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1 A few things about the exponential function

We will in this section define in a rigorous way and study a few important
properties of the exponential function.

Proposition 1.1. Consider the first order ODE y′(t) = y(t) with the initial
condition y(0) = 1, and t ∈ R.

(i). There exists a unique solution to this equation, and this solution is called
the exponential function et.

(ii). We have et+s = etes for every t, s ∈ R.
(iii). We have et > 0 for every t ∈ R, hence the exponential function is

increasing.
(iv). Consider the sequence of polynomials pn(t) := 1 + t + t2

2! + · · · + tn

n!
where n ≥ 1. We have that pn(t) ≤ et for every t ≥ 0 and

lim
n→∞

pn(t) = et. (1.1)

Proof (i). We will first construct local solutions, and then will show that these
solutions can be uniquely extended to the whole real axis by a cut-and-paste
technique.

In order to construct a local solution around a given initial point t0, we will
use an argument as in Picard’s theorem (see example (3) in Cohen, page 123).
Our equation can be put in the form

y′(t) = f(t, y(t)), t ∈ [t0 − h, t0 + h], y(t0) = y0, (1.2)

where h > 0, f : R2 → R, f(x, y) = y. The function f obeys a global Lips-
chitz condition, with a constant K = 1. Any solution to the above differential
equation would also be a solution to the following integral equation (prove it!):

y(t) = y0 +
∫ t

t0

y(s)ds, t ∈ [t0 − h, t0 + h]. (1.3)

Consider the complete metric space

C([t0 − h, t0 + h]) := {g : [t0 − h, t0 + h] → R : g is continuous},

with the metric d∞ : C([t0 − h, t0 + h])× C([t0 − h, t0 + h]) → R,

d∞(g1, g2) := sup
t∈[t0−h,t0+h]

|g1(t)− g2(t)|.
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Introduce the mapping A : C([t0 − h, t0 + h]) → C([t0 − h, t0 + h]) given by

(A(g))(t) := y0 +
∫ t

t0

g(s)ds.

Now one can see that

d∞(A(g1), A(g2)) = sup
t∈[t0−h,t0+h]

∣∣∣∣∫ t

t0

(g1(s)− g2(s))ds
∣∣∣∣ ≤ hd∞(g1, g2), (1.4)

therefore A is a contraction if h < 1, independent of t0. Since we can rewrite
equation (1.3) as a fixed point equation A(y) = y in a complete metric space, it
follows that (1.3) has a unique solution in any interval of the type [t0−1/2, t0 +
1/2] where y(t0) = y0.

Note: when y0 = 0, then y ≡ 0 on [t0−1/2, t0+1/2]. This is because all the
iterates of the constant function y0 are zero (verify this!), and that is precisely
how we construct the fixed point (as an iteration limit).

Now let us extend this solution to a larger interval. Apply the above local
construction to the case in which t0 = 0 and y0 = 1. Denote by y1(t) the solution
of (1.3) on the interval [− 1

2 ,
1
2 ]. Apply then the same local construction to the

case when t0 = 1
2 and y0 = y1( 1

2 ), and denote by y2(t) the solution of (1.3) on
the interval [0, 1].

The function m(t) = y2(t) − y1(t) is well defined on the interval [0, 1
2 ], and

obeys m( 1
2 ) = 0 and m′(t) = m(t) on the open interval (0, 1

2 ). But we know that
such an equation with t0 = 1/2 and y0 = m( 1

2 ) = 0 only has an identically zero
solution on the interval [0, 1], and in particular on [0, 1

2 ]. Thus y1(t) = y2(t) on
their joint interval [0, 1

2 ]. It follows that the function Y : [−1/2, 1] → R which is
given by y1(t) on [−1/2, 1/2) and by y2(t) on [1/2, 1] solves the ODE and obeys
the initial condition. Moreover, it is unique, because y1 is uniquely determined
by the initial condition at t0 = 0 and y2 is uniquely determined by y1( 1

2 ).
We can repeat this procedure in order to extend our solution to larger and

larger intervals, and eventually to cover the whole real line. We have therefore
shown the existence of a unique global solution to the ODE.

(ii). Let s ∈ R be fixed, and consider the ODE y′s(t) = ys(t) for t ∈ R, with
the initial condition ys(0) = es. Reasoning as before, there exists a unique such
solution. Now by direct computation one can verify that both functions et+s

and etes verify the ODE, therefore they must be equal.

(iii). The exponential function can never be zero. We prove this by contra-
diction. Assume there exists s ∈ R such that es = 0. Then from (ii) we would
get 1 = e0 = e−ses = 0, which is wrong. Thus et is a continuous function which
is positive at t = 0 and can never be zero. Therefore it can neither be negative,
because if there was some s ∈ R where es < 0 then due to the intermediate
value theorem we would be able to construct a point ts situated between 0 and
s where ets = 0, and we know that this is not possible.

(iv). If we differentiate the exponential function n+ 1 times we still get the
same function back. Now use the Taylor approximation formula around zero
and write

et = pn(t) +
tn+1

(n+ 1)!
eCt,n , (1.5)
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where Ct,n is some point situated between 0 and t. In any case |Ct,n| ≤ |t| hence
0 < eCt,n ≤ e|t| independent of n.

Now if t ≥ 0, equation (1.5) implies that pn(t) ≤ et for every n ≥ 0. In order
to prove the convergence in (1.1) we first need a lemma:

Lemma 1.2. Let a be a positive real number. Define the sequence xn = an

n! .
Then limn→∞ xn = 0.

Proof of the lemma. We have xn+1 = a
n+1xn for any n. Hence the sequence

{xn}n≥[a] is decreasing, and is bounded from below by 0. Thus according to
Thm. 1.7.10 in Cohen it must converge to a limit l. Now if we take the limit in
the equality xn+1 = a

n+1xn we get (use Thm. 1.7.14 (b) in Cohen) l = 0 · l =
0.

We now can prove (1.1). Indeed, from (1.5) we can write:

|pn(t)− et| =
∣∣∣∣ tn+1

(n+ 1)!
eCt,n

∣∣∣∣ ≤ |t|n+1

(n+ 1)!
e|t|

then we apply Lemma 1.2. The proof of Proposition 1.1 is over.

2 2D systems of ODE’s

Consider the ODE:

x′(t) = a11x(t) + a12y(t)
y′(t) = a21x(t) + a22y(t), (2.1)

with the initial condition x(t0) = x0 and y(t0) = y0.
If we introduce X(t) = (x(t), y(t)) and A denotes the linear operator defined

by the above matrix M(A) = {aij}1≤i,j≤2, then the ODE can be rewritten as:

X′(t) = AX(t), X(t0) = (x0, y0). (2.2)

Now A has at least one eigenvalue λ1 ∈ C corresponding to an eigenvector
v = (v1, v2) (see Thm. 5.10 in Axler). One can easily compute them since λ1

must solve the equation (a11 − λ)(a22 − λ) − a12a21 = 0. Moreover, because
v 6= (0, 0), we can normalize it and we can assume that ||v||2 = |v1|2 + |v2|2 = 1.

Now define the vector u := (−v2, v1). Because 〈u,v〉 = 0, u and v must be
linear independent (see Corollary 6.16 in Axler). Hence the list {v,u} forms
an orthonormal basis in C2, and we can express the unknown vector X(t) as a
linear combination

X(t) = c1(t)v + c2(t)u, t ∈ R. (2.3)

The initial values c1(0) and c2(0) can be easily obtained using Thm. 6.17 in
Axler:

c1(t0) = 〈X(t0),v〉 = x0v1 + y0v2, c2(t0) = 〈X(t0),u〉 = −x0v2 + y0v1.
(2.4)
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Let us now see what are the equations which must be obeyed by c1 and c2.
If we differentiate in (2.3) we have:

X′(t) = c′1(t)v + c′2(t)u
= AX(t) = A(c1(t)v + c2(t)u) = c1(t)Av + c2(t)Au

= c1(t)λ1v + c2(t)Au. (2.5)

Thus we must have:

c′1(t)v + c′2(t)u = c1(t)λ1v + c2(t)Au. (2.6)

The vector Au can also be written as a linear combination of v and u in the
following way (see Thm. 6.17 in Axler):

Au = 〈Au,v〉v + 〈Au,u〉u.

If we denote by b12 := 〈Au,v〉 and λ2 := 〈Au,u〉, and if we use this in (2.6) we
obtain:

c′1(t)v + c′2(t)u = [λ1c1(t) + b12c2(t)]v + c2(t)λ2u. (2.7)

Therefore we must have

c′1(t) = λ1c1(t) + b12c2(t)
c′2(t) = λ2c2(t), (2.8)

with the initial conditions given in (2.4). Now let us find c1 and c2.

2.1 Finding c2

We must solve the equation c′2(t) = λ2c2(t) with the initial condition c2(t0). Let
us define the function φ(t) = e−λ2(t−t0)c2(t). If we differentiate φ we have:

φ′(t) = −λ2e
−λ2(t−t0)c2(t) + e−λ2(t−t0)c′2(t) = 0,

where we used the properties of the exponential function and the equation
obeyed by c2. It means that φ is a constant function, which must equal
φ(t0) = c2(t0). Therefore

c2(t) = c2(t0)eλ2(t−t0).

2.2 Finding c1

We must solve the equation c′1(t) = λ1c1(t) + b12c2(t0)eλ2(t−t0) with the ini-
tial condition c1(t0). Define the function ψ(t) = e−λ1(t−t0)c1(t). Compute its
derivative:

ψ′(t) = −λ1e
−λ1(t−t0)c1(t) + e−λ1(t−t0)c′1(t) = b12c2(t0)e−(λ1−λ2)(t−t0),

therefore we have:

ψ′(t) = b12c2(t0)e−(λ1−λ2)(t−t0),

ψ(t0) = c1(t0). (2.9)
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The fundamental theorem of calculus gives us:

ψ(t) = c1(t0) + b12c2(t0)
∫ t

t0

e(λ2−λ1)(s−t0)ds. (2.10)

If λ1 = λ2, we have

ψ(t) = c1(t0) + b12c2(t0)(t− t0). (2.11)

If λ1 6= λ2, we get:

ψ(t) = c1(t0) + b12c2(t0)
e(λ2−λ1)(t−t0) − 1

λ2 − λ1
. (2.12)

In both cases, c1(t) = eλ1(t−t0)ψ(t). Now we can go back to (2.3) and find x(t)
and y(t) as:

x(t) = c1(t)v1 − c2(t)v2, y(t) = c1(t)v2 + c2(t)v1.
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