R? a vector valued map which is C*(Ks).
Define

q d
1AE|loo, 65 = 4| D D 105 fillZ-

k=1 j=1

Then we have:
I£(x) — £(x)[|ra < [|Af][oo,ksl1x — X'||re, VXX € K. (7.3)

Proof. Let f(x) = [f1(x), ..., f¢(x)] and use (7.2) with ¢ replaced by fi, 1 <k < g. We have:

d
() = fP <D 1105/l 1x = X' [[fa
j=1
and the proof is completed after taking the sum over k. O
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Let d = m+n with 1 <m,n < d. A vector x € R? can be uniquely decomposed as x = [u, w]
with u € R™ and w € R”. Let U € R% be an open set and h : U — R™ be a C}(U;R™) function.
We denote by:

[Duh ([, w))] = {Z}un',w’n 1<k< m} € L™ R™),

and
Ol
8wj

Dh(i,w')] == {

the partial Jacobi matrices of h. We also have:

([, w): 1<k<m, 1 §j§n} € L(R™,R™)

[Dh([u',w'])] = [Duh([u’, w']); Dwh([u',w'])] € LR, R™).
We can now formulate the implicit function theorem.

Theorem 7.4. Let U C R? be an open set and h : U + R™ be a CH(U;R™) function. Assume
that there exists a point a = [ua, W] € U such that h(a) = 0 and the m x m partial Jacobi
matriz [Dyh(a)] is invertible. Then there exists an open set E C R™ containing w, and a map
f: E— R™ which obeys f(wa) = ua and h([f(w),w]) =0 for all w € E. Moreover, the matriz
[Duh([f(w), w])] is invertible if w € E and all entries of its inverse are continuous on E. Finally,
f is continuously differentiable on E and we have:

[DE(w)] = —[Duh([f(w), w])]™" [Dwh([f(w), w])] € LR",R™), Vw € E. (7.4)

Proof. The point a is an interior point of U, hence there exists r > 0 such that B,(a) C U. Thus
for every x = [u,w| € B,(a) we have

[Ix — al[Za = |lu— val[Em + [[w — wal[zn <.

If e < 7//2, let P,(€) be the open ball B.(w,) C R” and @, (¢) be the open ball B.(u,) C R™.
Then one can verify that Q,,(¢) X P,(e) C B.(a) C U.

For every w € P, (¢€), define the map Fy, : Q,(€) — R™ given by

Fy(u) :=u— [Dyh(a)] 'h([u, w]).

The main idea behind the construction is to show that there exists a constant C > 0 and some
small some enough ¢; < r/+/2 such that for every ¢ < ¢; and for every ||w — wa|[g < €/(10C)
the following two facts hold true:

1. Fy (Qm(e)) C Qm(€) and

2. Fy : Qm(€e) = Qm(e) is a contraction.

Then Banach’s Fixed Point Theorem provides us with a unique uy € Q. (€) such that Fi(uy) =
uy,. This would imply that [Dyh(a)] 'h([uw,w]) = 0; multiplying with [D,h(a)] on the left
leads to h([uw,w|) = 0. This is how we construct the map f(w) := uy for all w obeying
||lw — wallgn < €1/(10C). In the second part of the proof one needs to show that f is also
continuously differentiable when restricted to a ball around w, and obeys (7.4). Technical details
are given below.

Step 1: constructing f(w) as a fixed point.

Let us start with an estimate which will play an important role in what follows. We want to
prove that there exists some 0 < €; < r/v/2 small enough such that for every € < ¢; and w € P,,(¢)
we have:

rm, YVu,u' € Qn(e). (7.5)

1
1w (w) = By (W)[[em < 151w — |
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From the definition of F, we can write:
Fy(u) = =[Dyh(a)] " {h([u, w]) — [Dyh(a)]u}.
Define gy (u) := h([u, w]) — [Dyh(a)u. Hence Fy(u) = —[Dyh(a)]~'gw(u) and we have:
[|Fw () = Foo(0)|[zm < [|[Dub(a)] ™ []us||gw (1) — gw(u)||zm, (7.6)

where we used (7.1).
The set @, (€) is closed and bounded, thus compact. As in Lemma 7.3, namely the estimate
(7.3) with ¢ = m = d, we can derive the inequality:

wny Vuu' € Qu()), weP(o. (1)

e < ||Agwll g e — 1]

lgw (1) — gw(u)|

Let us show that ||Agw||_, O..(oy can be made arbitrarily small when € goes to zero. By computing
the partial derivatives we obtain:

2l () = G () - k)

Due to the continuity of the partial derivatives of h at a, we get that the above right hand side
can be made arbitrarily small with e¢. In particular, there exists €; > 0 small enough such that

1
< )
>e:@ml) = 10(1 + || [Duh(a)] ~lms]])

|Agwl| Yw € Py, (e1).

Inserting this in (7.7) and then in (7.6), we prove (7.5).
We need a second important estimate. We will show that there exists a constant C > 1 such
that

[|Fow () — Fyr (u)||gm < C ||lw — W||gn, Yw,w' € P,(e1), Vue€ Quler). (7.8)
Indeed, using the definition we have:
Fy(u) — Fyw(u) = ~[Dyh(a)] " {h([u, w]) — h([u,w'])}.

Now reasoning as in Lemma 7.3 in which we put O = U, K5 = Qp(e1) X Pp(€1), ¢ = m, d = m+n,
x = [u,w] and x’ = [u, w’] we obtain

|[h([u, w]) — h([u, w])|[z= < [|Ahle,k; [[W — W'[[gn.
Thus
|| Fo (1) — Fy ()| |z < [[[Dub(a)] ™ |Jus||Ah||oo, ks [ W — W]

and we can choose C := 1 + ||[Dyh(a)]7!||us||Ah|| k- Hence we obtain (7.8).
In particular, if w/ = w, and u = u, we obtain:

R

1 Fw(ta) = Fiw, (a)|[rm < C ||w — W

Re, VW € Py(er). (7.9)

This implies:

€

Ea
We are now able to prove that for every ¢ < ¢; and for every w € P,(¢/(10C)), the map

Fy leaves the set Q,,(¢) invariant. Note first that Fy,_ (ua) = ua because h(a) = 0 from our

hypothesis. Now if ||ju — ua|| < e < €; we have:

[|Fw(ua) — Fy, (ua)||lrm < VYw € P,(e/(10C)), € <e. (7.10)

€
1w (1) = taf[rr < [|Fw(u) = Fro(ua)l[rr + [[Fw(va) = tallze < 7,

where we used both (7.5) and (7.10). In particular, Fy(u) € Q. (€).
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We have just proved that for every € < ¢; and w € P, (¢/(10C)), the map Fy : Qun(€) — Qum(€)
is a contraction (see (7.5)) defined on the complete metric space Q,,(€) C R™. Thus there exists
a unique Uy € Q. (€) such that Fy (uw) = uw, which implies that

h([uw,w]) =0, Vw € P,(e/(10C)).

Step 2: f is continuous on P, (e;/(10C)).
If w,w’ € P,(e1/(10C)) we have:

Huw - uw’||Rm = ||FW(uW) - FW'(uW')HRm
< Fw(uw) = Fw (uw)|[rm + [[Fw(Uwr) — Far (Uw)|[rm
1
< E||uwfuw/|Rm+C’||wfw’\Rn. (7.11)
This shows that
10C , ,

which proves that the map
P,(e1/(10C)) > w — uy =: f(w) € R™

is (Lipschitz) continuous.

Step 3: f is differentiable.

We now want to prove that there exists some €2 < €1 such that f(w) = uy, is differentiable
on E := P,(e2/(10C)) and obeys (7.4). Because h is differentiable at x’ = [u’/, w’], there exists
a map &, defined on the ball B,(a) C RY, continuous at x’ and with e,/(x’) = 0, such that for
every x € B,.(a) we can write:

h(x) — h(x') = [Dh(x')](x — x') + |jx — [z (x). (7.13)
Replacing x with [f(w), w] and x” with [f(w’), w'] we have:
h([f(w), w]) — h([f(W'% w') (7.14)
= [Dh(x)]([f(w) — £(w'), w — w']) + \/||f Wl + W = W/[[§n e ([E(w), w]).

Because h is a C! function, the map
Qm(e) x P,(¢/(10C)) 3 x' + det[Dyh(x')] € R, €< ¢

is continuous. Since [Dyh(a)] is invertible we must have that det[Dyh(a)] # 0. When the
point x" belongs to Q,(e) x P,(e/(10C)), by choosing € =: €3 small enough we can insure that
det[Dyh(x')] # 0 for all X" € Q. (e3) X Pp(e3/(10C)), thus [Dyh(x)] is invertible.
Remember the identities h([f(w), w]) = h([f(w’), w']) = 0 and
[Dh(x)](x — x) = [Duh(x)](f(w) — f(W)) + [Dwh(x)](w — w').

Using these facts in (7.14) and multiplying both sides of (7.14) with [Dyh(x)]~! we obtain:

f(w) — f(w') = - [Duh(x ')]*1[13 h(x)](w — wa) (7.15)

—JIEw) — W] + [[w — W] [Duh()] e ([E(w), w).

10002
20 <4/ <1 +1||w—w|gn, Vw,w € P,(e3/(10C)).
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Replacing this in (7.15) we obtain:

1£(w) — £(w') + [Duh(x)] 7! [Dwh(x)] (W — W)

< 2 + 1w = o D )] e (), W)
<l = s 250+ 1G] sl (), WDl Vow € Pa(es/(10C)). (7.16)

Now using limy _w [f(W), w] = X" and the continuity of ex at x = x” we have:

i HEOW) = £(W') + [Duh(x)] 7 [Dwh(x)] (W — W) [

w—w’ ||W —WlHRn

=0,

which shows that f is differentiable at w’ and proves (7.4). Moreover, because the right hand side
of (7.4) is continuous on E = P, (e3/(100)) it follows that f € C*(E;R™) and we are done. [

8 The inverse function theorem

We start with two technical lemmas.

Lemma 8.1. Let O C R™ be an open set, K5 := Bs(ug) = {u € R™ : |Jlu—ugl|| < &} be a closed
ball included in O, and £ : O — R™ such that £ € C*(K;). Define g(u) = f(u) — [Df(ug)]u on
K5, where [Df(ug)] is the Jacobi matriz with elements [Df(ug)|r; = (9;fx)(wo). Then for every
B > 0 there exists an 0 < eg < § such that for every 0 < € < eg we have:

lg(u) —g)]| < Bl -1l Vuu' e K. (8.1)

Proof. A straightforward computation gives 0;gx(x) = 0, fx(x) — 0, fx(ug). Thus ||0;gx|/c can
be made arbitrarily small when e gets smaller, because f has continuous partial derivatives. It
follows that ||Ag||ec,kx, < S whenever e gets smaller than some small enough eg, and then we can
use (7.3) with g instead of f. O

Lemma 8.2. Let O C R™ be open and let ug € O. Let £ be a C(O;R™) vector valued function,
such that [Df(ug)] € LR™;R™) is an invertible matriz. Then there exists r > 0 small enough
such that the restriction of f to B.(ug) is injective.

Proof. Assume the contrary: for every n > 1 there exist two different points x,, # y, in B1 (up)
such that f(x,) = f(y,). Define g(x) = f(x) — [Df(up)]x on Bi(ug). Then we have g(x,) —
g(yn) = [Df(uo)](yn — xn) or:

Yo — Xn = [DE(o)] " (g(xn) — 8(yn)), Vn > 1L

Now using (7.1) we have:

[lyn = xall = [|[DE (o))~ [[ns [lg(xn) — g(yn)ll, Vn>1.

Choosing 5 = m, then from (8.1) we infer that there exists some eg > 0 sufficiently

small such that for every n=! < €5 we have ||g(x,) — g(yn)|| < B|lyn — xn||- It follows that:

|[[Df (uo)] ™| |us
+ |[[Df(a0)] ! |lus

lyn = %ull < 5 lyn = xull <llyn = xall, VO <n™" <eg,

which contradicts the assumption ||y, — x,|| # 0. O
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Here is the Inverse Function Theorem:

Theorem 8.3. Let O C R™ be an open set containing ug. Let g € CY(O;R™) such that
[Dg(ug)] € LR™,R™) is invertible, and g is injective on O. Then there exists an open ball
E C R™ which contains wq := g(up), and a function £ : E +— O such that the following facts hold
true:

(i). The set V =f(E) equals g~ 1(E) and is open in R™;

(i1). g(f(w)) =w on E and f(g(u)) =u on V, hence they are local inverses to each other;

(iii). The function £ is a C*(V) function, [Dg(f(w))] is invertible on E and we have:

[Df(w)] = [Dg(f(w))] "

Proof. The set U := O x R™ C R*™ is open. Define h : U — R™ given by h([u, w]) := g(u) — w.
Denote by a := [ug,wg]. Then h € C*(U), h(a) = 0, and [Dyh(a)] = [Dg(up)] is invertible.
Thus the conditions of the Implicit Function Theorem are satisfied and we can find an open ball
E C R™ containing g(ug) = wo and a function f € C*(E) such that h([f(w),w]) =0 on E. In
other words, g(f(w)) = w for every w € E. This equality shows in particular that g(y) € F if y
is of the form f(w) with w € E. In other words, f(E) C g~ *(E).

Now let us show that in fact f(E) = g7 1(E). Let x € g7!(E). We have g(x) =1 w € E
hence g(f(w)) = w = g(x). Because g is injective on @ we must have x = f(w) € f(F), hence
g }(F) C f(E) and the equality of the two sets is proved.

Since g is continuous, the set V = f(E) = g~!(E) is open according to Theorem 4.2. This
proves (i), together with the equality g(f(w)) = w on E.

Now let us prove that we also have f(g(u)) = u on V. Take u € V = g~!}(E) and put
w = g(u) € E. Since w = g(f(w)), we must have g(u) = g(f(w)). Because g is injective, we
must have u = f(w) = f(g(u), thus (i¢) is proved.

Finally, differentiating g(f(w)) = w and using the chain rule we get

[Dg(E(w)][DE(W)] = Lnxm

which means that both factors on the left hand side are invertible and (éii) is proved. O

9 Brouwer’s fixed point theorem

We say that K C R? is convex if for every x,y € K we have that (1 —t)x +ty € K for all
0 <t<1. Aset K is called a convex body if K is convex, compact, and with at least one interior
point.

Theorem 9.1. Let K C R? be a convex body. Let f : K — K be a continuous function which

invariates K. Then f has a (not necessarily unique) fized point, that is a point x € K such that
f(x) =x.

Proof. The first thing we do is to reduce the problem from a general convex body to the unit ball
in R%. We will show that there exists a bijection ¢ : K + Bj(0), which is continuous and with
continuous inverse (a homeomorphism). If this is true, then it is enough to show that the function
pofop™l:Bi(0)— B1(0) has a fixed point a € B1(0). In that case, x = p~1(a) € K.

Lemma 9.2. Any convez body in R? is homeomorphic with the closed unit ball By(0).

Proof. Let x¢ be an interior point of K. There exists > 0 such that B,.(x9) C K. Define the
continuous map g : K — R? given by g(x) := (x — xo)r~'. Define K := g(K). It is easy to
see that K is a convex and compact set. Moreover, the function g: K w— K is invertible and
g Y(y) = ry +xo. Both g and g~! are continuous, and for every y € R% with ||y|| < 1 we have
that ry + x¢ € B,(x0) C K, thusy € K. This shows that B; (0) C K, thus K is a convex body

containing the closed unit ball.
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We now construct a homeomorphism between K and B;(0). The boundary of K is denoted
by 0K, equals K \ int(K), and is a closed and bounded set. The boundary of B;(0) is denoted
by S9! and equals the unit sphere in R%. The ray connecting a given x € dK with the origin
intersects S9! in a point; in this way we define the function h : K — S9! where h(x) is given
by the above intersection.

The function h is injective; let us show this. Given x € K, the set C'(x) defined by joining
x with all the points of B;(0) must belong to the convex set K. But C(x) also contains the ray
joining x with 0, and all the points of the segment strictly between x and 0 are interior points of
C(x), thus interior points of K. Tt means that no two different points of K can be placed on the
same ray starting from the origin, which proves the injectivity of h.

Let us show that the function A is also surjective. Consider any ray generated by & € S9!,
starting from the origin and parametrized by R(&) := {AZ : A > 0}. This ray is a closed set.
Consider the set FE(Z) := R(z) N int(K). This set must be bounded, because K is bounded.
Hence the set of non-negative real numbers {|ly|| : y € E(&)} C R is bounded, thus it has a
supremum ¢ < oo. The supremum is an accumulation point, thus there must exist a sequence of
points {y,}n>1 C E(&) such that ||y,|| — ¢. But this sequence is also included in the compact

set K N R(&). It means that there exists a subsequence y,, which converges to some point
u € KNR(&),ie. |[yn, —ul| = 0 when k — co. Thus we also have ||y, || — ||u|| which shows
that |[u|| = ¢. Now u cannot be an interior point of K, because in that case we could find points
of E(Z) which are farther away from the origin than u, contradicting the maximality of ||u||. Thus
u € K, which proves that the ray hits at least one point of the boundary.

Thus h is bijective and invertible. The (sequential) continuity of h follows easily by geometric
arguments.

Let us now prove that h~! : §4~1 — 9K is also sequential continuous. For every & € S4-1,
the point h~1(2) is the unique point of OK which is hit by the ray defined by #. Assume that
h~! is not continuous at some @ € S4~!. It means that we can find some €y > 0 and a sequence
{#n}n>1 C 8971, such that &, — @ and ||h~1(#,) — h~1(a)|| > €. The vector h=*(,,) is parallel
with Z,, and the same is true for the pair h=1(a) and a. Thus if n is large enough, the last inequality
implies that either ||h=1(2,)|| < ||h~1(a)|| — €0/2 or ||h=(a)|| + €0/2 < ||~ (2,)]|. Assume that
there are infinitely many cases where the first situation holds true. Then if n is large enough, the
point h~'(&,) enters in the cone C'(h~'(a)) and must be an interior point of K, contradiction. In
the other situation, h~!(a) would eventually become an interior element of the cone C'(h~1(Z,))
for large enough n, again contradiction.

Let us define the map ¢ : K +— B1(0) by ¢(x) := x/||h =" (x/||x]])|| if x # 0 and ¢(0) = 0. It is
nothing but taking x and dividing it with the length of the segment between 0 and the point on
the boundary corresponding to the ray generated by x/||x||. Clearly, ¢ is continuous. It is easy
to check that the inverse of ¢ is given by ¢~ : B;(0) — K where ¢~ (y) := y||h= (y/|ly|])| if
y # 0 and ¢~1(0) = 0. This inverse is continuous because h~! is continuous.

In conclusion, ¢ := ¢ o g : K + B1(0) is a homeomorphism, and we are done. O

Thus from now on we will assume without loss of generality that K = By (0).

Lemma 9.3. Assume that f : B1(0) — B1(0) is continuous with no fived points. Then there exists
a smooth function f : B1(0) — B1(0) with the same property.

Proof. Our assumption says that ||f(x) — x|| > 0 for all x € B1(0). The real valued map
B1(0) > x+— ||f(x) —x|| €R

is continuous and defined on a compact set. Thus it attains its minimum in some point x,,. It
follows that:
£60) = x| > [|£6¢m) = %l [ = €0 > 0. (9.1)

Let us extend f to the whole of R? in the following way. Define g : R% — B;(0) by g(x) = f(x) if
[1x]] <1, and g(x) = £(x/||x]]) if ||x|| > 1. The extension is continuous, and ||g(x)|| < 1 for all x.
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Define the function j : R% — R, j(x) = e~/ @=IX1") if |x|| < 1 and j(x) = 0 if [|x|| > 1. The
function j is non-negative, belongs to C*°(R?) and has a positive integral I := [, j(x)dx > 0.
Define j(x) := j(x)/I. Then [p,j(x)dx = 1.

Now if § > 0 we define the function J5(x) := 6% j(6~'x). Clearly, Js is non-negative, belongs
to C>°(R?), it is non-zero only if [[x|| < §, and [;, Js(x)dx = 1 independently of 4.

Define the function g5 : B1(0) — B1(0) by the formula:

8o = [ Jstx=y)al)dy = [ e(x=y)Jsy)ay. 92

That the range of gs is included in B;(0) is a consequence of the fact that ||g(y)|| < 1 and
fRd Js(x —y)dy = 1 independently of x. The function g is smooth because Js is smooth.
Now we can write:

gs(x) — 800 = |

y [g(x—y) — g(x)]Js(y)dy = / [g(x —y) — g(x)]J5(y)dy, (9.3)

llyll<é

where the second equality comes from the support properties of Js. If we impose the condition
d <1, then x —y € By(0) if ||y|| < ¢ and ||x|| < 1. The function g restricted to the compact set
B5(0) is uniformly continuous, thus there exists some dy > 0 small enough such that

llg(x') —g(x")|]| < €/2 whenever ||x' —x"||<dy, x',x" e By(0).
Applying this estimate in (9.3) we obtain that ||gs, (x) — g(x)|| < €/2, for all x € B;(0). Using
this in (9.1) it follows:

|lgs, (%) — x[| > €0/2 >0, Vx € Bi(0). (9.4)

The function gs, is our f and the proof of this lemma is over. O

From now on we can assume that our function f is smooth and with no fixed points in By (0).
The next lemma shows that such a function f would allow us to construct a smooth retraction of
the unit ball onto its boundary.

Lemma 9.4. Assume that f : B1(0) — B1(0) is smooth with no fized points. Then there exists a
smooth function h : By(0) — S such that h(x) = x if x € S971.

Proof. We know that there exists some ¢y > 0 such that ||f(x) — x|| > ¢ for all x € B;(0). We
define the unit vector w(x) := (||x — f(x)||)~! (x — f(x)) which defines the direction of a straight
line starting in f(x) and going through x. This line is parametrized as f(x) 4+ tw(x), with ¢ > 0.
The value ¢t = ||x — f(x)]|| gives x. For even larger values of ¢ we approach the boundary. There
exists a unique positive value of t(x) > ||x — f(x)|| > €y which corresponds to the intersection of
this line with the unit sphere S¢~!. Namely, from the condition ||f(x) + tw(x)||> = 1 we obtain:

t(x) = ~f(x) - w(x) + v/(F(x) - w(x))? + 1 = [[Fx)[]> = []x — £(x)]],

where f(x) - w(x) is the inner product in R?. The only problem related to the smoothness of this
function could appear if the square root can be zero. The square root is zero if ||f(x)|| = 1 and
0 = f(x)-w(z). Equivalently, f(x)-x = 1. The last equality demands that x = f(x), both vectors
having unit lenght and sitting on the boundary, situation excluded by our assumption of absence
of fixed points. Thus ¢(x) is smooth, and we can define

h(x) := f(x) + t(x) w(x) € S9!

which ends the proof.
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Lemma 9.5. Assume that h : By(0) — S9! is smooth and h(x) =x ifx € S%~1. [f0 < s <1,
define the map g5 : B1(0) — B1(0) given by gs(x) = (1—8)x+sh(x). Then there exists 0 < sg < 1
such that gs is a bijection for all 0 < s < sg.

Proof. First of all, we note that if x € S%~! then g,(x) = x. Thus the only thing we need to show
is that g is injective and gs(B1(0)) = B1(0).
For the injectivity part: consider the equality gs(x) = gs(y) for some x,y € B1(0). This can
s

be rewritten as:
——(h(x) ~ h(y))

Reasoning as in Lemma 7.3 we can find a constant Cj, > 0 such that ||h(u) —h(w)|| < Ch|lu—w]]
for all u,w € B1(0). Thus we obtain:

X—y=-—

Chs
1—s

Ix =yl < [l =l
which imposes x = y if s is smaller than some small enough value 0 < § < 1.

Now let us assume that 0 < s < 5. We want to prove that there exists 0 < sg < s such that
gs(B1(0)) = B1(0) for all 0 < s < sg.

One inclusion is easy: if ||x|| < 1, then ||gs(x)|| < (1—s)||x||+s < 1. Thus gs(B1(0)) C B1(0).

The other inclusion is more complicated. Let us consider the equation gs(x) = z, where
||z|| < 1/4 is arbitrary. This equation can be rewritten as x = (1 — s)"'{z — sh(x)}. Now if s is
smaller than some small enough value s, the vector T(x) := (1 — s) 'z — s(1 — s)“'h(x) obeys
IT(x)| < 1/2 for all [[x|| < 1. In particular, T" invariates B (0). Also:

1T (w) = T(W)|| < Ch s [[la—wl|, Vu,we BL(0).

Thus if s < s := min{sy, C’;l}, the map T is a contraction and has a unique fixed point. This
fixed point solves the equation g(x) = z. Thus until now we showed that

B%(O)Cgs(Bl(())), 0<s<sy <.

Another important observation which we have to prove is that gs(B;(0)) is an open set. Indeed,
we have [Dgs(x)] = (1 — 8)Iixq + s[Dh(x)] and det[Dgs(x)] > 1/2 if s is smaller than some small
enough ss, for all x € By(0); let y = gs(a) for some a € B;(0). Then from Theorem 8.3 (i) it
follows that there exists some r small enough such that g.(B,(a)) is open, and since y € g4(B,(a))
there exists € > 0 so that B.(gs(a)) C gs(Br(a)) C g+(B1(0)).

Now fix 0 < sp < min{sz,s3}. For 0 < s < sy we know that g,(B1(0)) is open and B
gs(B1(0)) € B1(0). We need to show that By(0) C gs(B1(0)).

Assume the contrary: there exists some yg € B;1(0) which does not belong to gs(B1(0)).
Denote by I the closed segment joining 0 with yo. The set E := I N g4(B1(0)) is not empty.
Moreover, the set:

(0)

1
4

{llyll: y € INgs(B1(0))} < [0, ]lyolll

is not empty, and has a supremum ¢ < 1. The supremum is always a limit point, hence there
exists a sequence {yn}tn>1 C I N gs(B1(0)) such that ||y,|| — ¢. Because I is compact, there
exists a subsequence y,, which converges in I to some point y € I, thus y is an adherent point
of g;(B1(0)) and ||y]| = ¢ < 1. Clearly, ¥ & g+(B1(0)) because otherwise, since gs(B1(0)) is
open, we could find elements of I Ng,(B1(0)) even farther away from the origin, contradicting the
maximality of the length of y.

Thus we have constructed § € g5(B1(0)) \ gs(B1(0)) with ||¥]|| < ||yo|] < 1. Being an adherent
point of gs(B1(0)), there must exist a sequence {z,}n>1 C gs(B1(0)) such that z, — y. Thus
there exists a sequence {x,},>1 C B1(0) such that gs(x,,) = z,. We can find a subsequence x,,
which converges to some xg € B1(0). Since g5(Xn, ) = 2z, — ¥ and due to the continuity of g, we
must have g,(xo) = ¥. But since ¥ ¢ g,(B1(0)), it must be that xo € S9~!. But on the boundary,
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gs(xg) = xo and has unit length, which contradicts our assumption that ||y|| < |lyo|| < 1.
Therefore, yo cannot exist, and B1(0) C gs(B1(0)).
O

We are finally ready to prove Brouwer’s theorem. In the previous lemma we considered the
smooth map g, : B1(0) — B;(0). Define the function:

F(s):= / det[Dgs(x)] dx, 0<s<1.
B1(0)

The determinant of the Jacobi matrix [Dgs(x)] is a polynomial in s, thus F(s) is a polynomial.
Moreover, we have shown that if 0 < s < sg, the map g, is nothing but a smooth and bijective
change of coordinates in By (0) with det[Dgs(x)] > 0, thus F(s) is constant on [0, s9] and equal
to the volume of B;(0). But if a polynomial is locally constant, then it is constant everywhere.
Thus F(1) should also be equal to the volume of By(0).

Now let us show that this cannot be true. If s = 1, then g;(x) = h(x) on B (0). It means that

d
L= = g1(x) - &1(x) = >_(8:1(x)i.

k=1

Differentiating with respect to z; we obtain

d
0=">[0;(g1(x)] (g1(x))k, 1<j<d,

k=1

or [Dg;(x)]*g1(x) = 0 for all x. Since ||g(x)|| = 1, we have that [Dg;(x)]* is not injective, thus
not invertible, hence with zero determinant. Therefore det[Dg;(x)] = det[Dg;(x)]* = 0 for all
x, and F(1) = 0 # vol(B1(0)). This contradiction can be traced back to our assumption which
claimed that f had no fixed points. The proof is over. O

10 Schauder’s fixed point theorem

Theorem 10.1. Let X be a Banach space, and let K C X be a non-empty, compact, and convex
set. Then given any continuous mapping f: K — K there exists x € K such that f(z) = x.

Proof. Given € > 0, the family of open sets {B.(z): € K} is an open covering of K. Because K
is compact, there exists a finite subcover, i.e. there exists N points p1,...,pn of K such that the
balls Bc(p;) cover the whole set K.

Let K. be the convex hull of pq,...,py, defined by:

N N
I(6 = thpja thil, tj ZO CK.
J=1 J=1

It is an easy computation to show that K. is a convex set. Moreover, K. is immersed in an at
most N —1 dimensional Euclidean space generated by the vectors p; —p1, where j € {2,3,...,N}.
Define the function g; : K — Ry by gj(x) = e—||xz—p,|| if z € Be(p;), and g;(x) = 0 otherwise.
Each function g; is continuous, while g(z) = Ej\;l g;(z) is positive due to the fact that any x has
to be in some ball, where the corresponding g; is positive. Since g is continuous and K compact,
there exists 0 > 0 such that g(z) > ¢ for every z € K.
Now consider the continuous map 7.: K — K, given by:

Sy ¥ /(Co N Y (CO N
R T R I 1 B
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Since ||g;(z)(z — p;)|| < g;(x)e for all 7, we have:

N
Ime(a) — el < 3 ”gﬂ'(”z((p;)_ Moo vrer (10.1)

Now we define:
fe: Ke*)Kea fe(m):m(f(x))

This is a continuous function defined on a convex and compact set K, in a finite dimensional
vector space. By Brouwer’s fixed point theorem it admits a fixed point x.

fe(ze) = .

Using (10.1) we get:
||7T6(f('rs)) - f(IG)H < €

thus for every e > 0 we have constructed z. € K. C K such that ||f(z.) — z.|| <e.

Choosing 1/n instead of €, we construct a sequence {z, },>1 C K such that || f(z,)—z,|| < 1/n.
Since K is sequentially compact, we can find a subsequence z,, which converges to some point
Z € K when k — oo. By writing:

1f (@) =zl < [1f (@) = flen )l + 1 (@n,) = Tl + ll2n, — 2], k=1,

we observe that due to the continuity of f at Z, the right hand side tends to zero with k. Thus
f(Z) = Z and we are done. O

11 Kakutani’s fixed point theorem

Let A € R? be a closed set, and denote by 24 the set of all subsets of A. We say that F : A+ 24
is upper semi-continuous if the following property holds: assume that {x,},>1 C A with x,, —
Xoo € A, {yntn>1 C A with y, = yoo € 4, and y,, € F(x,); then we must have y., € F(xoo).

Note that if we choose x,, = X for all n, then the upper semi-continuity implies that if
Yn = Yoo € A and y,, € F(Xso), then yoo € F(Xoo). In other words, F(xo) is always closed for
all x, € A.

Theorem 11.1. Let K C R% be a convex body. Let F : K +— 2K be upper semicontinuous, such
that F(x) C K is convex and nonempty. Then there exists x* € K such that x* € F(x*).

Proof. Since K is compact, for every m > 1 there exist N,, points denoted by {wj}m}é-v:’"i such
that K C Uéy:’”lB 1 (Wj.m). It is important for what follows to note that we may choose the points
W m such that each ball B (x) contains at most A (only depending on the dimension d) points
W m, independent of m and x.

For every 1 < j < N, we define a map gjm : K = Ry by gjm(x) = £ — |[x — W ]|
if x € B1(Wjm), and gjm(x) = 0 otherwise. Each function g, is continuous, while g, (x) =

Z;‘V:mi gj,m (%) is positive due to the fact that any x has to be in some ball j, where the corresponding
gj,m 1s positive. Since g,, is continuous and K compact, there exists d,, > 0 such that g,,,(x) > o,
for every x € K.

For every 1 < j < N,,, we choose some y; ,,, € F(w;,) C K in an arbitrary way. Define the
map

N, N
gjm(X) gj,m (%)
f,.: K— K, f,(x):= Yj,ms =1, y;€F(wjnm).
m L( ) ]; gm(x) J,m jZ:: gm(x) J ( J YL)

The function £, is continuous and defined on a convex body, thus Brouwer’s fixed point theorem

provides us with a fixed point X, € K such that £,(x,,) = S 0 Lumlem)

F=1 g (xm) JIm = Xm, for every
m > 1.
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Because K is sequentially compact, we may find a subsequence x,,, which converges to some
x* € K when k — oo. It is important to note that when j varies from 1 to N,,, we have
Gj,my (Xm,,) 7 0 only for those W, ., which obey ||Xm, — Wjm,|| < mk < 2. There are at most
N indexes j such that g; m,, (Xm, ) # 0:

Gj,mp (X
£ (ka) =Xm, = Z . Mk( mk)}’j,mk-
1 Imy (Xm,,)

mek —Wj,my HSTk
Thus for a fixed k > 1 we have finitely many w; ,,,, (at most N, independently of k) which all lie
in a small ball of radius 1/my, around x,,,. We can reorganize the A closest points w; ,,,, and
their corresponding y; ,,, as N pairs of sequences {w} }x>1 and y5, with limy_, [|[W] —x*|| =0
and y; € F(w}) for all 1 < s <N. With the new notation:

Js, mk xmk ~ ~ %
fmk (ka E x ) YZ kll)m wlsf =X .
s=1 gmk mi S
Now we can choose a subsequence y; , n > 1, such that y; ~converges to some y* € K. Thus:

N

gs,mkn (kaw) ~ 8 * s
Xy, = ) —eho gy L dim Wi =x", lim §i = y°.
= gmy, (X, L) n—00 n—»00
To summarize, we have lim,, v~vzn =x*, lim, ,o0 ¥ yk =y®, and yk € F(Wk ). Because F

is upper semi-continuous, we must have y*® € F (x*) for all 1 <s<N. Moreover

Since F(x*) is convex, and all y* € F(x*), the convex combination Z

N

Ximg, — Z 9s,my,, (ka,n ) v

< udix |75, — v°ll = 0.
= mi, Xmy,) s=1

Gs,my, (Xmy ) o .
—_— 5 1 n
s=1 Gmy,,, (xmk )y S a

element of F'(x*). Since X, — x*, we have that x* must be an adherent point of F ( *). Since
F(x*) is closed, then x* € F( *) and we are done.
O

12 Existence of Nash equilibrium for finite games with two
players

Let K; C R% and Ky C R% be two convex bodies (i.e. convex, compact and with non-empty

interior). The set K = K; x Ko C R%%9 is also a convex body. Let ¢ : K + R be a continuous

function. We say that ¢ is concave in the first variable if for every x,y € K; and for every
0<t<1andze Ky we have:

¢(tx + (1 - t)yv Z) > t(b(X, Z) + (1 - t)¢(ya Z).

We say that ¢ is strictly concave in the first variable if for every x # y and 0 < ¢ < 1 we have:

o(tx+ (1 - 1)y, z) > t¢(x,2) + (1 = 1)p(y, 2).

Obvious definitions apply for the second variable.

Let ¢ and ¢o be two real valued continuous functions defined on K, such that ¢; is concave
in the first variable while ¢ is concave in the second variable. They model the payoff functions
of two players. The triple (¢1, g2, K) is called a finite game with two players.

A point [x*,y*] € K is called a Nash equilibrium if for every x € K; and y € K5 one has:

P1(x,y") < o1(x",y") and  ¢o(x",y) < (X", y7).

Here is the main result of this section:
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Theorem 12.1. FEvery finite game admits a Nash equilibrium.

In order to prove the theorem, we will need two technical lemmas.

Lemma 12.2. Let ¢ : K — R be concave in the first variable. Fiz xog € K1 and yg € Ko. Then
the function F(x) = ¢(x,y0) — ||x — xo||? is strictly concave on K;.

Proof. Tt is enough to show that g(x) := —||x—xo||? is strictly concave. Let ¢t € (0,1) and x; # Xa.
Then it is easy to compute:

g(tx1 + (1= t)x2) = [tg(x1) + (1 = t)g(x2)] = t(1 = t)[[x1 — xa[[* > 0.

Lemma 12.3. Let ¢ : K — R be continuous and concave in the first variable. Fix xg € K1 and
yo € Ka. Then the function ¢(x,yo) — ||x —Xol||? attains its maximum in a unique point x(Xo,yo),
and the map

K 3 [xo,y0] = x(x0,¥0) € K1

is continuous. Finally, if x(xo,y0) = Xo then

¢(X7YO) S ¢(X0ay0)7 Vx € Kl' (121)

Proof. Since ¢ is jointly continuous on K7 X K», it is also separately continuous. For a given pair
[X0,¥0] =: z € K we define the real valued map f, : K1 — R given by f,(x) := ¢(x,y0)—||x—xo]|?.
This function is continuous hence we know that it attains its maximum M < oo because K is
compact. Moreover, from the previous lemma we know that f, is strictly concave.

Let us first show that the value M is attained in only one point. Assume the contrary: there
exist two points x1 # xo € K; such that f,(x) < fu(x1) = fa(x2) = M for all x € K;. But since
fz is strictly concave we have:

fa(x1/2 +%x2/2) > %fz(m) + %fz(XQ) =M

which contradicts the fact that M is the maximal value.
Thus we may denote by x(z) € K; the unique point which maximizes f,:

fa(x) < fo(x(2z)), Vxe€ K.

We now show that x(z) is continuous on K. Assume the contrary: there exists some u € K such
that x(-) is not sequentially continuous at u. Then we may find some ¢y > 0 and a sequence
{Zn}n>1 C K such that z, — u and |x(z,) — x(u)| > €. Since K is sequentially compact, we
can find a subsequence {x(2zy,)}r>1 which converges to some point w € K;. Clearly, w # x(u).
We have the inequality:

fznk (X(znk)) > fznk (x(u)), Vk > 1.

Now the map:
KxK;> [va] = fz(x> = (b(X,Y()) - HX_XOH2 €eR

is jointly continuous being the sum of two jointly continuous functions. Using this continuity and
taking k to infinity we obtain fy,(w) > fu(x(u)) which shows that we must have w = x(u) because
the maximum of f, is taken at only one point, contradiction.

Finally, let us prove (12.1). The assumption is that x(z) = xo. Let ¢ € (0,1). If x € K; we
have:

Falxo+H(x—x0)) = d(tx+ (1~ )x0, yo) — 2llx—x0l[2 > t(x, y0) + (1 —)b(x0, Yo) — 2]} — 0 |2
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and
f2(x0) = #(%0,¥0) > fa(x0 + t(x — x0)).
From these two inequalities we obtain:

o(x,y0) < 0(%0,y0) + t]|x — X0||27 vt € (0,1).

Taking ¢ to zero finishes the proof. O

Proof of Theorem 12.1. Applying Lemma 12.2 to ¢ we can construct a continuous map
K> [X07y0] = X(XOaYO) S Kl

such that x(xg,yo) is the unique point which maximizes ¢;(x,yo) — ||x — Xo||?>. Moreover, if
x(X0,y0) = Xo then ¢1(x,y0) < ¢1(x0,¥0). By a completely analogous argument, we can consider
the function ¢2(x0,y) — ||y — yo||?> which will admit a unique maximizing point y(xo,yo), a point
which also continuously depends on its arguments. Moreover, if y(x0,¥0) = yo then ¢a2(x0,y) <

$2(x0, yo0)-
Thus the problem is reduced to finding a fixed point of the continuous map:

K> [x07y0} — [X(X07YO)7y(X07YO)] € Ka

whose existence is insured by the Brouwer Fixed Point Theorem. The proof is over. O

13 The Hairy Ball Theorem

The question we want to answer here is of geometric nature: given the unit sphere S4~! :=
{x e RY: ||x|| = 1} c R? for d > 2, is it possible to find a continuous tangent vector field
w : S9! s RY which vanishes nowhere? If it is possible, then ||W(x)|| has a positive lower bound
because S?~! is compact, and in this way we would be able to construct a continuous vector field

w: §91 s 8971 given by w(x) 1= WW(X), which satisfies w(x) - x = 0.

If d = 2p is even, then such a vector field exists and let us construct an example. If x =
[T1,%2, ..., Tp, Tpt1,- .-, Top_1, T2p] then we can define u € R? by u := [z1, 22, ...,2,] and G € RP
by @ := [Zpt1,...,Top—1,T2p). Thus x = [u,0]. Define w(x) = [—0,u]. Then clearly ||w(x)|| =

[Ix|] =1 and w(x)-x = 0.

Theorem 13.1. If d > 3 is odd, then one cannot construct a continuous map w : S41 — §4-1
such that w(x) -x =0 on S%71.

Proof. We will assume that such a vector field exists, and then we will arrive at a contradiction.

Lemma 13.2. Let d > 2. Assume that w : S9!+ S9=1 is continuous and w(x)-x = 0 for all
x € 5?71 Define Dy == {x € R*: 1 < ||x|| < 2}. Then there exists a smooth map W : Dy > R?
such that w(Dy) C S%71 and W(x)-x =0 for all x € D;.

Proof. If x # 0 we denote by x := HTlHX € 891 Define Dy := {x € R? : i < |[x]| < 2},
and consider the function wy : Dy + R? given by wa(x) := w(%). Then wy is continuous on
the compact set Dy, thus uniformly continuous. Given any € > 0 we may find § > 0 such that

[|[wa(x) — wa(x)|| < € as soon as x,x’ € D and ||x — x'|| < 6. We will reason as in Lemma 9.3:
consider the function Js and define as in (9.2)

800 = [ Js(x—yywalyhdy = [ walx—y)Is(y)dy. x€ D

As in that lemma, we may write

gs(x) ~ wa(x) = [

[m@—ﬁ—m@%@%c/‘[w@—w—wwmwmh
Rd

llyll<é
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If § < 1/4 then x —y € Ds, hence using the uniform continuity of wo on Dy we may find §g < 1/4
small enough such that ||wa(x —y) — wa(x)|] < 1/10 for every x € D; and ||y|| < dg. This leads
to

|lgs, (x) = wa(x)[| <1/10 and ||gs, (x)[| = 9/10, Vx € D;.

The function w3 : Dy + R? given by (remember that wo(x) - x = 0)

ws(x) = g, (x) — x W — g5 () — x (g5, (%) |—X\|a|v;(x)] X

is smooth on D; and obeys:
ws(x)-x =0, |[ws(x)|| = |lgs, (%)I| — llgs, (x) = wa(x)[| = 8/10, Vx € D1.

Finally, we can define the function w(x) := mw;g(x) € S9! which is smooth and orthog-
onal on x. Moreover, we have the estimate (see Lemma 7.3 for the notation):

IAW]| 5. < oo (13.1)

00,D1

O

Define D3 := {x € R?: & < [[x|| < 4} C Dy. If s € R we denote by

81 100
E, = RY: ) —— + 52 — 2.
{xe 100 T8 < ||x|] < g1 +s}

Lemma 13.3. Let hy : D3 — E; given by hy(x) := x + sw(x). If |s| > 0 is sufficiently small,
then the map hy is a bijection.

Proof. Because ||hg(x)||? = ||x||> + s? it is easy to see that hy(D3) C E; for all s. We need to
show that hy is injective and surjective if s is small enough.

Let us start by showing injectivity. Assume that hs is not injective in a neighborhood of s = 0.
Then there exists a sequence {s,},>1 which converges to 0 such that for every n # 1 there exist
Xp # ¥n € Dg such that h,, (x,,) = hs, (y,). This is equivalent with x,, —y,, = sp[W(yn) —W(xn)],
which implies that ||x, — yn|| < 2[sp|. Since D3 C D, if |s,] is small enough then the whole
segment joining x,, and y,, is included in D;. Using (13.1) and (7.3) for w we get that

n = ynll = [snl [[W(yn) = W(xn)[| < [sn| AW 5, [[%n = ¥all

which is incompatible with x,, # y,, if |s,| is small enough.

Now we have to prove that h; is surjective if |s| is small enough. Let y € E;. We have to
show that the equation hy(x) = y has a solution. This equation is equivalent with x =y — sw(x),
which looks like a fixed point equation.

Define the closed set Dy := {x € R?: & < [[x|| < §}. If |s| is sufficiently small, then E, C Dy.
Moreover, D3 C D4 C Dq.

The set Dy is closed in R%, thus together with the induced Euclidean metric it forms a complete
metric space. We want to show that the map fy ; : Dy — Dy given by f, ;(x) :=y — sW(x) is a
contraction on Dy provided |s| is small enough. If this is true, then the unique fixed point which
obeys fy ;(x) = x, has the property that ||x,||* + s* = ||y||?, thus x, € D3 if y € Ej.

Now let us show that fy ; is a contraction for small |s|. First, using that ||W(x)|| = 1, then
if 2 42|s| < 2 and § < % — |s| we have that fy ;(Ds) C Ds. Second, if x1,x2 € Dy with

9 8 10

|[x1 — x2|| > 155, we have:

. 1
[1fy.s(x1) = fy,s (x2)l] < 200 |s] [[x1 = %o, if |2 — 2] = 75
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Third, if x1,%x3 € Dy with ||x; — xa|| < ﬁ, then since the ball Bﬁ

in Dy, the straight segment joining x; and x» is included in D; and using again (7.3) we obtain:

(x1) is completely included

Ify,s (1) = £y, (x2)[| < [s] [|Aw]]

. 1
0o,By P2 =xafl, i 31 = %ol < 155
Thus fy s is a contraction if |s| is smaller than some critical value sy which is independent of y.
This implies that the fixed point exists for all y € E provided 0 < |s| < so, and we are done. [

We are now ready to finish the proof of the Hairy Ball Theorem. Since the map h; is a smooth
bijection between D3 and F; and det[Dh;](x) > 0 if |s] < s, we must have the equality:

Vol(Ey) — / det[Dh,](x)dx, || < so.
Ds

The right hand side of the above equality is a polynomial in s of degree at most d. The left hand
side can be calculated explicitly: it equals the difference of the volumes of two d-dimensional balls:

d d d
T2 100 2 81 2
Vol(By) = ——— < [— +s2) —[—=+4° .

This function is analytic around s = 0, and since it equals a polynomial if |s| < sg, by analytic
il
continuation it must be a polynomial (thus analytic) for all s € C. The function (&2 + s?)? is
d
analytic if |s| < 10/9, thus (% + 52) * must also be analytic on the same disk. Since d =2p + 1

d 1
is odd, the function (% + 52) 2 can be factorized as the product (% + 52)p (% + 52) *. But
8i

this function is not analytic at s = <, and this is our contradiction.

O

14 The Jordan Curve Theorem

14.1 Some preparatory results

Let (X, d) be a metric space with the topology generated by d. We say that X is not connected if
we can find two non-empty open sets O; and Oy which are disjoint and X = O; U Os. A subset
A C X is not connected if the induced metric space (A, d) is not connected. If a metric space can
be written as a union of connected sets {O;}, then they are called the connected components of
X.

Let —0o < a < b < 0o and let v : [a, b] — R? be a homeomorphism (continuous, invertible and
with continuous inverse). Then ~([a, b]) is called an arc. A set A C R? is called path-connected if
given any two distinct points x,y € A we can find an arc joining them and which is included in

A.

Lemma 14.1. Let A be a non-empty connected open set in the Euclidean space R2. Then A is
path-connected.

Proof. Choose a point x € A. Define the set O; C A which contains all the points y € A which
can be connected with x by an arc. Let us show that O; is open. If y € O; then there exists an
arc y([a,b]) C A with v(a) = x and y(b) = y. Since y is an interior point of A, there exists € > 0
such that if ||x’ — y|| < € then x” € A. But all such points can be joined with y by a straight line
included in A. Thus x can be joined with x’ by an arc included in A, hence B.(y) C O;.

Now if O; = A then we are done. If not, the set Oz := A\ O; is not empty. One can prove in
a similar manner that O is open: if y cannot be joined with x by an arc included in A, then no
points close enough to y can be joined with x. But since A = O U Os, it would mean that A is
not connected, contradiction. O
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Lemma 14.2. Let M be a compact set in the Euclidean space R?. If x € R? we define
R? 5 x> d(x, M) :=inf{||ly — z|| : y € M} €R.
Then this map is continuous.

Proof. For a fixed x, the map M >y — ||y — x|| € R is continuous and defined on a compact set.
Thus it attains its minimum at some point y, € M. Hence for every x € R? there exists y, € M
such that d(x, M) = ||x — yx||. We note the inequalities:

d(x', M) < [|x" =yl < [Ix" = x|+ |]x — x| = ||x — x[| + d(x, M),
which due to the symmetry lead to:
|d(x, M) — d(x", M)| < [|x — x'||

for all x,x’ € R2, which proves Lipschitz continuity. U

The next lemma is a poor man’s version of the Tietze extension theorem. It roughly says
that given an arc M in R? contained in a large closed ball B, we can find a continuous function
g : B — M which extends the identity map on M.

Lemma 14.3. Let M be an arc in R%. Let xo € R? and consider B,(xo) a ball sufficiently large
such that M C By(xq). Then there exists a continuous map g : By(Xg) — M such that g(x) = x
ifxe M.

Proof. Since M is an arc, it is bounded and closed, thus compact. Moreover, M is homeomorphic
with a closed interval in R, thus we can find a continuous function + : [0, 1] — M with continuous
inverse y~! : M s [0,1]. If we can find a continuous function F : B,(xg) + [0, 1] such that
F(x) =y 1(x) for all x € M, then the extension we are looking for is g = y o F.

Let us define the function F. If x € M we put F(x) =~ 1(x). If x € B,.(x9) \ M we put

If x ¢ M, the map
I =yl
d(x, M)

is continuous and defined on a compact set, thus there exists some w(x) € M such that

M3y y 'ty + —1€eR

[x = w(x)l

ooan (14.2)

Let us show that the range of F' is the interval [0,1]. If x € M it is obvious. If x ¢ M then we
know from Lemma 14.2 that there exists some yx € M such that 0 < ||x—y«|| = d(x, M) < ||x—y]]

forally € M. Thus0 < 7_1(y)+|d|(’;_j'4|; —1, for ally € M, which implies that 0 < F'(x). Moreover,

F(x) <y Myx) + w —1=7""(yx) <L

Now we want to prove that F' is continuous. Let a € M. According to the definition of F
we have that F'(a) = y~!(a). Consider any sequence {x,} C B,(xo) which converges to a. We
can split it in a subsequence included in M, denoted by {xM}, and a subsequence in B,.(xq) \ M,
denoted by {xM“}. Since F(xM) = 41 (xM) and because y~! is continuous on M, we have
F()EM) — F(a) = v '(a). What we have to prove now is that F(x") — ~y~!(a) provided

n
xM" — a. We note that the sequence of minimizing points w(x}") must converge to a; otherwise,

n
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since d(xM°, M) < ||xM° — a|| — 0, we would eventually have F(x}") > 1 for some subsequence.
Moreover, any sequence y, e defined by d(xM" M) = ||xM* —yxue|] < |[xM" — a|| must converge
to a. Then we have:

yHw(x))) < F(xM) < 4y,

where the first inequality is a consequence of (14.2) and of ||xM° — w(xM")|| > d(xM", M), while
the second inequality is a consequence of the definition of F. Then the continuity of v~ ! at a
ensures that F(x°) — y~'(a) and we are done.

Now let a € B,.(x0)\ M and consider any sequence x,, — a. Since M is closed, we may consider
that x,, ¢ M for all n. Then we can write:

lla—w(a)l|
d(a, M)

[P¢n — w ()]l

d(xn, M) L

F(a) ="' (w(a)) + L F(xa) =77 (w(xa)) +

From the definition of F' and using the triangle inequality we have:

lla = w(xn)ll

Pla) <7 wlx,)) + Rl
[la — x,]| 1 1
< Flxa) + @, M) <d(a, M)y d(me)) [[w(xn) = ]

Using the continuity of the distance d(-, M) from Lemma 14.2, we obtain F(a) < liminf F'(x,).
In the same way we have:

|[xn — w(a)l| |[xn — & 1 1
deon L sf@raaant (d(xn,M) " da, M)) [Iw(a) —all

F(x,) <77 (w(a))+

hence limsup F(x,,) < F(a). Thus F' is continuous and the proof is over.
O

The following lemma has a quite obvious ’proof by drawing’, but it’s rigorous argument is
based on Brouwer’s fixed point theorem.

Lemma 14.4. Let K be the rectangle {[x,y] : a <x <b, ¢ <y < d} C R Assume that we have
two arcs v, ¢ : [—1,1] = K, j € {1,2}, such that v(—1) belongs to the left side {[a,y]: y € [c,d]}
of K, (1) belongs to the right side {[b,y] : y € [c,d]} of K, ¢(—1) belongs to the upper side
{[z,d] : = € [a,b]} of K, and ¢(1) belongs to the lower side {[z,c] : = € [a,b]} of K. Then the
two arcs must cross each other, i.e. there exist s,t € [—1,1] such that v(t) = ¢(s).

Proof. Denote by ~(t) = [z(t),y(t)] and by ¢(s) = [u(s),w(s)]. Assume that the two arcs never
cross. It means that the quantity:

N(t,s) == max{|z(t) —u(s)], ly(t) —w(s)[}, [t,s] € [-1,1] x [-1,1]
is strictly positive. By the triangle inequality:
2(6) = u(s)] — Joto) — u(so)| < [o(t) = x(to) — u(s) + u(s0)| < lalt) — wlto)| + u(s) — uls0)l,
[2(t) — u(s)| < |z(to) — u(so)| + € < N(to, s0) + €

if [t, s] is close enough to [t, so], due to the continuity of  and . In a similar way we can prove
ly(t) — w(s)| < N(to, so) + €, thus by taking the maximum we obtain N (¢,s) < N(to, so) + €. By
symmetry we must also have the inequality N (to, so) < N(t,s) + ¢ hence N is continuous.

Since N is continuous, positive and defined on a compact set, it must have a positive minimum.
Thus 1/N(t, s) is also continuous on [—1,1] x [—1,1]. Define:

Frl-L1 x [-1,1) = [~1,1] x [=1,1],  f(t,s) == _:v(j\)[(;z)(s)’_y(%(;ts)(s)
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Due to our assumptions, z(—1) = a, w(—1) = d, z(1) = b and w(l) = ¢. The function f is
continuous and defined on a convex body. According to Brouwer’s fixed point theorem, it must
have a fixed point. Note that the range of f belongs in fact to the boundary of the square. Thus
if f([to, s0]) = [to, So] is a fixed point of f, we must either have [to| =1 or |sg| = 1.

If tg = 1, then we would have 1 = —% = —l;\?g(js)) < 0, impossible. If tg = —1 we
would have —1 = —1(15(1:72530) = —Iil/(_fl(sﬁg) > 0, again impossible.

If sp = 1 we would have 1 = —y(]t\?g;f’igl) = —%Egg_li < 0, impossible. If s = —1 we would
have —1 = —y%g;uf"_(;)l) = 713823:‘11) > 0, again impossible.

Thus f cannot have fixed points, which shows that our assumption on the positivity of N was
false.
O

The next lemma says that if an arc starts inside a closed rectangle and ends outside it, then it
must cross the boundary.

Lemma 14.5. Let K be the rectangle {[z,y] : a < x < band ¢ <y < d} C R?. Assume that
v :[0,1] = R? is an arc such that ¥(0) € Int(K) and v(1) € K. Then there exists 0 < ¢ < 1 such
that v(c) € OK and v(t) € Int(K) for all 0 <t < c.

Proof. We start by noting that K is closed, the interior of K is given by
Int(K) = {[z,y]: a <z <bandc<y <d},

the exterior of K is
K¢={[z,y]: z<aorb<zory<cord<y},

and the boundary is 0K = K \ Int(K).
Denote by A the subset of the interval [0,1] C R defined by:

A:={0<t<1:7(s) € Int(K), VO < s <t}

In words, if ¢t € A, then all the points of the arc v corresponding to previous parameter values
s < t lie in the open rectangle. Since A is bounded, it has a supremum which we denote by c.
Denote by [z(t),y(t)] := v(¢). Since ¢ < z(0) < b and ¢ < y(0) < d, and because = and y are
continuous functions, the previous strict inequalities will remain true in a neighborhood of 0. This
shows that ¢ > 0. Moreover, since c¢ is the supremum of A, there exists a sequence {t,}n>1 C A
such that lim,,_ o t, = ¢. This means in particular that a < z(t,) < b and ¢ < y(t,) < d for
all n, and by taking the limit using the continuity of x and y at ¢ we obtain a < z(c) < b and
¢ < y(c) < d. In other words, y(s) € Int(K) if 0 < s < ¢ and v(c) € K.

Assume without loss of generality that v(1) = [£1,&] € K€ with & < a. Since a < z(c),
we have that ¢ < 1. Moreover, there exists N large enough such that ¢+ 1/n < 1 for all
n > N. Because ¢+ 1/n is not an element of A, we may find some 0 < s, < ¢+ 1/n such that
Y(8n) := [tn, wy] & Int(K). Moreover, we must have ¢ < s, because we know that for all t < ¢ we
have v(t) € Int(K). Thus ¢ < s, < ¢+1/n. In other words, s, = ¢ and y(sy,) = [tun, wy] &€ Int(K).
Hence at least one of the following four possibilities must occur: u, < a or u, > b or w, < ¢
or wy, > d. There must exist a subsequence {sy, }x>1 such that exactly one of the above four
inequalities is satisfied for all k > 1. Without loss of generality, assume that u,, > b for all £ > 1.
Since s,, — ¢, due to the continuity of v at ¢ we must have that the first component of v(c) must
obey the same inequality as the first component of ¥(s,,). Thus v(c) € Int(K). But we proved
before that v(c) € K. Thus v(c) € K \ Int(K) = 0K and we are done.

O
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14.2 The main theorem

If ¢ : S — R? is a homeomorphism which maps the unit circle into the plane, then the image
J := ¢(S') is called a Jordan curve. In other words, a Jordan curve is a simple closed path which

can be parametrized by
[0,27] > t > ¢(cos(t),sin(t)) € R2.

A Jordan curve is bounded and closed, thus compact.

Theorem 14.6. (Jordan curve theorem). Let J be any Jordan curve. Then the set R?\ J is open
in R2, has ezactly two connected components (one bounded and the other one unbounded), and J
is their boundary.

Proof. We start by proving that R? \ J is not connected, i.e. it has at least two connected
components. Assume that R?\ J is connected. According to Lemma 14.1, since R? \ J is open
(because J is closed), it must be path connected. The strategy is to construct an ’inner’ point x;
which cannot be joined with the points situated outside some large ball which contains J.

Let us construct this point x;. The map

R'OJIxJ2xy]m|x—y|€R

is continuous and defined on a compact set. Thus there exist x; and x, in J which maximize this
distance, i.e. ||x —y|| < [|x, — x|| for all x,y € J. Denote by X,X; the straight segment joining
the two points, and consider the two infinite lines L; and L, which are perpendicular on X,X;
and pass through x; and x, respectively. No point of I; other than x;, and no point of L, other
than x, can belong to J, otherwise ||x, —x;|| would not be maximal. Thus J belongs to the strip
generated by the two lines. Moreover, because J is bounded, we can build a closed rectangle K
which includes J in its interior and has two parallel sides included in L; and L,..

Without loss of generality, we may assume that x; = [-1,0], x,, = [1,0] and K = {[z,y] :
—1 <2z <1, =10 <y < 10}. The curve J has exactly two points in common with K, and they
are X, and x;. These two points split J into two arcs: J, and Jy;. Without loss of generality we
may assume that J, starts at x,- and ends at x; with the trigonometric orientation, while J; starts
at x; and ends at x, with the same trigonometric orientation.

The segment linking the top point 7' = [0, 10] with the bottom point B = [0, —10] is denoted by
TB. We note that J, and TB are two arcs which must cross at least in one point, due to Lemma
14.4. Denote by Ymaaz,. the point of J, NTB with the largest second coordinate, i.e. the crossing
point closest to T. Denote by ymin.« the point of J, N'TB with the lowest second coordinate, i.e.
the crossing point closest to B. Note that it can happen that y,az,u = Ymin,u-

In the same way, the arc J; and the segment TB must cross. Denote by Ymaz,d the point of
JyNTB with the largest second coordinate, i.e. the crossing point closest to 7. Denote by Ymin.d
the point of J; N TB with the smallest second coordinate, i.e. the crossing point closest to B.

Define the ’inner’ point which we talked about to be X; := (¥min,u + Ymaz,d)/2. Clearly, x;
is not an element of J and belongs to R? \ J. If R? \ J were connected, we can join x; with any
other point from outside K, since K¢ C R?\ J. According to Lemma 14.5, such an arc must cross
the boundary of the rectangle K in some point w. This w can be neither x, nor x;, since they
belong to J.

If the second coordinate of w is negative, then consider the arc starting at T, continued with a
straight segment to Yz, continued with the part of J,, between y,,04 4 and Ymin,u, then by the
straight segment to x;, then by the arc linking x; with w, and then we continue on the boundary
of K until we reach B. In this way we constructed an arc in K starting at 7" and ending at B
which has no common points with J;, contradicting Lemma 14.4.

If the second coordinate of w is positive, then consider the arc starting at B, continued with a
straight segment to y,min 4, then continued with the part of Jg between ynin.a and ymae,d, then
with a straight segment to x;, then with the arc from x; to w, and then on the boundary of K
until we reach 7'. In this way we constructed an arc in K linking B with 7" which does not cross
Ju, again a contradiction. Thus R?\ J is not connected.
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Up to now we know that there exists exactly one unbounded connected component (which
contains K°), and at least one bounded ’inner’ component. The next result is about the boundary
of each such connected component: it says that if U is a connected component of R? \ .J, then U
is open in R? and the boundary U = U \ U equals .J.

The first observation is that OU C J; if this was not true, then there exists some point x in
U which belongs neither to U nor to J, hence it must be an element of some other connected
component W. But then x is an inner point of W and must be isolated from U, contradiction
with our assumption that x belongs to the closure of U.

It could happen though that QU is strictly included in but not equal with J. In this case, there
exists an arc M C J such that OU C M. We will show that this leads to a contradiction.

We first assume that U is a bounded connected component. Consider a closed ball D := Bg(x,)
where x, is some inner point of U, and R > 0 is sufficiently large such that the circle 9D belongs
to K¢, thus outside U. Clearly, M C U C D. According to Lemma 14.3, there exists a continuous
map g : D — M such that g(x) = x on M. Define the map ¢ : D — D \ {x,} given by
q(x) = g(x) € M if x € U and ¢(x) = x if x € D\ U. Note that ¢ is well defined because the
’dangerous’ points of U N (D \ U) are included in M where g(x) = x. Moreover, ¢ is continuous,
and X, is never in its range. Let ¢t : D\ {x,} — OD be the natural retraction, i.e. the map
which sends x € D\ {x,} into the point on 0D obtained from the intersection of 9D with the ray
starting from x, and going through x. Let a : 9D — 9D be the antipodal map, i.e. the map which
sends a point of 9D into the diametrically oposed point. Now define the map r : D +— D given by
r =aotoq. We note that r is continuous, and its range is dD. Brouwer’s fixed point theorem
says that » must have a fixed point, which can only be on the boundary dD. But ¢(x) = x if
x € 9D C U¢, and t(x) = x on the boundary. The antipodal map a prohibits the existence of a
fixed point on the boundary for r, which leads to a contradiction. Thus QU = J if U is bounded.

If W is the unbounded connected component and M is an arc containing the boundary of W,
then we can use the point x, and the disk D previously considered in order to define q : D +—
D\ {x,} by ¢(x) = x if x € W and ¢(x) = g(x) € M if x € D\ W. From here the rest of the
argument is identical, and leads to a contradiction. Thus OW = J.

Let us recapitulate what we know until now: there is exactly one unbounded component, at
least one bounded, and every connected component has its boundary equal with J. The last thing
we have to prove is that there are no other bounded components besides the component U; which
contains the point x; defined when we proved that R? \ J is not connected.

Now let us assume that there exists a bounded component W # U,. The points x, and x;
belong to the boundary of W, hence both of them are limits of sequences of points from W. In
particular, there exists X,, € W such that its first component is larger than 1/2, and there exists
x; € W such that its first component is smaller than —1/2. Because W is path connected, there
exists a path i/l\fcr cw.

Now consider the path T'B starting from 7', continued with the straight segment joining 7'
with Ymez,u, continued with the arc of J between ynaz. and ymin,u, then with the straight
segment (containing x;) between yin.« and Ymqz 4, continued with the arc of J between yqz.q
and ymin,q, and finally continued with the straight segment between y,,in,q and B. We see that

all the points 0@ belong either to J, to U; or to the unbounded connected component. It means

that T'B and x;x, C W cannot have common points, and this contradicts Lemma 14.4.
O
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