Power series are analytic

Horia Cornean!

1 The exponential and the logarithm

For every z € R we define the function given by
2 n n
x x x
exp(z) ::1+x+?+---+m+-..zzﬁ_
n>0
If 2 = 0 we have exp(0) = 1. If x # 0, consider the series }_ -, ay given by o, = %,l Using the
ratio criterion we have:
Mzﬂ—>0<1 when n — oo,
|| n+1
which shows that the series defining exp(z) converges absolutely for all z € R.
We want to prove that the exponential is everywhere differentiable. Fix a € R and let h € R.
Define the function

F(h):=(h+a)", n>2. (1.1)

The Taylor formula with remainder provides us with a ¢ = ¢, 4,, between 0 and h such that
F(h) = F(0) + F'(0)h + F"(c)h?/2, or:

-1
(h+a)" —a™ =na" 'h + %h%cn,a,h +a)" 2, (1.2)
which leads to:
(h + a)n a” anfl (Cn an+ a)n72 0
—_—— — = h L h >2 1.
n! nl (n—1)! * 2(n —2)! o (1)
Thus if h # 0:
exp(h + a) — exp(a) 1 (h+a)* a" an! h (Cnan+a)2
-1+ = e % )1 L L YnahT%)
2 LD BN G it I D)
n>2 n>2 n>2

Note first that 1+ 3, -, Z 71), = exp(a). Moreover, since |cyq,n + a| < |a| + |h| we may write:

exp(h +a) —exp(a)

<l Z (lal +[p)"" _ |hlexp(la] +[R]) _ |[hlexp(la] +1)
h

(n—2)! 2 - 2 ’

which holds for every 0 < |h| < 1. Tt follows that the exponential function is differentiable at a
and exp’(a) = exp(a).

Theorem 1.1. We have that exp(—z)exp(x) = 1 and exp(x) > 0 for all x € R. Moreover,
exp(a + b) = exp(a) exp(b) for all a,b € R. Define the logarithm function

1
In(z) := —dt, z>0.
1 ¢t

Then we have In(exp(z)) = x for all z € R, and exp(ln(x)) =z for all x > 0.
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Proof. We know that exp(0) = 1 and exp’(z) = exp(z) holds on R. Define the function f(x) =
exp(—x) exp(z). Then f is differentiable and

f(0)=1, f'(x)=0, VzeR.

Hence f(z) = 1 on R, which proves that exp(—x)exp(z) = 1 for all z € R. The same identity
shows that exp(x) can never be zero. Now since exp(0) = 1 > 0 and because exp is continuous
(being differentiable), it cannot change sign because it would have to go through a zero (remember
the intermediate value theorem). Hence exp(x) > 0 on R.

Now define the function g(z) = exp(—x — b) exp(x) exp(b) for some fixed b. We again have
g(0) =1 and ¢’'(z) = 0 for all z € R, hence exp(—x — b) exp(z) exp(b) = 1 on R. Multiply with
exp(x + b) on both sides and obtain exp(x) exp(b) = exp(x + b) on R.

The logarithm function is defined to be a primitive of 1/x, i.e.:

In'(z) = -, In(1) =0.

Define f(x) = In(exp(z)) — = on R, which is possible because exp(z) > 0. We have f(0) = 0 and
f'(z) =0 for all z € R, hence In(exp(z)) = z on R.

If 2 > 0, consider the function f(z) = 1 exp(In(z)). We have that f(1) =1 and f'(z) = 0 for
all z > 0, hence exp(In(z)) = z for all z > 0.

We have just proved that the exponential and the logarithm are inverses to each other. O

Corollary 1.2. We have In(ab) = In(a) +1n(b) for all a,b > 0. Moreover, In(y*) = xIn(y) for all
y>0and z € R. Thus if y > 0 and z € R, we have y* = exp(z In(y)).

Proof. Since
exp(In(ad)) = ab = exp(In(a)) exp(In(b)) = exp(In(a) + In(b)),

we must have In(ab) = In(a) + In(d) due to the injectivity of exp. If ab = 1 we have 0 =
In(a) + In(a~?t), or In(a~!) = —In(a). Now if @ = b we get In(a?) = 2In(a). By induction, we
obtain that In(a™) = nln(a) for all n € N. Replacing a in the last identity with b'/™ we obtain
In(b'/™) = L In(b). Thus In(b% ) = 2 In(b). Moreover, In(b~ %) = — 2 In(b).

Thus we have just proved that for every rational number r and for every positive number y > 0
we have In(y") = r1n(y). This implies 4" = exp(rIn(y)) for every rational number r. Finally, we
use that every real number x is the limit of a sequence of rational numbers, together with the
continuity of exp. O

Corollary 1.3. Let a, 5,7 > 0. We have that

2y B (1.4)

QJLH;O exp(ﬁx) z—o00 7Y
Proof. Let N be an integer such that o < N. We have the inequality:

ﬁNl'N >ﬁN:EN
N!' — NI

exp(fz) > 1+ px+ -+ , Vx>0.

Then:
z® N!

= exp(fr) = BNacA”—a

Now if v > 0 and = > 0 we have 27 = exp(yIn(x)). Denote by y = In(z). Then we have:

— 0 when z — oo.

In(x)

lim = lim =
z—oo 7 y—r00 exp('yy)



2 The binomial identity

Theorem 2.1. Let a,b € R and n € N. Then:

n

(a+b)" =Y ————aFpn=F,
< k! !

Proof. Let P : R — R given by P(x) = (z + b)". We have that P'(z) = n(x + b)"~!, P"(z) =
n(n — 1)(z + b)" 2, and by induction we can prove:

(n f.k)!

Moreover, P%¥)(z) = 0 if k > n. The Taylor formula with remainder provides us with some ¢
between 0 and x such that:

PR (z)y=nn—-1)...(n—k+1)(z+b)"* = (z+b)"* 0<k<n.

— P® 0) & P(n+1)(c) k - P(k)(o) K
P(z) = P(0)+ Y IR T :P(0)+2Tx.
k=1 k=1
The final result is obtained by replacing = with a. O

3 Fubini’s theorem for double series

Theorem 3.1. Let {tym tn,m>0 be a real sequence indexed by two indices. Assume that the series
Y om0 |0nm| is convergent for all n and

C:= Z ( Z latm]|) < oo. (3.5)

n>0 m>0
Then we have that 3, <o |anm| converges for all m and:
> (X lawml) =C. (3.6)
m>0 n>0

Moreover,

lim Z ( Z Q) = ]V}ii)nOCZ( Z |otm|) = 0. (3.7)

N—o0
m>0 n>N n>0 m>M

Finally,

D (D mm) =D (D awm) €R. (3.8)

m>0 n>0 n>0 m2>0

Proof. We recall a few fundamental results. If a,, > 0 is a nonnegative sequence, we define
SN = ZnN:0 a, to be an increasing sequence of partial sums. Then ) ., a, = limy_, sy exists
and is finite if and only if the sequence {sx} x>0 is bounded from above. Moreover, if sy converges
then it is Cauchy, hence for all ¢ > 0 there exists N, > 0 such that 0 < syi, — sy < € for all
k>1and N > N.. This implies:

N+k
0§3N+k_3N: Z ap <e€, Vk>1.
n=N+1

Taking the supremum over k we get 0 < Z”>N+1 an < € for every N > N,. In other words:

Jim > an=0. (3.9)
n>N



If N and M are finite natural numbers, then we have:
M N N M N
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m=0n=0 n=0m=0 n=0m>0

In the last two inequalities we employed the assumption (3.5). Hence

M N

3 anm| £C <00, VN,M >0. (3.11)
m=0n=0
In particular,
N
Z lanm| < C < oo, VYN,m >0.
n=0

This shows that > - |onm| is convergent for all m > 0. Now we can take the limit N — oo in
(3.11) and obtain:

M
> lonm| <C <oo, VM 20.
m=0n>0
But this shows that the sequence of the partial sums generated by an, := ", < [onm| is bounded,
hence .
D = Z (Z |oznm|) <C.
m>0 n>0

Now using again the first identity in (3.10) we have:

N M M N M
Z Z |tnm| = Z Z |tm | < Z Z |tm| < D

n=0m=0 m=0n=0 m=0n>0

or

N M
> Y lewm| <D, YN, M >0.

n=0m=0

Our hypothesis guarantees that limps_, Z%:o |ty | exists and is finite, hence:

N
> Y lawml <D, YN >0,
n=0m>0

Thus by taking N — oo we get:

C=2 > lawml<D

n>0m>0

which proves that C' = D.
Now we have to prove (3.7). Define S, = apm if n > N, and B, =01 0 < n < N. Then

DD Bl =3 D WBuml or D D emml = > (D levum]):

m>0n>0 n>0m>0 m>0n>N n>N m2>0

Denoting by an, =} _,,5¢ lanm| we see that (use (3.9)):

ZZ‘O‘”W’I:ZG"%O when N — oo.

m>0n>N n>N

In a similar way we can prove the other limit in (3.7).



Now we have to prove (3.8). First of all, because

1> | <Y lwml, ¥n >0

m>0 m>0

we have that >, oo (3,50 @nm) is absolutely convergent. The same holds true for the series in
the right hand side of (3.8). Thus we only need to prove that the two double series are equal.
If N and M are finite natural numbers we have:

M N N M
DD m =2 ) Cum, (3.12)
m=0n=0 n=0m=0

which implies:
M N M N
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m=0n>0 n=0m2>0 m=0n>N n=0m>M
which leads to:

i > o = i D | <D0 D lawml + D Y lwml- (3.14)

m=0n>0 n=0m>0 m>0n>N n>0m>M

Now we use (3.7) in (3.14): take both M and N to infinity, and obtain:

S o Y o] £0

m>0n>0 n>0m>0

which ends the proof.

4 Power series are analytic functions

Let {an}n>0 C R such that limsup,_, ., |a.|'/" < oco. Define r = 1/{limsup,,_,.. |an|'/"} if
limsup,, . |an|"/™ > 0 and r = oo if limsup,, . |a,|"/™ = 0.
Let 0 < R < r and define f : (xg — R,xz9 + R) — R given by:

f(z):= Z an(z — x0)™.

n>0

The series is absolutely convergent because limsup,, ., |an(z — 20)"|"/™ = ‘x_riml <1

Theorem 4.1. Let b € (zg— R,x0+ R) be an arbitrary point. Then f is indefinitely differentiable
at b, and for every t € (xg — R,xo + R) with |t — b| < R — |b — x¢| we have:

(m)
O PEAUIER
m>0

where the Taylor series is absolutely convergent.

Proof. Denote by apm :=n(n—1)...(n —m+ 1)a, if m > 1. Note that if n > k we have:

(n — k)™ = exp(In[(n — k)/"]) = exp (hﬂw—k)> - <1n(n) +In(l — k:/n))

n n




and using (1.4):

exp <1n7(1n) N In(1 ;k/n)

) —exp(0) =1 when n — oco.
It follows that

1
lim sup |apm |/ = =, ¥Ym > 1.
n—00 r

Thus the series ) o, 0nm,t" ™ is absolutely convergent for all |t|] < R. Given x such that
|z — 20| < p < R < r, there exists some hy > 0 such that |z +h — 29| < (R+ p)/2 < R for all
|h| < hg. Using (1.2) with a =  — g and |h| < hy we have:

h2
flx+h)— than T —x0)" "+ — 5 Zn(n—l)an(ac—kcn,a,h—xo)"_g,

n>1 n>2

where ¢y, 4,5 lies between 0 and h. Note that both series on the right hand side converge absolutely
because:

[nan(z — 20)" | < Jantlp" ™, n(n = Dan(z + cnan = 20)" 7| < lana|[(R+ p)/2]" 2
We conclude that f'(z) = En>1 nan(x —x9)"* for all |z — x¢| < R. By induction, we obtain:
f(m Z O‘nm - n moo om>1.

n>m

It follows that we have the identity:

h —Zann_ 'm'h (x — xp)

n>m

which holds true for all m > 0.

Now define 8,,,, = 0 if m > n and B, = an#%)!m!

h™(x — xo)"~™ if m < n. We see that

> Baml = mz::Oan\ < |an|mz::0m|h\ |z — 20" = |an|(|h] + |z — 20])

m>0

where we used the binomial identity in the last equality. Now if |h| < R — |x — x| it follows that
ano lan|(|h| + |z — zo|)™ < oo, hence:

Z Z |6nm| < Q.
n>0m>0

The conditions of Theorem 3.1 are satisfied, hence

DD Bum= D)

n>0m>0 m>0n>0

Now we observe that

ZZﬁnmzzZ/Bnmzzan(l‘—Fh—xo)nZf(x-i-h),

n>0m>0 n>0 m=0 n>0
while
f(m)
nm
DD =3 3 Bum=D Y anpy lmlh (z=z0)" ™" = > :
m>0n>0 m>0n>m m>0n>m m>0

In other words,

(m) (1
fle+h) =Y L)

m!

Now replace x + h =t and x = b and the theorem is proved. O



