
Exercises in ordinary differential equations

Horia Cornean, d. 12/03/2015.

Exercise 1 (Grönwall inequality). Consider a non-negative continuous function f : (a, b) 7→ R
and fix t0 ∈ (a, b). Assume that the following inequality holds for every t ∈ (a, b), where C and α
are positive constants:

f(t) ≤ α+ C

∣∣∣∣∫ t

t0

f(s)ds

∣∣∣∣ .
Show that 0 ≤ f(t) ≤ αeC|t−t0|.

Hint. Assume that t > t0. In this case we have:

f(t) ≤ α+ C

∫ t

t0

f(s)ds.

We may rewrite this inequality in the following way:

f(s) ≤ α+ C

∫ s

t0

f(t1)dt1.

Introducing the second inequality into the first one we get:

f(t) ≤ α+ C(t− t0)α+ C2

∫ t

t0

(∫ s

t0

f(t1)dt1

)
ds.

Using

f(t1) ≤ α+ C

∫ t1

t0

f(t2)dt2

in the previous inequality we obtain:

f(t) ≤ α+ C(t− t0)α+
C2(t− t0)2

2
α+ C3

∫ t

t0

(∫ s

t0

(∫ t1

t0

f(t2)dt2

)
dt1

)
ds

where we used the identity: ∫ t

t0

(∫ s

t0

αdt1

)
ds =

(t− t0)2

2
α.

In general, ∫ t

t0

(∫ s

t0

(∫ t1

t0

...

(∫ tn−1

t0

αdtn

)
...

)
dt1

)
ds =

(t− t0)n+1

(n+ 1)!
α, ∀n ≥ 1.

By repeating the iteration, we get for every n ≥ 2 that:

f(t) ≤ α
n∑

j=0

Cj(t− t0)j

j!
+ Cn+1

∫ t

t0

(∫ s

t0

(∫ t1

t0

...

(∫ tn−1

t0

f(tn)dtn

)
...

)
dt1

)
ds. (0.1)

The function f is continuous on the compact interval [t0, t], thus it has a maximum M <∞. Since
0 ≤ f(x) ≤M for all t0 ≤ x ≤ t, by replacing f(tn) with M in (0.1) and integrating we obtain:
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f(t) ≤ α
n∑

j=0

Cj(t− t0)j

j!
+M

Cn+1(t− t0)n+1

(n+ 1)!
, ∀n ≥ 2.

We observe that Cn+1(t−t0)n+1

(n+1)! converges to 0 when n goes to infinity (why?), while
∑n

j=0
Cj(t−t0)j

j!

converges to eC(t−t0) and we are done.
If t < t0 the argument is similar, based on the inequality

f(t) ≤ α+ C

∫ t0

t

f(s)ds.

Exercise 2. Consider a function f : Rd+1 7→ Rd where f ∈ C1(Rd+1), which obeys the estimate

||f(t,x)|| ≤ C||x||, ∀[t,x] ∈ Rd+1.

Consider the equation y′(t) = f(t,y(t)), where y(0) = y0. Show that there exists a unique
solution y : R 7→ Rd which solves the equation for all t ∈ R.

Hint. Lemma 7.3 in my Analysis notes implies that f obeys a local Lipschitz condition on the
set [−1, 1] × B1(y0). Then Theorem 6.3 in my notes (local existence) states that there exists a
positive δ1 > 0 and a differentiable function y : (−δ1, δ1) 7→ Rd which is a local solution to our
ODE which also obeys:

y(t) = y(0) +

∫ t

0

f(s,y(s))ds, |t| < δ1.

The hard part of this exercise is to show that the above solution exists for all t. This is what
we do now.

Using the estimate ||f(s,y(s))|| ≤ C||y(s)|| we can write (take t > 0):

||y(t)|| ≤ ||y(0)||+ C

∫ t

0

||y(s)||ds.

We know that the function ||y(t)|| is continuous, hence Exercise 1 (Grönwall inequality) gives:

||y(t)|| ≤ ||y(0)||eC|t|.

Now assume that we cannot find a global in time solution, i.e. it only exists for a time interval
of the form (−T1, T2) where T := min{T1, T2} < ∞ and 0 < δ1 < T . Assume without loss of
generality that T = T2 <∞. We then have:

y(t) = y(0) +

∫ t

0

f(s,y(s))ds, ||y(t)|| ≤ ||y(0)||eCT , |t| < T.

Consider an arbitrary sequence {tm}m≥1 ⊂ (0, T ) which converges to T . Being convergent, the
sequence {tm}m≥1 is Cauchy. Let us show that the sequence of values {y(tm)}m≥1 ⊂ Rd is also
Cauchy. If p > q we can write (assume without loss that tp > tq):

||y(tp)− y(tq)|| = ||
∫ tp

tq

f(s,y(s))ds|| ≤
∫ tp

tq

||f(s,y(s))||ds ≤ C||y(0)||eCT |tp − tq|

which can be made arbitrarily small since {tm}m≥1 is Cauchy. Hence {y(tn)}n≥1 converges to
some vector yT ∈ Rd. It {sn}n≥1 is some other sequence in (0, T ) which converges to T , we have:

||y(sn)− y(tn)|| ≤ C||y(0)||eCT |sn − tn| → 0
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which shows that the limit yT is independent of the sequence we choose. Thus we have:

lim
t↗T

y(t) =: y(T − 0) = yT , lim
t↗T

y′(t) =: y′(T − 0) = f(T,yT ).

Now consider the initial value problem ỹ′(t) = f(t, ỹ(t)), where ỹ(T ) = yT . The same local
existence Theorem 6.3 (where we put t0 = T and y0 = yT ) allows us to construct a solution on
an interval (T − δ2, T + δ2) and we have:

lim
t↘T

ỹ′(t) =: ỹ′(T + 0) = ỹ′(T ) = f(T,yT ).

Now we can define a function z : (−T1, T2 + δ2) where z(t) = y(t) on (−T1, T2) and z(t) = ỹ(t) on
[T2, T2 + δ2). We observe that z is continuously differentiable and solves the ODE. Thus T2 can
be made larger, which provides a contradiction.

Concerning uniqueness: assume that there exist two solutions y1 and y2 which both solve the
differential equation and y1(0) = y2(0) = y0. We already know that they exist for all t. Both of
them obey the bound ||yj(t)|| ≤ ||y0||eC|t|. If y0 = 0 then both of them are identically zero (thus
equal). Hence we may assume that y0 6= 0.

Fix some T > 0. If |t| ≤ T , then both vectors y1(t) and y2(t) will be contained in the closed
ball BR(y0) with R := ||y0||eCT .

We know from Lemma 7.3 that there exists some L <∞ such that:

||f(s,x)− f(s, z)|| ≤ L||x− z||, ∀|s| ≤ T, ∀x, z ∈ BR(y0).

We have the identity:

y2(t)− y1(t) =

∫ t

0

[f(s,y2(s))− f(s,y1(s))]ds, ∀|t| ≤ T.

Let h(t) := ||y2(t)−y1(t)||, with h(0) = 0. Assume that t > 0. Reasoning as before, we can write:

0 ≤ h(t) ≤
∫ t

0

||f(s,y2(s))− f(s,y1(s))||ds ≤ L
∫ t

0

h(s)ds, 0 ≤ t ≤ T

or

0 ≤ h(t) ≤ L
∣∣∣∣∫ t

0

h(s)ds

∣∣∣∣ , |t| ≤ T.

Since h(0) = 0, Grönwall’s inequality implies that h(t) = 0 for all |t| ≤ T . Hence y1 and y2

coincide on that interval. Since T was arbitrary, the two solutions are equal everywhere.

Exercise 3. Let f(t,x) = A(t)x where A(t) is a d × d real matrix where all its components are
continuous functions in t and globally bounded in t. Show that f verifies the conditions of Exercise
2, hence its corresponding ODE has a unique, global solution.

Exercise 4. Consider the equation

y′(t) =
y2(t)

1− y2(t)
, y(0) = 1/2.

1. Define g : (−1, 1) 7→ R, g(x) = x2

1−x2 . Let f : R × (−1, 1) 7→ R, f(t, x) := g(x). Show that
y′(t) = f(t, y(t)) and identify d, t0, I and U .

2. Show that f ∈ C1(R× U) and it obeys a local Lipschitz condition.
3. Show that for t near 0 we can rewrite the equation as:

[y(t) + 1/y(t) + t]′ = 0.
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4. Show that y(t) + 1/y(t) = 5/2 − t for t near 0. Find y(t) out of this algebraic equation,
using that our unique solution obeys y(0) = 1/2.

5. Is it true that the solution can be extended to t ∈ (−∞, 1/2)?

Exercise 5. Let f : Rd+1 7→ Rd be a continuous function. Assume that f obeys a global
Lipschitz condition, i.e. there exists a constant C > 0 such that

||f(t,x)− f(t,y)|| ≤ C||x− y||, ∀t ∈ R, ∀x,y ∈ Rd.

Consider the equation y′(t) = f(t,y(t)), where y(0) = y0. Show that there exists a unique global
solution y : R 7→ Rd which solves the equation for all t ∈ R.

Hint. The original differential equation is equivalent with the integral equation:

y(t) = y0 +

∫ t

0

f(s,y(s))ds.

As in Exercise 2, we assume that a solution only exists on an interval of the form (−T1, T2)
with T := T2 = min{T1, T2} < ∞. We will show that this leads to a contradiction. Define
h(t) := ||y(t)− y0||. We have:

y(t)− y0 =

∫ t

0

f(s,y0)ds+

∫ t

0

[f(s,y(s))− f(s,y0)]ds.

After taking the norms and using the Lipschitz constant (take t > 0):

h(t) ≤
∫ t

0

||f(s,y0)||ds+ C

∫ t

0

h(s)ds ≤
∫ T

0

||f(s,y0)||ds+ C

∫ t

0

h(s)ds.

In general:

h(t) ≤
∫ T

0

||f(s,y0)||ds+ C

∣∣∣∣∫ t

0

h(s)ds

∣∣∣∣ , |t| ≤ T.

Up to a use of Grönwall’s inequality this shows that:

h(t) = ||y(t)− y0|| ≤

(∫ T

0

||f(s,y0)||ds

)
eCT , |t| ≤ T.

In other words, the solution always remains inside a closed ball with center at y0 and radius

R =
(∫ T

0
||f(s,y0)||ds

)
eCT . Let

M := sup
0≤s≤T

sup
x∈BR(y0)

||f(s,x)|| <∞.

Choose some sequence tn ∈ (0, T ) which converges to T . We have:

y(tp)− y(tq) =

∫ tp

tq

f(s,y(s))ds, ||y(tp)− y(tq)|| ≤M |tp − tq|.

This shows that the sequence {y(tn)}n≥1 is Cauchy and converges to some yT . If sn ∈ (0, T ) is
another sequence which converges to T , we have:

y(tn)− y(sn) =

∫ tn

sn

f(s,y(s)), ||y(tn)− y(sn)|| ≤M |tn − sn|

which proves that yT is independent of the sequence we choose, hence y(T − 0) exists and equals
yT , and:

y′(T − 0) = f(T,yT ).
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Reasoning as in Exercise 2, we can locally extend y to the interval [T, T + δ), thus contradicting
the maximality of the interval (−T1, T ).

Now let us prove uniqueness. Assume that both y1 and y2 solve the integral equation. Define
h(t) := ||y1(t)− y2(t)||. We have:

y1(t)− y2(t) =

∫ t

0

[f(s,y1(s))− f(s,y2(s))]ds, 0 ≤ h(t) ≤ C
∣∣∣∣∫ t

0

h(s)ds

∣∣∣∣ .
From Exercise 1 we get h(t) = 0 for all t and we are done.

Exercise 6. Let g : R2 7→ R2 be given by g(x) = [−x2, x1] and consider the equation

y′(t) = g(y(t)), y(0) = [1, 0].

1. Write the equation on each component and show that y′1(t) = −y2(t) and y′2(t) = y1(t),
with y1(0) = 1 and y2(0) = 0. Prove that f(t,x) = g(x) is continuous on R3 and obeys a global
Lipschitz condition on the x variables. Use Exercise 2 to conclude that the solution is unique and
global in time.

2. Show that y21(t) + y22(t) = 1 for all t.
3. Use the uniqueness of the equation in order to show that y1(t) = y21(t/2) − y22(t/2) and

y2(t) = 2y1(t/2)y2(t/2).
4. Prove that there must exist a T > 0 such that y1(T ) = 1 and y2(T ) = 0.
5. Use the uniqueness of the equation in order to show that y1(t) = y1(t + T ) and y2(t) =

y2(t+ T ) for all t.
6. Denote by 2P the smallest positive T for which (4) is true. Show that y1(P ) = −1 and

y2(P ) = 0.
7. Use the uniqueness of the equation and (6) to show that y1(t) = −y1(P − t) and y2(t) =

y2(P − t).
8. Use the uniqueness of the equation and (6) to show that y1(t) = −y1(P + t) and y2(t) =

−y2(P + t).
9. Use the uniqueness of the equation to show that y1(t) = y1(−t) and y2(t) = −y2(−t).
10. Put t = P/2 in (7) and show that y1(P/2) = 0. Use this in (8) to show that y1(3P/2) = 0.

Use the construction in (4) to prove that y2(P/2) = 1 and y2(3P/2) = −1.

11. Show that y′1(0) = 0, y′′1 (0) = −1, y′′′1 (0) = 0, y
(4)
1 (0) = 1,... . Compute the Taylor series

of y1(t) around 0 and show that it has an infinite radius of convergence. Can you recognize the
function? What about the number P?

Hints.
(2). Show that [y21(t) + y22(t)]′ = 0 for all t.
(3). Define ỹ1(t) := y21(t/2)− y22(t/2) and ỹ2(t) := 2y1(t/2)y2(t/2). Prove that ỹ′(t) = g(ỹ(t))

and ỹ(0) = [1, 0].
(4). Here it is very important to remember the identity from (2), i.e. y21(t) + y22(t) = 1. When

t is slightly larger than zero, y′2(t) = y1(t) ∼ 1 > 0, thus y2(t) increases from the value y2(0) = 0
and becomes positive. At the same time, y′1(t) = −y2(t) must be negative and y1 decreases. This
remains true up to some value t1 > 0 where y1(t1) = 0 and y2(t1) = 1. If t is slightly larger
than t1, y′1(t) ∼ −1 hence y1 continues to decrease and becomes negative. Thus y′2(t) = y1(t) < 0
and y2 starts also to decrease. Both y1 and y2 decrease until t reaches some value t2 > t1 where
y2(t2) = 0 and y1(t2) must equal −1. When t is slightly larger than t2, y′2(t) = y1(t) ∼ −1 thus y2
continues to decrease and becomes negative. Hence y′1(t) = −y2(t) > 0 which makes y1 to increase
again. There must exist a point t3 > t2 such that y2(t3) = −1 and y1(t) = 0. Finally, for t > t3, y1
will continue to increase as long as y2 is negative, up to some value t4 > t3 where y2(t4) = 0, and
necessarily, y1(t4) = 1. We see that we got again the values of the initial condition and actually
t4 is the smallest positive value of t for which this happens.
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(6) With the above notation, this will actually show that 2t2 = t4. Replace t with 2P in
the two identities of (3). We have 1 = y1(2P ) = y21(P ) − y22(P ) = 2y21(P ) − 1 and 0 = y2(2P ) =
2y1(P )y2(P ). The first identity implies that |y1(P )| = 1; this implies that y2(P ) = 0. Hence y1(P )
equals either +1 or −1. But it cannot equal +1, because we assumed that the smallest positive
value of t for which we come back to the original initial condition was 2P . Thus y1(P ) = −1 and
y2(P ) = 0, which shows that P must be equal to t2, the only point smaller than t4 where these
values are taken.
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