
Exercises: Pointwise and Uniform convergence

Horia Cornean, d.4/03/2015.

Let {fn}n≥1 be a sequence of real functions such that fn : I 7→ R. We say that this sequence of
functions converges pointwise on I if the sequence of real numbers {fn(x)}n≥1 ⊂ R is convergent
for every x ∈ I. The pointwise limit defines a function as follows:

P (x) := lim
n→∞

fn(x), ∀x ∈ I.

We say that the sequence {fn}n≥1 converges uniformly on I towards a function U : I 7→ R if
the real sequence {an}n≥1 defined by

an := sup
t∈I
|fn(t)− U(t)|, n ≥ 1

is convergent to zero. In other words, given ε > 0, there exists Nε ∈ N such that

sup
t∈I
|fn(t)− U(t)| < ε whenever n ≥ Nε. (0.1)

Exercise 1. Let fn : [0, 1] 7→ R, n ≥ 1, with fn(x) = nx
nx+1 . Show that the sequence has a

pointwise limit and compute it.
Hint: If x = 0 we have fn(0) = 0 for all n. Thus {fn(0)}n≥1 is convergent and its limit is

P (0) = 0. If 0 < x ≤ 1 we have:

fn(x) =
x

x+ 1/n
, lim

n→∞
fn(x) = P (x) = 1.

Exercise 2. Show that if a sequence of functions has a uniform limit U , then the sequence is also
pointwise convergent and P = U .

Hint: Fix an arbitrary x ∈ I. Let ε > 0. From (0.1) it follows that there exists some Nε such
that

|fn(x)− U(x)| ≤ sup
t∈I
|fn(t)− U(t)| < ε whenever n ≥ Nε.

This shows that {fn(x)}n≥1 converges to U(x) for every x.

Exercise 3. Consider fn : [0, 1] 7→ R, n ≥ 1, with fn(x) = nx
nx+1 . Does it have a uniform limit?

Hint: From Exercise 1 we know that the sequence has a pointwise limit P which is given by
P (0) = 0 and P (x) = 1 if 0 < x ≤ 1. From Exercise 2 we know that IF the sequence has some
uniform limit U , then it must be equal with P . Let us show that the sequence does NOT converge
uniformly to P .

If n ≥ 1 we have that 0 < 1/n ≤ 1 and fn(1/n) = 1/2 and P (1/n) = 1. Hence:

1/2 = |fn(1/n)− P (1/n)| ≤ sup
t∈[0,1]

|fn(t)− P (t)| =: an.

In other words, the sequence an cannot converge to zero, hence P is not a uniform limit.

Exercise 4. Consider fn : [0, 1] 7→ R, n ≥ 1, with fn(x) = nx
n+x . Does it have a uniform limit?

Hint: We have

fn(x) =
x

1 + x/n
, lim

n→∞
fn(x) = P (x) = x, ∀x ∈ [0, 1].
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Moreover:

|fn(t)− P (t)| = t2

n+ t
≤ 1

n
, ∀t ∈ [0, 1]

hence

an = sup
t∈[0,1]

|fn(t)− P (t)| ≤ 1

n

converges to zero.

Exercise 5. Consider fn :]0, 1[ 7→ R, n ≥ 1, with fn(x) = nx
nx2+1 . Does it have a uniform limit?

Exercise 6. Consider the metric space X = C([0, 1];R) consisting of continuous real functions
f : [0, 1] 7→ R, where the distance between two elements f and g of X is given by:

d(f, g) := sup
t∈[0,1]

|f(t)− g(t)|.

Denote by 0 the zero function, i.e. 0(x) = 0 for all x ∈ [0, 1].
(i). Show that the set A := {f ∈ X : |f(x)| ≤ 1, ∀x ∈ [0, 1]} is bounded and closed.
(ii). Consider the sequence {fn}n≥1 ⊂ X where

fn(x) :=


0 if 0 ≤ x ≤ 2−n−1;
2n+2x− 2 if 2−n−1 < x ≤ 3

2n+2 ;
−2n+2x+ 4 if 3

2n+2 < x < 2−n;
0 if 2−n ≤ x ≤ 1.

Draw the graphs of f1 and f2. Show that each fn ∈ A. Show that the pointwise limit of this
sequence is the 0 function. Is the sequence uniform convergent?

(iii). Show that d(fn, fm) = 1 for all n 6= m. Use this in order to conclude that no subsequence
{fnk}k≥1 can have the Cauchy property.

(iv). Show that one cannot find a subsequence {fnk}k≥1 which converges to an element of A.
Conclude that A is not compact. Does this contradict the Heine-Borel theorem?

Hint (i). For boundedness, show that A ⊂ B2(0) := {f ∈ X : d(f,0) < 2}. In order to show
that A is closed, let g ∈ A. There exists a sequence {gn}n≥1 ⊂ A such that limn→∞ d(gn, g) = 0.
In particular, this means that limn→∞ |gn(t) − g(t)| = 0 for all t and g is continuous. Moreover,
from the inequality:

|g(t)| ≤ |gn(t)− g(t)|+ |gn(t)| ≤ |gn(t)− g(t)|+ 1

by taking n to infinity we conclude that |g(t)| ≤ 1 for all t, thus g ∈ A.

Exercise 7. This exercise is NOT trivial, especially in its second part. It is about the construction
of the simplest infinitely dimensional, real and separable Hilbert space (a vector space with an
inner product, whose associated normed space is complete, and which has a countable orthonormal
basis). This space plays a fundamental role in quantum mechanics, signal processing, probability
theory, functional analysis, operator theory. If you find that the proof of (vi) is nice and natural,
you should definitely consider writing a master thesis in analysis.

Consider the set

l2(N) :=

{
{x(n)}n≥1 : x(n) ∈ R ∀n ≥ 1 and

∞∑
n=1

[x(n)]2 <∞

}
.

(i). Let α, β ∈ R. Prove that if x := {x(n)}n≥1 ∈ l2(N) and y := {y(n)}n≥1 ∈ l2(N), then
z := αx + βy with z(n) := αx(n) + βy(n) also belongs to l2(N).
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(ii). Prove that if x,y ∈ l2(N) then the series
∑∞
n=1 x(n)y(n) is absolutely convergent.

(iii). Prove that 〈x|y〉 :=
∑∞
n=1 x(n)y(n) defines a scalar (inner) product on l2(N). Conclude that

l2(N) is a normed vector space with the norm ||x|| :=
√
〈x|x〉 =

√∑∞
n=1[x(n)]2. Does it have a

finite dimension?
(iv). Show that l2(N) is a Banach space.
(v). Consider the set

A :=
{
x ∈ l2(N) : ||x|| ≤ 1

}
.

Show that A is bounded and closed, but not compact.
(vi). Consider the set

B :=
{
x ∈ l2(N) : |x(j)| ≤ 1/j, ∀j ≥ 1

}
.

Show that B is compact. Is B bounded and closed?

Hint (i). Derive the inequality [z(n)]2 ≤ 2α2[x(n)]2 + 2β2[y(n)]2.

Hint (ii). Let sN :=
∑N
m=1 |x(m)| |y(m)| for all N ≥ 1. Use the Cauchy-Schwarz inequality

in RN in order to show that

0 ≤ sN ≤

√√√√ N∑
n=1

[x(n)]2

√√√√ N∑
n=1

[y(n)]2 ≤

√√√√ ∞∑
n=1

[x(n)]2

√√√√ ∞∑
n=1

[y(n)]2

for all N .
Hint (iv). We have to show that every Cauchy sequence in l2(N) is convergent. If the sequence

{xn}n≥1 ⊂ l2(N) is Cauchy, then given ε > 0 there exists N(ε) ≥ 1 such that

||xp − xq|| < ε whenever p > q ≥ N(ε). (0.2)

We also know that every Cauchy sequence is bounded, i.e. there exists some M <∞ such that

||xn|| ≤M, ∀n ≥ 1. (0.3)

If j ∈ N is fixed, consider the real sequence {xn(j)}n≥1 ⊂ R. From (0.2) we have:

|xp(j)− xq(j)|2 ≤ ||xp − xq||2 < ε2 whenever p > q ≥ N(ε).

Thus {xn(j)}n≥1 ⊂ R is Cauchy in R, hence it converges to some limit which we denote by
x(j) = limn→∞ xn(j). Let us show that x := {x(j)}j≥1 belongs to l2(N). Fix some K ≥ 1. We
have:

K∑
j=1

[x(j)]2 ≤ 2

K∑
j=1

[x(j)− xn(j)]2 + 2

K∑
j=1

[xn(j)]2 ≤ 2

K∑
j=1

[x(j)− xn(j)]2 + 2||xn||2

or using (0.3) we obtain:

K∑
j=1

[x(j)]2 ≤ 2

K∑
j=1

[x(j)− xn(j)]2 + 2M2, ∀n ≥ 1.

Taking n to infinity on the right hand side gives:

K∑
j=1

[x(j)]2 ≤ 2M2.

Since the estimate is independent of K, the series giving ||x|| converges. Next we prove that x is
the limit of {xn}n≥1 ⊂ l2(N). For every j ≥ 1 we have:

[x(j)− xn(j)]2 ≤ 2[x(j)− xp(j)]2 + 2[xp(j)− xn(j)]2,
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which leads to (here K ≥ 1 is arbitrary but fixed):

K∑
j=1

[x(j)− xn(j)]2 ≤ 2

K∑
j=1

[x(j)− xp(j)]2 + 2||xp − xn||2, ∀n, p ≥ 1.

Given ε > 0, choose both n and p larger than N(ε/2) as given by (0.2). Then:

K∑
j=1

[x(j)− xn(j)]2 ≤ 2

K∑
j=1

[x(j)− xp(j)]2 + ε2/2, ∀n, p ≥ N(ε/2).

Now let p tend to infinity on the right hand side. We obtain:

K∑
j=1

[x(j)− xn(j)]2 ≤ ε2/2, ∀n ≥ N(ε/2),

where the estimate is independent of K. We conclude that ||x − xn|| ≤ ε/
√

2 for all n ≥ N(ε/2)
and we are done.

Hint (v). Show that A ⊂ B2(0) (which is the open ball with radius 2 and centered at the
origin 0 ∈ l2(N); here 0 is the element whose elements are all equal to zero). Thus A is bounded.
To show that A is closed, let x ∈ A and consider a sequence {xn}n≥1 ⊂ A which converges to x,
i.e. limn→∞ ||xn − x|| = 0. We have

||x|| ≤ ||x− xn||+ ||xn|| ≤ ||x− xn||+ 1, ∀n ≥ 1.

Conclude from here that x ∈ A.
Now let us show that A is not sequentially compact. Consider the sequence {δn}n≥1 ⊂ A where

the elements δn have the components δn(j) = 0 if j 6= n and δn(n) = 1. Show that 〈δm|δn〉 = 0
and ||δn − δm|| =

√
2 for every m 6= n. Can such a sequence have a convergent subsequence?

Hint (vi). We show that B is sequentially compact, i.e. given an arbitrary sequence {xn}n≥1 ⊂
B we will construct a subsequence {xNk}k≥1 and an x ∈ B such that limk→∞ ||xNk−x|| = 0. The
argument is rather involved but also standard in analysis (one of the 10 standard tricks which a
specialist must know), and it is based on a ’diagonal construction’.

From the definition of B we know that |xn(1)| ≤ 1 for all n ≥ 1. Using the Bolzano-Weierstrass
theorem in R we can find a subsequence {xna(1)}a≥1 ⊂ {xn(1)}n≥1 which converges to some real
number (denoted by x(1) ∈ [−1, 1]), i.e. lima→∞ |xna(1)− x(1)| = 0. Define N1 := n1.

Again from the definition of B, we know that |xna(2)| ≤ 1/2 for all a ≥ 1. Using the Bolzano-
Weierstrass theorem in R we can find a subsequence {xnab (2)}b≥1 ⊂ {xna(2)}a≥1 which converges
to a point x(2) ∈ [−1/2, 1/2], i.e. limb→∞ |xnab (2)− x(2)| = 0. It is very important to notice that
the subsequence {xnab (1)}b≥1 ⊂ {xna(1)}a≥1 also converges to x(1). Hence we can write:

lim
b→∞

|xnab (1)− x(1)| = 0 and lim
b→∞

|xnab (2)− x(2)| = 0.

Thus there exists some B sufficiently large such that the following three inequalities take place
simultaneously:

N1 < naB , |xnaB (1)− x(1)| ≤ 1/2, |xnaB (2)− x(2)| ≤ 1/2.

Now we can define N2 := naB . Using the same strategy, i.e. considering the sequence {xnab (3)}b≥1
we can construct x(3) as a limit of some subsequence {xnabc (3)}c≥1, and:

lim
c→∞

|xnabc (1)− x(1)|, lim
c→∞

|xnabc (2)− x(2)|, lim
c→∞

|xnabc (3)− x(3)| = 0.

Thus we may find some C large enough such that:

N2 < nabC , |xnabc (1)− x(1)| ≤ 1/3, |xnabC (2)− x(2)| ≤ 1/3, |xnabC (3)− x(3)| ≤ 1/3.
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We put N3 := nabC . This construction can be repeated indefinitely for every k ≥ 1 and define
x(k) ∈ [−1/k, 1/k] to be the limit of some subsequence {xnab...z (k)}z≥1. If j ≤ k, then xnab...z

(j)

will also converge to x(j). Thus given k ≥ 4 we can find some Nk such that:

Nk−1 < Nk, |xNk(j)− x(j)| ≤ 1/k, 1 ≤ j ≤ k. (0.4)

Now we will prove that x = {x(j)}j≥1 is the limit of {xNk}k≥1. Fix some ε > 0. Because the
series

∑
j≥1 1/j2 is convergent, it follows that

lim
J→∞

∞∑
j>J

1/j2 = 0.

Thus there exists some Jε large enough such that

0 <

∞∑
j>Jε

1/j2 < ε2/8.

We have:

||xNk − x||2 =

Jε∑
j=1

|xNk(j)− x(j)|2 +
∑
j>Jε

|xNk(j)− x(j)|2

≤
Jε∑
j=1

|xNk(j)− x(j)|2 + 2
∑
j>Jε

(|xNk(j)|2 + |x(j)|2)

≤
Jε∑
j=1

|xNk(j)− x(j)|2 + 4
∑
j>Jε

1/j2 ≤
Jε∑
j=1

|xNk(j)− x(j)|2 + ε2/2.

Thus:

||xNk − x||2 ≤
Jε∑
j=1

|xNk(j)− x(j)|2 + ε2/2, ∀k ≥ 1.

The above inequality holds true for all k ≥ 1. If we demand that k ≥ Jε, using (0.4) in the above
inequality gives:

||xNk − x||2 ≤ Jε
k2

+ ε2/2, ∀k ≥ Jε.

Now we can find some Kε ≥ Jε large enough such that Jε
k2 < ε2/2 whenever k ≥ Kε, which leads

to
||xNk − x|| < ε whenever k ≥ Kε

and we are done.
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