
1 The spectral theorem for compact and selfadjoint opera-
tors

Let H be a separable Hilbert space, and let T = T ∗ ∈ B(H) be a selfadjoint, compact opera-
tor. This means that given any bounded sequence {xn}n≥1, one can always find a convergent
subsequence for {Txn}n≥1.

Theorem 1. There exists an orthonormal basis in H, {ψj}j≥1, and a sequence of real numbers
{λj}j≥1 accumulating at 0 and satisfying ||T || = |λ1| ≥ |λ2| ≥ . . . , such that for every f ∈ H we
have:

Tf =
∑
j≥1

λjψj〈f, ψj〉. (1.1)

1.1 Proof of Theorem 1

Lemma 2. Let z ∈ C. We have null(T − z) = {range(T − z)}⊥, and H = null(T − z) ⊕
{range(T − z)}.

Proof. Let us prove the first equality. We know that T is symmetric, hence 〈(T − z)f, g〉 =
〈f, (T − z)g〉 for all vectors f, g ∈ H. If f ∈ null(T − z), then 0 = 〈f, (T − z)g〉 for all g, thus
f ∈ {range(T−z)}⊥. If f ∈ {range(T−z)}⊥, then 〈(T−z)f, g〉 = 0 for all g ∈ H, thus (T−z)f = 0
and f ∈ null(T − z).

Let us prove the second equality. We know that for any linear subspace M we have {M⊥}⊥ =
M . Thus:

H = null(T − z)⊕ {null(T − z)}⊥ = null(T − z)⊕ range(T − z). (1.2)

Lemma 3. Let z = x + iy. Then ||(T − z)f || ≥ |y| ||f || for every f ∈ H. In particular,
null(T − z) = {0} and T − z is injective.

Proof. It is an easy consequence of the fact that 〈Tf, f〉 is real and:

||f || ||(T − z)f || ≥ |〈(T − z)f, f〉| = |〈(T − x)f, f〉 − iy||f ||2| ≥ |y| ||f ||2.

Lemma 4. Assume that for a given z, there exists δ > 0 such that

||(T − z)f || ≥ δ||f ||, ∀f ∈ H. (1.3)

Then T − z is injective and surjective, thus z ∈ ρ(T ).

Proof. Let us write z = x+ iy. Clearly, T −z is injective. Our goal is to prove that range(T −z) =
H.

If y 6= 0, then (1.3) is a consequence of Lemma 3. Thus we can also assume that

||(T − z)f || ≥ δ||f ||, ∀f ∈ H. (1.4)

When y = 0, (1.4) contains no additional information.
In both cases, (1.4) implies that T − z is injective, thus null(T − z) = {0}. Using (1.2) with z

replaced by z we obtain that the range of T − z is dense in H:

range(T − z) = H. (1.5)

The only remaining thing in the proof is to show that range(T − z) is a closed set, which
together with (1.5) would show the surjectivity of T − z.
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Let us do that. Assume that {yn}n≥1 ⊂ range(T − z) converges to y∞ ∈ H. We have to show
that y∞ ∈ range(T − z). There exists {xn}n≥1 ⊂ H such that yn = (T − z)xn. Using (1.3) we
can write:

||xn+k − xn|| ≤
1
δ
||(T − z)(xn+k − xn)|| = 1

δ
||yn+k − yn||, ∀n, k ≥ 1. (1.6)

Since {yn}n≥1 is Cauchy, (1.6) implies the same thing for {xn}n≥1. Thus there exists x∞ ∈ H such
that limn→∞ xn = x∞. Using this in the equality Txn = zxn + yn together with the continuity of
T , we obtain Tx∞ = zx∞ + y∞ and:

y∞ = (T − z)x∞ ∈ range(T − z).

Remark 1. The previous lemma shows that if T is a selfadjoint operator, then z ∈ ρ(T ) if

||(T − z)x|| ≥ δ > 0 ∀x ∈ B1(0) (1.7)

Thus λ ∈ σ(T ) if
inf

||x||=1
||(T − λ)x|| = 0,

or more precisely, if there exists a sequence {xn}n≥1 with ||xn|| = 1 such that

lim
n→∞

(T − z)xn = 0. (1.8)

Remark 2. Lemma 3 and Lemma 4 prove that σ(T ) ⊂ R. Moreover, if |z| > ||T || we can write

(T − z)−1 = −
∑
n≥0

1
zn+1

Tn, (1.9)

thus σ(T ) ⊂ [−||T ||, ||T ||].

Let us now characterize the structure and nature of the spectrum of T .

Lemma 5. If λ ∈ σ(T ) and λ 6= 0, then there exists at least one eigenvector f 6= 0 such that
Tf = λf .

Proof. Because λ ∈ σ(T ), we have the bounded sequence {xn}n≥1 from (1.8). Since T is compact,
we can find a subsequence {xnk

}k≥1 such that {Txnk
}k≥1 is convergent to some y∞. We can

write:
xnk

=
1
λ
Txnk

− 1
λ

(T − λ)xnk
,

and since the r.h.s. converges to 1
λy∞ we conclude that limk→∞ xnk

= 1
λy∞. The continuity of T

implies that limk→∞ Txnk
= 1

λTy∞. Hence:

0 = lim
k→∞

(Txnk
− λxnk

) =
1
λ
Ty∞ − y∞.

Moreover, since ||xnk
|| = 1 implies that ||y∞|| = 1, and we can choose our eigenvector f = y∞.

Lemma 6. If λ1 6= λ2 belong to the spectrum, and if f1 and f2 are two corresponding eigenvectors,
then 〈f1, f2〉 = 0.

Proof. Use the symmetry of T and write:

0 = 〈Tf1, f2〉 − 〈f1, T f2〉 = (λ1 − λ2)〈f1, f2〉.
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Lemma 7. The spectrum of T cannot have other accumulation points outside 0. In other words,
σ(T ) \ {0} is a discrete set consisting from isolated points.

Proof. Assume that λ 6= 0 is an accumulation point of σ(T ). It means that we can find a sequence
of points {λn}n≥1 ⊂ σ(T ), all distinct and not zero, such that

lim
n→∞

λn = λ.

From Lemma 5 we obtain at least an eigenvector xn, ||xn|| = 1, such that Txn = λnxn, or
xn = 1

λn
Txn. Since T is compact, there exists a subsequence xnk

such that Txnk
converges to

some y. Thus

lim
k→∞

xnk
= lim

k→∞

1
λnk

Txnk
=

1
λ
y.

Thus we have just constructed a convergent subsequence of {xn}n≥1. But since each xn

corresponds to a different λn, Lemma 6 tells us that ||xj − xk|| =
√

2 if j 6= k, therefore this
sequence cannot have Cauchy subsequences. We arrived to a contradiction.

Lemma 8. Assume that λ ∈ σ(T ) \ {0}. Then the dimension of null(T − λ) is finite.

Proof. Assume the contrary, i.e. the existence of infinitely many linearly independent vectors in
null(T − λ). Up to a Gramm-Schmidt procedure, we can consider them to be orthogonal and
normalized to one. If {xn}n≥1 is such a list, then again ||xj − xk|| =

√
2, thus it cannot have

any convergent subsequences. But since xn = 1
λTxn, the compactness of T would generate a

convergent subsequence for {xn}n≥1, and we arrive to a contradiction.

Until now we know that the spectrum of T is contained in the interval [−||T ||, ||T ||], it consists
from isolated points outside 0, and the nullspace associated to each of its nonzero points is finite
dimensional. Thus the nonzero spectrum is only composed from eigenvalues with finite geometric
multiplicity, and they can only accumulate to 0.

Lemma 9. At least one of the numbers ±||T || is an eigenvalue for T .

Proof. From the definition of the norm, we have ||T || = sup||x||=1 ||Tx||. Thus there exists a
sequence {xn}n≥1, ||xn|| = 1 such that limn→∞ ||Txn|| = ||T ||. Since T is compact, we can find
a subsequence xnk

such that limk→∞ Txnk
= y, thus ||y|| = ||T ||. In order to simplify notation,

denote ||T || by λ. Then we have:

lim
k→∞

||(T 2 − λ2)xnk
||2 = lim

k→∞
〈(T 2 − λ2)xnk

, (T 2 − λ2)xnk
〉

= lim
k→∞

{〈T 2xnk
, T 2xnk

〉 − 2λ2〈T 2xnk
, xnk

〉+ λ4||xnk
||2} = 〈Ty, Ty〉 − 2λ2〈y, y〉+ λ4

= 〈Ty, Ty〉 − λ4 ≥ 0. (1.10)

Thus we get ||Ty|| ≥ λ2. Moreover:

0 ≤ ||(T − λ)(T + λ)y||2 = ||(T 2 − λ2)y||2 = 〈(T 2 − λ2)y, (T 2 − λ2)y〉
= 〈T 2y, T 2y〉 − 2λ2〈T 2y, y〉+ λ4||y||2 = 〈T 2y, T 2y〉 − 2λ2〈Ty, Ty〉+ λ4||y||2

≤ ||T 2y||2 − λ6 ≤ 0. (1.11)

In the last line above we used (1.10). Thus (1.11) implies (T−λ)(T+λ)y = 0. Now if (T+λ)y = 0,
it means that −λ is an eigenvalue. If f = (T + λ)y 6= 0, then necessarily (T − λ)f = 0 which
means that λ is an eigenvalue.
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The previous result together with Lemma 8 imply the existence of a finite number of eigenvec-
tors of T which span the subspace Mλ := null(T −λ) where λ = ±||T ||. Denote by {ψj(λ)}dim(Mλ)

j=1

an orthonormal basis of Mλ, consisting of eigenvectors of T . Denote by Pλ the orthogonal projec-
tion associated to null(T − λ):

Pλf :=
dim(Mλ)∑

j=1

〈f, ψj(λ)〉ψj(λ). (1.12)

By direct computation, one can show that P ∗λ = Pλ = P 2
λ .

By convention, if λ is not in the spectrum of T , then Mλ = {0} and Pλ = 0. Denote by

M1 := M+||T || ∪M−||T ||. (1.13)

Lemma 10. The subspace M1 is a finite dimensional, closed linear subspace, which is left invariant
by T (that is TM1 ⊂M1). The same is true for M⊥

1 .

Proof. Every f ∈ M1 can be written as a finite linear combination of the type f =
∑

j〈f, ψj〉ψj .
Since all ψj ’s are eigenvectors of T , then Tf ∈M1.

Now let us prove that M⊥
1 is invariant under T . Let g ∈M⊥

1 . Then for every f ∈M1 we have:

〈Tg, f〉 = 〈g, Tf〉 = 0,

since Tf ∈M1. Hence Tg ∈M⊥
1 .

Now consider the decomposition H = M1 ⊕M⊥
1 . The previous invariance result allows us to

write our operator T as a direct sum T = (||T ||P+||T || − ||T ||P−||T ||)⊕ T1, where T1 is simply the
restriction of T to M⊥

1 . The next technical result is the following:

Lemma 11. The restriction T1 is also compact and selfadjoint. Moreover, ||T1|| < ||T ||.

Proof. The fact that T is compact and selfadjoint follows from

T1 = T (1− P+||T || − P−||T ||) = (1− P+||T || − P−||T ||)T.

Now let us prove that ||T1|| < ||T ||. Clearly, ||T1|| ≤ ||T ||, so we only need to prove that the two
norms cannot be equal. Assume that they are equal. Then applying Lemma 9 to T1, it would
provide an eigenvector φ ∈ M⊥

1 , ||φ|| = 1, for T1. But φ would also be an eigenvector for T
corresponding to ||T || or −||T ||, thus φ ∈M1, contradicting φ 6= 0.

Remark 3. We have the inclusion null(T ) ⊂ M⊥
1 ; indeed, let f ∈ null(T ) and let ψj one

eigenvector of T from M1 corresponding to the eigenvalue λ 6= 0. Then

0 =
1
λ
〈Tf, ψj〉 =

1
λ
〈f, Tψj〉 = 〈f, ψj〉.

Thus f is orthogonal to any linear combination of ψj ’s, thus f ∈M⊥
1 .

The proof of Theorem 1 is now almost over. If M⊥
1 = null(T ), then we have H = M1⊕null(T )

and T = (||T ||P+||T || − ||T ||P−||T ||)⊕ 0.
Otherwise, define M2 as the subspace of M⊥

1 corresponding to the union of null(T1 + ||T1||)
with null(T1 − ||T1||) and decompose H = M1 ⊕ (M2 ⊕M⊥

2 ). Here T1 decomposes as

T1 = (||T1||P+||T1|| − ||T1||P−||T1||)⊕ T2.
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By induction, we obtain the decomposition

H = M1 ⊕M2 · · · ⊕ (Mn ⊕M⊥
n )

and
T = ⊕n−1

j=0 (||Tj ||P+||Tj || − ||Tj ||P−||Tj ||)⊕ Tn,

where Tn is the restriction of Tn−1 to M⊥
n . By convention, T0 = T . Reasoning as in the proof of

Remark 3, we get that null(T ) ⊆ M⊥
n . If they are equal, then we stop. Otherwise, we continue

the reduction procedure.
Now assume that we never get null(T ) = M⊥

n . It follows that Tn 6= 0, and also limn→∞ ||Tn|| =
0 because Lemma 7 forbids the accumulation of eigenvalues outside 0.

Lemma 12. We have ⊕j≥0Mj = range(T ).

Proof. Fix f ∈ H. The vector
∑n−1

j=0 (||Tj ||P+||Tj ||f − ||Tj ||P−||Tj ||f) can be seen as an element
of ⊕j≥0Mj , where all components with an index larger than n + 1 are zero. We know that
Tnf = Tf −

∑n−1
j=0 (||Tj ||P+||Tj ||f − ||Tj ||P−||Tj ||f), and ||Tnf || → 0 when n grows. Thus we can

approximate Tf arbitrarily well with elements of ⊕j≥0Mj .

Corollary 13. We have the decomposition H = {⊕j≥0Mj} ⊕ null(T ).

Proof. Put z = 0 in (1.2) and use Lemma 12.

We can now conclude the proof of Theorem 1. The orthonormal basis consists from the
eigenvectors of T corresponding to non-zero eigenvalues, put together with an arbitrary basis in
null(T ). The numbers λj ’s are either the eigenvalues of T or zero.

2 The singular value decomposition of a compact operator

Theorem 14. Let H be a separable Hilbert space, and let A be a compact operator. Then there
exist two orthonormal basis of H, {ej}j≥1 and {fj}j≥1, and a nonincreasing sequence of non-
negative numbers sj ≥ 0 accumulating at zero such that for every f ∈ H we have:

Af =
∑
j≥1

sj〈f, ej〉fj .

Proof. Let T := A∗A. We see that T is compact, selfadjoint and positive. Moreover, null(A) =
null(T ); indeed, if x ∈ null(A) then Tx = A∗(Ax) = 0, thus x ∈ null(T ). If x ∈ null(T ), then
0 = 〈x, Tx〉 = ||Ax||2 thus Ax = 0 and x ∈ null(A).

According to Theorem 1, there exists an orthonormal basis {ej}j≥1 consisting of eigenvectors
of T , and let λj be their corresponding (non-zero) eigenvalues. We have

Af =
∑
j≥1

〈f, ej〉Aej (2.1)

In the above sum, only those ej ’s appear which are not spanning the null space of T . Denote by
fj := 1

||Aej ||Aej , if Aej 6= 0. Clearly, from (2.1) it follows that the fj ’s span the closure of the
range of A. Now let us prove that the fj ’s are orthogonal on each other. If j 6= k we have

〈fj , fk〉 =
1

||Aej || ||Aek||
〈ej , A

∗Aek〉 = 0.

We can extend the fj basis in an arbitrary way to range(A)⊥. Finally, let us denote by
sj := ||Aej || =

√
〈ej , A∗Aej〉 =

√
λj . From (2.1) and the definition of fj ’s and sj ’s, the theorem

is proved.
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