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1 Taylor approximation in one variable

We begin with a fundamental theorem in analysis. Assume that we have a
“nice” (continuously differentiable) function f : R → R, for which we know its
derivative f ′ at every point. Assume also that we know the value of f at a point
x0. Then we know the function everywhere, and it is given by the formula

f(x) = f(x0) +
∫ x

x0

f ′(x1)dx1. (1.1)

If we know the second derivative, too, then we can write

f ′(x1) = f ′(x0) +
∫ x1

x0

f ′′(x2)dx2,

and by inserting it into (1.1) we obtain:

f(x) = f(x0) + (x− x0)f ′(x0) +
∫ x

x0

{∫ x1

x0

f ′′(x2)dx2

}
dx1. (1.2)

This double integral must be interpreted in the following way: first one inte-
grates with respect to the x2 variable, thus obtaining a function of x1, then we
integrate with respect to x1. For example, if c is a constant, we have:∫ x

x0

{∫ x1

x0

c · dx2

}
dx1 = c

∫ x

x0

(x1 − x0)dx1 =
c

2
(x− x0)2.

It is now clear that we can continue this procedure to higher orders, if we know
higher and higher order derivatives of f . We obtain

f(x) = f(x0) + (x− x0)f ′(x0) +
(x− x0)2

2
f ′′(x0) + ... +

(x− x0)n

n!
f (n)(x0)

(1.3)

+
∫ x

x0

{∫ x1

x0

{∫ x2

x0

...

{∫ xn

x0

f (n+1)(xn+1)dxn+1

}
...dx3

}
dx2

}
dx1.
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The notation f (n)(x0) means the n’th order derivative of f at x0. The nth order
polynomial

Pn(x) = f(x0) + (x− x0)f ′(x0) +
(x− x0)2

2
f ′′(x0) + ... +

(x− x0)n

n!
f (n)(x0)

is called the nth order Taylor polynomial at x0, of variable x. Now if n is large
and |x−x0| is small, we see that the Taylor polynomial is a good approximation
to the actual value of f(x). From (1.3), we can estimate the error we make when
we replace f by Pn; its absolute value is less than

|x− x0|n+1

(n + 1)!
sup{|f (n+1)(t)| : t between x and x0}. (1.4)

For example, if f(x) = sin(x), x0 = 0, x ∈ [0, π/4], and n = 4, we have
|f (5)(t)| = | cos(t)| ≤ 1 for all t between 0 and x, hence the error we make is less
than

|x− x0|5

120
≤ π5

45 · 120
.

Exercise 1.1. Estimate the error we make for the same function as above, but
for n = 6.

Exercise 1.2. Assume f(x) = ex, x ∈ [0, 2], x0 = 1 and n = 2. Show that we
have ∣∣∣∣f(x)− x2 + 1

2
e

∣∣∣∣ ≤ e2

6

for all x ∈ [0, 2]. Is this a good error? Show that for any n, the error is less
than e2/(n + 1)!.

2 Local minima and maxima in one variable

A point of local minimum for a function f is a point x0 around which we have
the inequality f(x) ≥ f(x0). If f has a derivative at x0, then the tangent to its
graph must be parallel to the 0x axis at this point. This is because the angle
is negative on the left of x0, and is positive on its right. So one equation is
f ′(x0) = 0. But the same equation applies for local maxima, too, so we need
more information.

If we use the Taylor expansion of order 2 around x0, we get that

f(x) ∼ f(x0) + f ′(x0)(x− x0) +
f ′′(x0)

2
(x− x0)2 (2.1)

for x close enought to x0. But since f ′(x0) has to be zero, we have

f(x) ∼ f(x0) +
f ′′(x0)

2
(x− x0)2. (2.2)
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It is now clear that x0 is a minimum if f ′′(x0) > 0 and is a maximum if f ′′(x0) <
0. If the second derivatives are zero, we cannot conlude anything, and we must
look at higher order derivatives.

Exercise 2.1. Consider the function f(x) = e−x2
defined on R. Solve the

equation f ′(x) = 0. Is the solution a minimum?

3 Real functions of two variables

This section will mostly contain hand-waiving arguments, and no rigorous state-
ments. The point is to get some fundamental results down to earth, and to
understand why they hold true.

Let us start with partial derivatives. Assume that we have a function
f(x1, x2) where x1 and x2 are real variables. We can also say that f is de-
fined on the vector space R2, where the variable is a two dimensional vector
x = [x1, x2].

If one variable is kept fixed, for example x2, then the function gx2(x) =
f(x, x2) is a “normal” one-variable function. If g is differentiable at the point
a, then f has a partial derivative with respect to the first variable and we have

g′x2
(a) = lim

∆x→0

f(a + ∆x, , x2)− f(a, x2)
∆x

=: (∂1f)(a, x2). (3.1)

In a similar way, if we fix the first variable we obtain a function hx1(y) =
f(x1, y) and we can write

h′x1
(b) = lim

∆y→0

f(x1, b + ∆y)− f(x1, b)
∆y

=: (∂2f)(x1, b). (3.2)

Then we can define higher order partial derivatives by induction. For exam-
ple, let us consider the meaning of [∂1(∂1f)](x1, x2). It means that we first
differentiate f with respect to x1, obtaining another function f̃(x1, x2) :=
(∂1f)(x1, x2). So the second order partial derivative of f with respect to x1

is the first order partial derivative of f̃ .
In order to simplify notation, we write

∂1(∂1f) := ∂2
1f, ∂2(∂2f) := ∂2

2f, ∂1(∂2f) := ∂2
1,2f, ∂2(∂1f) := ∂2

2,1f

Let us now investigate a very important result on the mixed partial deriva-
tives, widely and directly used in thermodynamics for example (see page 251 in
McQuarrie).

Exercise 3.1. Assume that f has continuous second order partial derivatives.
Then we have

(∂2
1,2f)(a, b) = (∂2

2,1f)(a, b).

This means that the order of performing partial derivatives is not important.
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Hint to the solution. Use the fundamental formula (1.1) for the function gy(x) =
f(x, y). We then obtain:

f(x, y) = gy(x) = gy(a) +
∫ x

a

g′y(t)dt = f(a, y) +
∫ x

a

(∂1f)(t, y)dt.

Hence
f(x, y) = f(a, y) +

∫ x

a

(∂1f)(t, y)dt. (3.3)

If we differentiate this equality with respect to y we get:

(∂2f)(x, y) = (∂2f)(a, y) +
∫ x

a

(∂2∂1f)(t, y)dt. (3.4)

Then we differentiate both sides with respect to x. The left hand side will give
us (∂1∂2f)(x, y). The right hand side has a first term which does not depend on
x so its partial derivative is zero, while the other one gives (according to (1.1))
(∂2∂1f)(x, y). And we are done.
Example. Consider f(x, y) = x2y3 + ex. We have

(∂1f)(x, y) = 2xy3+ex, (∂2f)(x, y) = 3x2y2, (∂2
1,2f)(x, y) = (∂2

2,1f)(x, y) = 6xy2.

For more details, read Examples 5, 6, and 7 in McQuarrie, at page 248 and
249.

4 Derivatives of vector functions

Let us fix a point in the two dimensional plane X0 := [x0, y0]. We say that
another point X := [x, y] is close to X0 if the euclidian distance

||X −X0|| :=
√

(x− x0)2 + (y − y0)2

is small.

Exercise 4.1. Show that |x− x0| ≤ ||X −X0|| and |y − y0| ≤ ||X −X0||.

Hint to the solution. Just use the obvious inequality

max{(x− x0)2, (y − y0)2} ≤ ||X −X0||2.

If one is interested in the difference f(X) − f(X0) when X is close to X0,
then one has to generalize the notion of derivative, since the variable is a vector.

Define the function gy(x) = f(x, y). The Taylor formula approximates g in
the following way around x0:

gy(x) ∼ gy(x0) + g′y(x0)(x− x0) +
g′′y (x0)

2
(x− x0)2
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or using f :

f(x, y) ∼ f(x0, y) + (∂1f)(x0, y)(x− x0) +
(∂2

1f)(x0, y)
2

(x− x0)2. (4.1)

If we develop f(x0, y) around y0 up to second order we get:

f(x0, y) ∼ f(x0, y0) + (∂2f)(x0, y0)(y − y0) +
(∂2

2f)(x0, y0)
2

(y − y0)2. (4.2)

Now we develop (∂1f)(x0, y) in the first order around y0:

(∂1f)(x0, y) ∼ (∂1f)(x0, y0) + (∂2
2,1f)(x0, y0)(y − y0). (4.3)

If we are only interested in expressing f(x, y) with an error of up to ||X−X0||2,
then we can insert (4.3) and (4.2) into (4.1) and write

f(x, y) = f(x0, y0) + (∂1f)(x0, y0)(x− x0) + (∂2f)(x0, y0)(y − y0)

+
1
2

{
(∂2

1f)(x0, y0)(x− x0)2 + 2(∂2
2,1f)(x0, y0)(x− x0)(y − y0)

+ (∂2
2f)(x0, y0)(y − y0)2

}
+O(||X −X0||3). (4.4)

The expressionO(||X−X0||3) denotes all terms which are as small as ||X−X0||3.
It means that (4.4) gives the quadratic approximation of f near X0.

The linear approximation of f near X0 is now given by two numbers: (∂1f)(x0, y0)
and (∂2f)(x0, y0). These two numbers form a vector, called the gradient of f at
X0, and denoted by

(∇f)(X0) := [(∂1f)(x0, y0), (∂2f)(x0, y0)]. (4.5)

This vector is the derivative of f . We can write (using (4.4) and the definition
of the scalar product of two vectors)

f(X) = f(X0) + (∇f)(X0) · (X −X0) +O(||X −X0||2). (4.6)

Exercise 4.2. Consider f(x, y) = sin(x− y) cos(xy). Develop f around X0 =
[0, 0] up to the second order in ||X −X0||.

5 Local extrema for functions of two variables

We say that X0 is a point of local minimum for f , if for every X close to X0 we
have f(X) ≥ f(X0). Here the variable X is located in a small disk centred at X0.
It is clear that f(x, y0) is a one-variable function, which must have a minimum at
x0. Therefore, we must have (∂1f)(x0, y0) = 0 and (∂2

1f)(x0, y0) ≥ 0. Similarly,
because f(x0, y) has a minimum at y0, we must have (∂2f)(x0, y0) = 0 and
(∂2

2f)(x0, y0) ≥ 0.
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Now let us find some sufficient conditions for a point X0 to be a local mini-
mum of f . The key formula is (4.4). We have just showed that (∇f)(X0) must
be zero, hence:

f(x, y)− f(x0, y0)

=
1
2

{
(∂2

1f)(x0, y0)(x− x0)2 + 2(∂2
2,1f)(x0, y0)(x− x0)(y − y0)

+ (∂2
2f)(x0, y0)(y − y0)2

}
+O(||X −X0||3). (5.1)

How can we be sure that the right hand side of this equality is non-negative?
1. Assume that both (∂2

1f)(x0, y0) > 0 and (∂2
2f)(x0, y0) > 0.

2. We have the obvious double identity:

(∂2
1f)(x0, y0)(x− x0)2 + 2(∂2

2,1f)(x0, y0)(x− x0)(y − y0)

+ (∂2
2f)(x0, y0)(y − y0)2

=

{√
(∂2

1f)(x0, y0)(x− x0) +
(∂2

2,1f)(x0, y0)√
(∂2

1f)(x0, y0)
(y − y0)

}2

+

{
(∂2

2f)(x0, y0)−
[(∂2

2,1f)(x0, y0)]2

(∂2
1f)(x0, y0)

}
(y − y0)2 (5.2)

=

{√
(∂2

2f)(x0, y0)(y − y0) +
(∂2

2,1f)(x0, y0)√
(∂2

2f)(x0, y0)
(x− x0)

}2

+

{
(∂2

1f)(x0, y0)−
[(∂2

2,1f)(x0, y0)]2

(∂2
2f)(x0, y0)

}
(x− x0)2. (5.3)

Denote by a := max{(∂2
1f)(x0, y0), (∂2

2f)(x0, y0)} and by

∆ = (∂2
1f)(x0, y0)(∂2

2f)(x0, y0)− [(∂2
1,2f)(x0, y0)]2.

Assume that ∆ > 0. Then (5.2) and (5.3) imply the double inequality:

(∂2
1f)(x0, y0)(x− x0)2 + 2(∂2

2,1f)(x0, y0)(x− x0)(y − y0)

+ (∂2
2f)(x0, y0)(y − y0)2

≥ ∆
a

(y − y0)2 (5.4)

and

(∂2
1f)(x0, y0)(x− x0)2 + 2(∂2

2,1f)(x0, y0)(x− x0)(y − y0)

+ (∂2
2f)(x0, y0)(y − y0)2

≥ ∆
a

(x− x0)2. (5.5)
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If we sum up (5.4) and (5.5), we get:

(∂2
1f)(x0, y0)(x− x0)2 + 2(∂2

2,1f)(x0, y0)(x− x0)(y − y0)

+ (∂2
2f)(x0, y0)(y − y0)2

≥ ∆
2a
||X −X0||2. (5.6)

Use this in (5.1) and obtain the key inequality:

f(X)− f(X0) ≥
∆
2a
||X −X0||2 +O(||X −X0||3). (5.7)

This means that if ||X −X0|| is amll enough, the right hand side will be non-
negative, therefore f(X) ≥ f(X0) for every X in a small disk around X0.

CONCLUSION: in order for a point X0 to be a local minimum for f , the
following two conditions are sufficient:

I. (∂2
1f)(x0, y0) > 0 and (∂2

2f)(x0, y0) > 0;
II. ∆ = (∂2

1f)(x0, y0)(∂2
2f)(x0, y0)− [(∂2

1,2f)(x0, y0)]2 > 0.
In a similar manner, we can establish two sufficient conditions for a point X0

to be a local maximum, i.e. f(X) ≤ f(X0) for every X in a small disk around
X0:

I. (∂2
1f)(x0, y0) < 0 and (∂2

2f)(x0, y0) < 0;
II. ∆ = (∂2

1f)(x0, y0)(∂2
2f)(x0, y0) − [(∂2

1,2f)(x0, y0)]2 > 0. We see that the
second condition is the same.

If (∂2
1f)(x0, y0) and (∂2

2f)(x0, y0) are non-zero but have opposite signs, then
X0 is a saddle-point (i.e. a local minimum for one variable and a local maximum
for the other one).

Exercise 5.1. Investigate Example 3, page 283 in McQuarrie.

6 Scalar functions with n variables

Let n ≥ 1. A vector X in Rn will have the components [x1, . . . , xn]. Consider
the scalar field φ : Rn → R, which we want to approximate near the point
X0 = [x1,0, . . . , xn,0]. Here the smallness parameter will be

||X −X0|| =

√√√√ n∑
i=1

(xi − xi,0)2.

Reasoning in the same way as we did in order to obtain (4.4), we can gen-
eralize that identity in the following way:

φ(X) = φ(X0) +
n∑

i=1

(∂iφ)(X0) (xi − xi,0) +
1
2

n∑
i=1

(∂2
i,iφ)(X0) (xi − xi,0)2

+
n−1∑
i=1

n∑
j=i+1

(∂2
i,jφ)(X0) (xi − xi,0)(xj − xj,0) +O(||X −X0||3). (6.1)
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Here we used the symmetry property of second order partial derivatives ∂2
i,jφ(X0) =

∂2
j,iφ(X0).

In order to write (6.1) in a more compact way, we introduce the Hessian
matrix associated to φ by

Hφ(X) = {∂2
i,jφ(X)}1≤i≤j≤n. (6.2)

Then (6.1) can be rewritten as:

φ(X) ≈ φ(X0) +∇φ(X0) · (X −X0) +
1
2

n∑
i=1

(xi − xi,0)[Hφ(X0)]i,j(xj − xj,0)

= φ(X0) +∇φ(X0) · (X −X0) +
1
2
(X −X0) · {[Hφ(X0)](X −X0)}. (6.3)

6.1 Extremum points for functions of several variables

We will now give sufficient conditions such that X0 to be a maximum (mini-
mum) point for a smooth function φ. First, ∇φ(X0) = [0, . . . , 0] is a necessary
condition. Solving this equation gives us all possible interior extremum points.
Now around such a point, (6.3) becomes:

φ(X) = φ(X0) +
1
2
(X −X0) · {[Hφ(X0)](X −X0)}+O(||X −X0||3). (6.4)

The Hessian matrix is symmetric (real and equal to its transposed matrix),
therefore the Complex Spectral Theorem says that it has exactly n real eigen-
values. Denote these eigenvalues (they can be degenerate) as {λi}n

i=1, in in-
creasing order: λ1 ≤ ... ≤ λn. Then a result in linear algebra (given without
proof) states that for every X:

λ1||X −X0||2 ≤ (X −X0) · {[Hφ(X0)](X −X0)} ≤ λn||X −X0||2.

Thus if 0 < λ1, then for ||X − X0|| small enough we have φ(X) ≥ φ(X0),
hence X0 is a local minimum. If λn < 0, then for ||X −X0|| small enough we
have φ(X) ≤ φ(X0), hence X0 is in this case a local maximum.

7 General vector fields

IN THIS SECTION, ALL VECTORS ARE COLUMN VECTORS!!!! Their
transposed ∗ vectors are line vectors.

The most general real vector field is a mapping

~F : Rn → Rm, X = [x1, . . . , xn]∗, ~F (X) = [F1(X), . . . , Fm(X)]∗.

Each component of ~F is in fact a scalar field, of the type we studied in the
previous section. Let us try to approximate ~F (X) in a small neighborhood of
X0; we only look at the linear approximation.
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Using (6.1), we can replace φ by any of Fj ’s and write m equations:

Fj(X) = Fj(X0) +
n∑

i=1

(∂iFj)(X0) (xi − xi,0) +O(||X −X0||2). (7.1)

In order to write this in a shorter way, we introduce the Jacobi matrix:

[JF (X)]j,i = ∂iFj(X), 1 ≤ i ≤ n, 1 ≤ j ≤ m, m× n type matrix. (7.2)

Then the above m scalar equations can be written as one vector equation:

~F (X) = ~F (X0) + [JF (X0)](X −X0) +O(||X −X0||2). (7.3)

Here all vectors are column vectors. The Jacobi matrix can be considered as
the natural generalization of the derivative of a function. Note that if m = 1
then

[Jφ(X)] = [∇φ(X)]∗.

7.1 The chain rule for vector fields

The chain rule is about computing the Jacobi matrix of a vector field which is
defined as the composition of two others. Let ~F : Rn → Rm, ~G : Rm → Rp and
~H : Rn → Rp where

~H(X) = ~G(~F (X)). (7.4)

Denote by ~F (X) = Y and ~F (X0) = Y0. We then have

~H(X) = ~H(X0) + [JG(Y0)](Y − Y0) +O(||X −X0||2)

= ~H(X0) + [JG(Y0)][JF (X0)](X −X0) +O(||X −X0||2). (7.5)

It follows the identity:

[JH(X0)] = [JG(~F (X0))][JF (X0)], (7.6)

which is nothing but the chain rule in the matrix form.
Let us use this in an important example, where n = p = 1 and m > 1.

Consider a vector field ~F : R → Rm, a scalar field φ : Rm → R, and their
composition:

h : R → R, h(t) = φ(~F (t)).

The Jacobi matrix of h is a 1× 1 type, it is just a number which coincides with
its usual derivative. Moreover, [JF (t)] = [F ′

1(t), . . . , F
′
m(t)]∗ is a column vector,

i.e. a m× 1 matrix. And [Jφ(~F (t))] = [∇φ(~F (t))]∗ is a line vector, i.e. a 1×m
matrix. Thus

Jh(t) = h′(t) = [Jφ(~F (t))][JF (t)] = [∇φ(~F (t))]∗[F ′
1(t), . . . , F

′
m(t)]∗

=
m∑

i=1

{∂iφ(~F (t))} F ′
i (t). (7.7)
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