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1 The exponential and the logarithm

For every x ∈ R we define the function given by

exp(x) := 1 + x+
x2

2
+ · · ·+ xn

n!
+ · · · =

∑
n≥0

xn

n!
.

If x = 0 we have exp(0) = 1. If x 6= 0, consider the series
∑
n≥0 αn given by αn = xn

n! . Using the
ratio criterion we have:

|αn+1|
|αn|

=
|x|
n+ 1

→ 0 < 1 when n→∞,

which shows that the series defining exp(x) converges absolutely for all x ∈ R.
We want to prove that the exponential is everywhere differentiable. Fix a ∈ R and let h ∈ R.

Define the function

F (h) := (h+ a)n, n ≥ 2. (1.1)

The Taylor formula with remainder provides us with a c = cn,a,h between 0 and h such that
F (h) = F (0) + F ′(0)h+ F ′′(c)h2/2, or:

(h+ a)n − an = nan−1h+
n(n− 1)

2
h2(cn,a,h + a)n−2, (1.2)

which leads to:

(h+ a)n

n!
− an

n!
=

an−1

(n− 1)!
h+

(cn,a,h + a)n−2

2(n− 2)!
h2, n ≥ 2. (1.3)

Thus if h 6= 0:

exp(h+ a)− exp(a)

h
= 1 +

1

h

∑
n≥2

(
(h+ a)n

n!
− an

n!

)
= 1 +

∑
n≥2

an−1

(n− 1)!
+
h

2

∑
n≥2

(cn,a,h + a)n−2

(n− 2)!
.

Note first that 1 +
∑
n≥2

an−1

(n−1)! = exp(a). Moreover, since |cn,a,h + a| ≤ |a|+ |h| we may write:∣∣∣∣exp(h+ a)− exp(a)

h
− exp(a)

∣∣∣∣ ≤ |h|2 ∑
n≥2

(|a|+ |h|)n−2

(n− 2)!
=
|h| exp(|a|+ |h|)

2
≤ |h| exp(|a|+ 1)

2
,

which holds for every 0 < |h| ≤ 1. It follows that the exponential function is differentiable at a
and exp′(a) = exp(a).

Theorem 1.1. We have that exp(−x) exp(x) = 1 and exp(x) > 0 for all x ∈ R. Moreover,
exp(a+ b) = exp(a) exp(b) for all a, b ∈ R. Define the logarithm function

ln(x) :=

∫ x

1

1

t
dt, x > 0.

Then we have ln(exp(x)) = x for all x ∈ R, and exp(ln(x)) = x for all x > 0.
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Proof. We know that exp(0) = 1 and exp′(x) = exp(x) holds on R. Define the function f(x) =
exp(−x) exp(x). Then f is differentiable and

f(0) = 1, f ′(x) = 0, ∀x ∈ R.

Hence f(x) = 1 on R, which proves that exp(−x) exp(x) = 1 for all x ∈ R. The same identity
shows that exp(x) can never be zero. Now since exp(0) = 1 > 0 and because exp is continuous
(being differentiable), it cannot change sign because it would have to go through a zero (remember
the intermediate value theorem). Hence exp(x) > 0 on R.

Now define the function g(x) = exp(−x − b) exp(x) exp(b) for some fixed b. We again have
g(0) = 1 and g′(x) = 0 for all x ∈ R, hence exp(−x − b) exp(x) exp(b) = 1 on R. Multiply with
exp(x+ b) on both sides and obtain exp(x) exp(b) = exp(x+ b) on R.

The logarithm function is defined to be a primitive of 1/x, i.e.:

ln′(x) =
1

x
, ln(1) = 0.

Define f(x) = ln(exp(x))− x on R, which is possible because exp(x) > 0. We have f(0) = 0 and
f ′(x) = 0 for all x ∈ R, hence ln(exp(x)) = x on R.

If x > 0, consider the function f(x) = 1
x exp(ln(x)). We have that f(1) = 1 and f ′(x) = 0 for

all x > 0, hence exp(ln(x)) = x for all x > 0.
We have just proved that the exponential and the logarithm are inverses to each other.

Corollary 1.2. We have ln(ab) = ln(a) + ln(b) for all a, b > 0. Moreover, ln(yx) = x ln(y) for all
y > 0 and x ∈ R. Thus if y > 0 and x ∈ R, we have yx = exp(x ln(y)).

Proof. Since
exp(ln(ab)) = ab = exp(ln(a)) exp(ln(b)) = exp(ln(a) + ln(b)),

we must have ln(ab) = ln(a) + ln(b) due to the injectivity of exp. If ab = 1 we have 0 =
ln(a) + ln(a−1), or ln(a−1) = − ln(a). Now if a = b we get ln(a2) = 2 ln(a). By induction, we
obtain that ln(an) = n ln(a) for all n ∈ N. Replacing a in the last identity with b1/n we obtain
ln(b1/n) = 1

n ln(b). Thus ln(b
m
n ) = m

n ln(b). Moreover, ln(b−
m
n ) = −mn ln(b).

Thus we have just proved that for every rational number r and for every positive number y > 0
we have ln(yr) = r ln(y). This implies yr = exp(r ln(y)) for every rational number r. Finally, we
use that every real number x is the limit of a sequence of rational numbers, together with the
continuity of exp.

Corollary 1.3. Let α, β, γ > 0. We have that

lim
x→∞

xα

exp(βx)
= lim
x→∞

ln(x)

xγ
= 0. (1.4)

Proof. Let N be an integer such that α < N . We have the inequality:

exp(βx) ≥ 1 + βx+ · · ·+ βNxN

N !
≥ βNxN

N !
, ∀x > 0.

Then:

0 ≤ xα

exp(βx)
≤ N !

βNxN−α
→ 0 when x→∞.

Now if γ > 0 and x > 0 we have xγ = exp(γ ln(x)). Denote by y = ln(x). Then we have:

lim
x→∞

ln(x)

xγ
= lim
y→∞

y

exp(γy)
= 0.
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2 The binomial identity

Theorem 2.1. Let a, b ∈ R and n ∈ N. Then:

(a+ b)n =

n∑
k=0

n!

k!(n− k)!
akbn−k.

Proof. Let P : R 7→ R given by P (x) = (x + b)n. We have that P ′(x) = n(x + b)n−1, P ′′(x) =
n(n− 1)(x+ b)n−2, and by induction we can prove:

P (k)(x) = n(n− 1) . . . (n− k + 1)(x+ b)n−k =
n!

(n− k)!
(x+ b)n−k, 0 ≤ k ≤ n.

Moreover, P (k)(x) = 0 if k > n. The Taylor formula with remainder provides us with some c
between 0 and x such that:

P (x) = P (0) +

n∑
k=1

P (k)(0)

k!
xk +

P (n+1)(c)

(n+ 1)!
xk = P (0) +

n∑
k=1

P (k)(0)

k!
xk.

The final result is obtained by replacing x with a.

3 Fubini’s theorem for double series

Theorem 3.1. Let {αnm}n,m≥0 be a real sequence indexed by two indices. Assume that the series∑
m≥0 |αnm| is convergent for all n and

C :=
∑
n≥0

( ∑
m≥0

|αnm|
)
<∞. (3.5)

Then we have that
∑
n≥0 |αnm| converges for all m and:∑

m≥0

(∑
n≥0

|αnm|
)

= C. (3.6)

Moreover,

lim
N→∞

∑
m≥0

( ∑
n>N

|αnm|
)

= lim
M→∞

∑
n≥0

( ∑
m>M

|αnm|
)

= 0. (3.7)

Finally, ∑
m≥0

(∑
n≥0

αnm
)

=
∑
n≥0

( ∑
m≥0

αnm
)
∈ R. (3.8)

Proof. We recall a few fundamental results. If an ≥ 0 is a nonnegative sequence, we define
sN =

∑N
n=0 an to be an increasing sequence of partial sums. Then

∑
n≥0 an = limN→∞ sN exists

and is finite if and only if the sequence {sN}N≥0 is bounded from above. Moreover, if sN converges
then it is Cauchy, hence for all ε > 0 there exists Nε ≥ 0 such that 0 ≤ sN+k − sN < ε for all
k ≥ 1 and N ≥ Nε. This implies:

0 ≤ sN+k − sN =

N+k∑
n=N+1

an < ε, ∀k ≥ 1.

Taking the supremum over k we get 0 ≤
∑
n≥N+1 an ≤ ε for every N ≥ Nε. In other words:

lim
N→∞

∑
n>N

an = 0. (3.9)
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If N and M are finite natural numbers, then we have:

M∑
m=0

N∑
n=0

|αnm| =
N∑
n=0

M∑
m=0

|αnm| ≤
N∑
n=0

∑
m≥0

|αnm| ≤ C. (3.10)

In the last two inequalities we employed the assumption (3.5). Hence

M∑
m=0

N∑
n=0

|αnm| ≤ C <∞, ∀N,M ≥ 0. (3.11)

In particular,
N∑
n=0

|αnm| ≤ C <∞, ∀N,m ≥ 0.

This shows that
∑
n≥0 |αnm| is convergent for all m ≥ 0. Now we can take the limit N → ∞ in

(3.11) and obtain:
M∑
m=0

∑
n≥0

|αnm| ≤ C <∞, ∀M ≥ 0.

But this shows that the sequence of the partial sums generated by am :=
∑
n≥0 |αnm| is bounded,

hence
D :=

∑
m≥0

(∑
n≥0

|αnm|
)
≤ C.

Now using again the first identity in (3.10) we have:

N∑
n=0

M∑
m=0

|αnm| =
M∑
m=0

N∑
n=0

|αnm| ≤
M∑
m=0

∑
n≥0

|αnm| ≤ D

or
N∑
n=0

M∑
m=0

|αnm| ≤ D, ∀N,M ≥ 0.

Our hypothesis guarantees that limM→∞
∑M
m=0 |αnm| exists and is finite, hence:

N∑
n=0

∑
m≥0

|αnm| ≤ D, ∀N ≥ 0.

Thus by taking N →∞ we get:

C =
∑
n≥0

∑
m≥0

|αnm| ≤ D

which proves that C = D.
Now we have to prove (3.7). Define βnm = αnm if n > N , and βnm = 0 if 0 ≤ n ≤ N . Then

we have: ∑
m≥0

∑
n≥0

|βnm| =
∑
n≥0

∑
m≥0

|βnm| or
∑
m≥0

∑
n>N

|αnm| =
∑
n>N

( ∑
m≥0

|αnm|
)
.

Denoting by an =
∑
m≥0 |αnm| we see that (use (3.9)):∑

m≥0

∑
n>N

|αnm| =
∑
n>N

an → 0 when N →∞.

In a similar way we can prove the other limit in (3.7).
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Now we have to prove (3.8). First of all, because∣∣ ∑
m≥0

αnm
∣∣ ≤∑

m≥0

|αnm|, ∀n ≥ 0

we have that
∑
n≥0

(∑
m≥0 αnm) is absolutely convergent. The same holds true for the series in

the right hand side of (3.8). Thus we only need to prove that the two double series are equal.
If N and M are finite natural numbers we have:

M∑
m=0

N∑
n=0

αnm =

N∑
n=0

M∑
m=0

αnm, (3.12)

which implies:

M∑
m=0

∑
n≥0

αnm −
N∑
n=0

∑
m≥0

αnm =

M∑
m=0

∑
n>N

αnm −
N∑
n=0

∑
m>M

αnm, (3.13)

which leads to: ∣∣∣∣∣∣
M∑
m=0

∑
n≥0

αnm −
N∑
n=0

∑
m≥0

αnm

∣∣∣∣∣∣ ≤
∑
m≥0

∑
n>N

|αnm|+
∑
n≥0

∑
m>M

|αnm|. (3.14)

Now we use (3.7) in (3.14): take both M and N to infinity, and obtain:∣∣∣∣∣∣
∑
m≥0

∑
n≥0

αnm −
∑
n≥0

∑
m≥0

αnm

∣∣∣∣∣∣ ≤ 0

which ends the proof.

4 Power series are analytic functions

Let {an}n≥0 ⊂ R such that lim supn→∞ |an|1/n < ∞. Define r = 1/{lim supn→∞ |an|1/n} if
lim supn→∞ |an|1/n > 0 and r =∞ if lim supn→∞ |an|1/n = 0.

Let 0 < R < r and define f : (x0 −R, x0 +R) 7→ R given by:

f(x) :=
∑
n≥0

an(x− x0)n.

The series is absolutely convergent because lim supn→∞ |an(x− x0)n|1/n = |x−x0|
r < 1.

Theorem 4.1. Let b ∈ (x0−R, x0 +R) be an arbitrary point. Then f is indefinitely differentiable
at b, and for every t ∈ (x0 −R, x0 +R) with |t− b| < R− |b− x0| we have:

f(t) =
∑
m≥0

f (m)(b)

m!
(t− b)m,

where the Taylor series is absolutely convergent.

Proof. Denote by αnm := n(n− 1) . . . (n−m+ 1)an if m ≥ 1. Note that if n > k we have:

(n− k)1/n = exp(ln[(n− k)1/n]) = exp

(
ln(n− k)

n

)
= exp

(
ln(n) + ln(1− k/n)

n

)
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and using (1.4):

exp

(
ln(n)

n
+

ln(1− k/n)

n

)
→ exp(0) = 1 when n→∞.

It follows that

lim sup
n→∞

|αnm|1/n =
1

r
, ∀m ≥ 1.

Thus the series
∑
n≥m αnmt

n−m is absolutely convergent for all |t| < R. Given x such that
|x − x0| ≤ ρ < R < r, there exists some h0 > 0 such that |x + h − x0| ≤ (R + ρ)/2 < R for all
|h| ≤ h0. Using (1.2) with a = x− x0 and |h| ≤ h0 we have:

f(x+ h)− f(x) = h
∑
n≥1

nan(x− x0)n−1 +
h2

2

∑
n≥2

n(n− 1)an(x+ cn,a,h − x0)n−2,

where cn,a,h lies between 0 and h. Note that both series on the right hand side converge absolutely
because:

|nan(x− x0)n−1| ≤ |αn1|ρn−1, |n(n− 1)an(x+ cn,a,h − x0)n−2| ≤ |αn2|[(R+ ρ)/2]n−2.

We conclude that f ′(x) =
∑
n≥1 nan(x−x0)n−1 for all |x−x0| < R. By induction, we obtain:

f (m)(x) =
∑
n≥m

αnm(x− x0)n−m, m ≥ 1.

It follows that we have the identity:

f (m)(x)

m!
hm =

∑
n≥m

an
n!

(n−m)!m!
hm(x− x0)n−m

which holds true for all m ≥ 0.
Now define βnm = 0 if m > n and βnm = an

n!
(n−m)!m!h

m(x− x0)n−m if m ≤ n. We see that∑
m≥0

|βnm| =
n∑

m=0

|βnm| ≤ |an|
n∑

m=0

n!

(n−m)!m!
|h|m|x− x0|n−m = |an|(|h|+ |x− x0|)n

where we used the binomial identity in the last equality. Now if |h| < R− |x− x0| it follows that∑
n≥0 |an|(|h|+ |x− x0|)n <∞, hence:∑

n≥0

∑
m≥0

|βnm| <∞.

The conditions of Theorem 3.1 are satisfied, hence∑
n≥0

∑
m≥0

βnm =
∑
m≥0

∑
n≥0

βnm.

Now we observe that∑
n≥0

∑
m≥0

βnm =
∑
n≥0

n∑
m=0

βnm =
∑
n≥0

an(x+ h− x0)n = f(x+ h),

while∑
m≥0

∑
n≥0

βnm =
∑
m≥0

∑
n≥m

βnm =
∑
m≥0

∑
n≥m

an
n!

(n−m)!m!
hm(x− x0)n−m =

∑
m≥0

f (m)(x)

m!
hm.

In other words,

f(x+ h) =
∑
m≥0

f (m)(x)

m!
hm.

Now replace x+ h = t and x = b and the theorem is proved.
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