Exercises in ordinary differential equations

Horia Cornean, d. 12/03/2015.

Exercise 1 (Gronwall inequality). Consider a non-negative continuous function f : (a,b) — R
and fix tg € (a,b). Assume that the following inequality holds for every ¢ € (a,b), where C' and «
are positive constants:

t

f@)<a+C f(s)ds|.
to
Show that 0 < f(t) < aeClt—tol,
Hint. Assume that ¢ > ¢y. In this case we have:
t
F) <o+t c/ F(3)ds.
to

We may rewrite this inequality in the following way:
f(s) <a+ 0/ F(t)dts.
to

Introducing the second inequality into the first one we get:

S g+t -tarc® [ ([ i) as.
to to

Using
ty

f(tl) S o+ C f(tg)dtg

to

in the previous inequality we obtain:

Ft) < a+Clt—to)a+ M(x + o /tt (/t ( ! f(tz)dt2> dt1> ds

to

/t: (/to adtl) ds — @a
/tt (/t (/tt (/tt adtn) ) dt1> ds = Wa, .

By repeating the iteration, we get for every n > 2 that:

£t) < ai: Cj(tj_,to)] + ot /tt </t </tt </tt f(tn)dtn> > dtl) ds.  (0.1)

Jj=0

where we used the identity:

In general,

The function f is continuous on the compact interval [to, t], thus it has a maximum M < co. Since
0 < f(z) < M for all ty < x < t, by replacing f(¢,) with M in (0.1) and integrating we obtain:



n Cj(t — to)j C”+1(t _ to)n+1
4! (n+ 1!

fit) <a , Vn>2.
=0
CnH(t—to)" !
(n+1)!
converges to e(t=%) and we are done.

If ¢t < ty the argument is similar, based on the inequality

n CI(t—tg)?

We observe that 0 -
j= J!

converges to 0 when n goes to infinity (why?), while }_

to
fOy<a+C f(s)ds.

¢
Exercise 2. Consider a function f : R¥! s R? where f € C'(R?*!), which obeys the estimate

I£(t,x)]] < Cllx|], V[t,x] € R

Consider the equation y'(t) = f(¢,y(t)), where y(0) = yo. Show that there exists a unique
solution y : R — R? which solves the equation for all ¢t € R.

Hint. Lemma 7.3 in my Analysis notes implies that f obeys a local Lipschitz condition on the
set [—1,1] x B1(yo). Then Theorem 6.3 in my notes (local existence) states that there exists a
positive 6; > 0 and a differentiable function y : (—d;,6;) — R? which is a local solution to our
ODE which also obeys:

y(t) = y(0) + / (s, y(s)ds, |t] < 6.

The hard part of this exercise is to show that the above solution exists for all . This is what
we do now.
Using the estimate ||£(s,y(s))|| < C||ly(s)|| we can write (take ¢ > 0):

t
Iy @I < [ly (0)]] +C/0 Iy (s)llds.
We know that the function ||y(¢)|| is continuous, hence Exercise 1 (Gronwall inequality) gives:

Ly ()1l < |ly (0)[]e“*1.

Now assume that we cannot find a global in time solution, i.e. it only exists for a time interval
of the form (—T,Ty) where T := min{7T},T5} < oo and 0 < §; < T. Assume without loss of
generality that T'= Ty < co. We then have:

y(t) = y(0) + / £(s,y(s)ds, [yl < [lyO)][eT, |1 <T.

Consider an arbitrary sequence {t,,}m>1 C (0,7) which converges to T'. Being convergent, the
sequence {t,, },n>1 is Cauchy. Let us show that the sequence of values {y(t,)}m>1 C R? is also
Cauchy. If p > ¢ we can write (assume without loss that ¢, > t,):

Iy () — ¥l = I / "8(s, y(s))ds]] < / " N1€Cs. v (5))lds < Clly O[Tty — bl

which can be made arbitrarily small since {t,,}n>1 is Cauchy. Hence {y(t,)}n>1 converges to
some vector yr € R%. It {s,},>1 is some other sequence in (0,7’) which converges to T', we have:

Iy (sn) =¥ (ta)l] < Clly(0)[|e“ |55 — ta] — 0



which shows that the limit yr is independent of the sequence we choose. Thus we have:

li t)=y(T —0) = li ") =y (T —0) =£(T .
lmy(®) =y(T-0)=yr, lmy'(#t)=y"(T~-0=£Tyr)

Now consider the initial value problem y'(¢) = f(¢,y(¢)), where ¥(T') = yr. The same local
existence Theorem 6.3 (where we put tg = T and yo = yr) allows us to construct a solution on
an interval (T — d2,T + J2) and we have:

S Lol o _

Jim §'(t) = §'(T +0) = §'(T) = £(T.y)

Now we can define a function z : (=77, T% + d2) where z(t) = y(t) on (=11,T%) and z(t) = y(¢) on
[To, T» + d2). We observe that z is continuously differentiable and solves the ODE. Thus T5 can
be made larger, which provides a contradiction.

Concerning uniqueness: assume that there exist two solutions y; and ys which both solve the
differential equation and y1(0) = y2(0) = yo. We already know that they exist for all ¢. Both of
them obey the bound ||y;(¢)]| < |lyo|[e!!|. If yo = 0 then both of them are identically zero (thus
equal). Hence we may assume that yo # 0.

Fix some T > 0. If |¢| < T, then both vectors y1(t) and y2(t) will be contained in the closed
ball Br(yo) with R := ||yo||e¢T.

We know from Lemma 7.3 that there exists some L < oo such that:

IE(s,x) — £(s,2)|| < Lllx —z||, V|s| <T, Vx,z € Br(yo)
We have the identity:
t
yo(t) = 31() = [ [f(s.ya(s) ~ sya(s)lds. Ve < T
0
Let A(t) :=|ly2(t) —y1(t)||, with h(0) = 0. Assume that ¢ > 0. Reasoning as before, we can write:

0 < h(t) < /0 1£(s, y2(5)) — £(5,31())]|ds < L/O h(s)ds, 0<t<T

or

t
h(s)ds
0

0<h(t) <L it <T.

3

Since h(0) = 0, Gronwall’s inequality implies that h(t) = 0 for all |t| < T. Hence y; and y»
coincide on that interval. Since T' was arbitrary, the two solutions are equal everywhere.

Exercise 3. Let f(t,x) = A(t)x where A(t) is a d x d real matrix where all its components are
continuous functions in ¢ and globally bounded in t. Show that f verifies the conditions of Exercise
2, hence its corresponding ODE has a unique, global solution.

Exercise 4. Consider the equation

2 t)
W=D o) =1/
y'(t) () y(0) =1/
1. Define g : (—1,1) = R, g(z) = % Let f: R x (=1,1) = R, f(¢,z) := g(z). Show that
y'(t) = £(¢,y(t)) and identify d, tg, I and U.
2. Show that f € C'(R x U) and it obeys a local Lipschitz condition.
3. Show that for ¢ near 0 we can rewrite the equation as:

[y(t) +1/y(t) +t] = 0.



4. Show that y(t) + 1/y(t) = 5/2 — ¢ for ¢t near 0. Find y(t) out of this algebraic equation,
using that our unique solution obeys y(0) = 1/2.
5. Is it true that the solution can be extended to ¢ € (—o00,1/2)?

Exercise 5. Let f : R¥! —» R? be a continuous function. Assume that f obeys a global
Lipschitz condition, i.e. there exists a constant C' > 0 such that

If(t,x) — £(t,y)[| < Cllx —yll, VteR, ¥x,yeR™

Consider the equation y'(t) = f(t,y(t)), where y(0) = yo. Show that there exists a unique global
solution y : R +— R? which solves the equation for all ¢t € R.

Hint. The original differential equation is equivalent with the integral equation:

t
y(t) =vo+ [ fsy(s)ds.
0
As in Exercise 2, we assume that a solution only exists on an interval of the form (—T71,7%)

with T := Ty, = min{T},T2} < oo. We will show that this leads to a contradiction. Define
h(t) == ||y (t) — yo||- We have:

¥(t) —yo = / (s, yo)ds + / [£(5,¥(s)) — £(5, y0)ds.

After taking the norms and using the Lipschitz constant (take ¢ > 0):

h(t) S/O ||f(s,y0)|\ds—|—C/0 h(s)ds§/0 Hf(s,yo)||ds—|—C/O h(s)ds.

In general:

It < T.

)

<[ I£Gs.vallts +| [ hisyas

Up to a use of Gronwall’s inequality this shows that:

T
h(t) = ly(t) = yoll < (/0 ||f(8,yo)|d5> et Jt<T.

In other words, the solution always remains inside a closed ball with center at yo and radius
R= ([ 18, yo)llds) €T Let

M:= sup sup |/f(s,x)|] < 0.
0<5<T x€Brlyo)

Choose some sequence t,, € (0,7) which converges to T. We have:

y(tp) —y(tg) = /t H(sy()ds, lly(t) — vt < Mty — tg].

q

This shows that the sequence {y(t,)}n>1 is Cauchy and converges to some yr. If s, € (0,T) is
another sequence which converges to T', we have:

Y(tn) = y(sn) = / CEy(), Iy(t) — y(sa)ll < Mty — sl

n

which proves that yr is independent of the sequence we choose, hence y(7T"' — 0) exists and equals
yr, and:
y(T —0) =£(T,yr).



Reasoning as in Exercise 2, we can locally extend y to the interval [T, T + J), thus contradicting
the maximality of the interval (=77, T).
Now let us prove uniqueness. Assume that both y; and ys solve the integral equation. Define

h(t) :=||ly1(t) — y2(t)||. We have:
/t h(s)ds|.
0

y1(t) = ya(t) =/0 [£(s,y1(s)) = £(s,y2(s))lds, 0 <h(t) <C

From Exercise 1 we get h(t) = 0 for all ¢ and we are done.

Exercise 6. Let g : R? — R? be given by g(x) = [~22, 1] and consider the equation

y'(t) =g(y(®), y(0)=I[1,0].

1. Write the equation on each component and show that y(t) = —y=2(t) and y4(t) = y1(t),
with 41 (0) = 1 and y2(0) = 0. Prove that f(t,x) = g(x) is continuous on R? and obeys a global
Lipschitz condition on the x variables. Use Exercise 2 to conclude that the solution is unique and
global in time.

2. Show that y(t) + y3(t) = 1 for all .

3. Use the uniqueness of the equation in order to show that y;(t) = y?(t/2) — y3(t/2) and
Y2(t) = 2y1(t/2)y2(t/2).

4. Prove that there must exist a T > 0 such that y1(T) = 1 and y2(T) = 0.

5. Use the uniqueness of the equation in order to show that y1(t) = y1(t + T) and ya(t) =
y2(t +T) for all ¢.

6. Denote by 2P the smallest positive T' for which (4) is true. Show that y;(P) = —1 and
y2(P) = 0.

7. Use the uniqueness of the equation and (6) to show that y;(t) = —y1(P — t) and ya(t) =
y2(P —t).

8. Use the uniqueness of the equation and (6) to show that y;(t) = —y1 (P +t) and y2(t) =
—y2(P +1).

9. Use the uniqueness of the equation to show that y; (t) = y1(—t) and ya(t) = —ya2(—1).

10. Put ¢ = P/2 in (7) and show that y;(P/2) = 0. Use this in (8) to show that y; (3P/2) = 0.
Use the construction in (4) to prove that yo(P/2) =1 and y2(3P/2) = —1.

11. Show that 1, (0) = 0, y/(0) = —1, 4/”(0) = 0, 3\ (0) = 1,... . Compute the Taylor series
of y1(t) around 0 and show that it has an infinite radius of convergence. Can you recognize the
function? What about the number P?

Hints.

(2). Show that [yf(¢) + y3(t)] = 0 for all ¢.

(3). Define §1(t) == 17 (t/2) — y3(t/2) and 2(t) := 21 (t/2)y2(t/2). Prove that y'(t) = g(¥(t))
and y(0) = [1,0].

(4). Here it is very important to remember the identity from (2), i.e. y?(¢) +y3(t) = 1. When
t is slightly larger than zero, y5(¢t) = y1(t) ~ 1 > 0, thus ya(¢) increases from the value y2(0) = 0
and becomes positive. At the same time, ¢} (t) = —y2(¢) must be negative and y; decreases. This
remains true up to some value t; > 0 where y1(t1) = 0 and yo(¢1) = 1. If ¢ is slightly larger
than ¢1, y(¢) ~ —1 hence y; continues to decrease and becomes negative. Thus y5(t) = y1(t) <0
and yo starts also to decrease. Both y; and g2 decrease until ¢ reaches some value to > t; where
y2(t2) = 0 and y; (t2) must equal —1. When ¢ is slightly larger than ¢o, y5(t) = y1(¢) ~ —1 thus yo
continues to decrease and becomes negative. Hence y/(t) = —y2(t) > 0 which makes y; to increase
again. There must exist a point t3 > t2 such that y2(¢t3) = —1 and y;(t) = 0. Finally, for ¢ > ¢35, 11
will continue to increase as long as yo is negative, up to some value t4 > t3 where y2(t4) = 0, and
necessarily, y;(t4) = 1. We see that we got again the values of the initial condition and actually
t4 is the smallest positive value of ¢ for which this happens.



(6) With the above notation, this will actually show that 2t; = t4. Replace t with 2P in
the two identities of (3). We have 1 = y;(2P) = y(P) — y3(P) = 2y?(P) — 1 and 0 = y»(2P) =
2y1(P)y2(P). The first identity implies that |y, (P)| = 1; this implies that y2(P) = 0. Hence y1(P)
equals either +1 or —1. But it cannot equal 41, because we assumed that the smallest positive
value of ¢ for which we come back to the original initial condition was 2P. Thus y;(P) = —1 and
y2(P) = 0, which shows that P must be equal to t5, the only point smaller than t4 where these
values are taken.



