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A LESS STRANGE VERSION OF MILNOR’S PROOF OF
BROUWER’S FIXED-POINT THEOREM

C. A. ROGERS

In a recent note [1], John Milnor gives a proof of the “hairy dog theorem” and deduces the
Brouwer fixed-point theorem as a consequence. Milnor describes his proof as strange but
elementary. In this note we give a less strange and more direct proof of the following retraction
theorem, which is well known to be equivalent, in a completely elementary and fairly simple
way, to the Brouwer fixed-point theorem. .

THEOREM 1. It is not possible for a continuous function f to map the unit ball B"= {x|||x|| <1}
of n-dimensional Euclidean space onto the unit sphere S"~'={x|||x||=1} and to satisfy

f(x)=x
for all x on S""1.

The theorem is an immediate consequence of two lemmas.

LeMMA 1. If there were a continuous map of B" onto S™~! leaving each point of S"~! fixed,
then there would be a continuously differentiable map with these properties.

LEMMA 2. It is not possible for a continuously differentiable function to map B" onto S"~' and
to leave each point of S"! fixed.

The proof of the first lemma uses standard ideas; the proof of the second lemma uses the
ideas of Milnor.

Proof of Lemma 1. Let f map B" continuously onto S”~! and suppose that f(x)=x for all x
on S"~!, Then f(x)—x is continuous on B”", vanishes on S”~!, and satisfies

(If(x) —x|| <2 ' ¢))
on B". So we can choose # with 3 <8 <1 so that
If(x)—x[| <3, ford<|x|<1. @)

Let e;,e,,...,e, be the unit vectors along the coordinate axes. By the Weierstrass approximation
theorem we can choose polynomials Py(x,,x,,...,X,), 1 <i<n, so that

n
Il 2 P(xpxy.... x,)e,— ({(X) —x)[ <3, 3
i=1
for all x with ||x|| < 1. Write
n
P(X) = 2 IJi(xl’ X2y eee ,xn)ei,
i=1

for convenience. Again, using the Weierstrass approximation theorem, we can choose a poly-
nomial Q satisfying

3<0(<1, 0<r<l; |QA<1, o<r<l; o) =0.
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Write
g(x) =x+ Q([x|P)P(x).
For 0< |x|| <6, we have
g0l =[x+ Q(IxIP)P)
=0 + Q(IXIP) (P — 1(x) + X} + { Q(IXID) — 1} (1) — X} |
> £ = | QX[ [PE) —1(x) +xI[ — 1= Q(IXI[?)] - [£(x) x|

=
S1-1-1-1.2=1,

Similarly, for 8 < ||x|| < 1, we have
g1 =Ix+ Q(lIx|I*) {P(x) —f(x) +x} + Q(IIxI*) {f(x) —x} ||
> [Ixll = | QCIIXIP) [ IP(x) — £(x) +x]| + | (x) —x]| ]
>0-1-[3+3]>4%.

So
lg()ll>z for [Ix||< 1. @
For ||x||=1, we have
g(x)=x.

Now each component of g is a polynomial in x,,x,,...,x,. So g is continuously differentiable
and so is h, defined by

h(x)=g(x)/llg®)

for ||x|| < 1. Clearly, h is a continuously differentiable map of B” onto S, leaving each point
of §*~! fixed.

-

Proof of Lemma 2. Suppose that f is a continuously differentiable map of B” onto $"~,
leaving each point of $"~! fixed. Write

g(x)=1(x)—x,
f,(x)=x+1g(x)=(1—)x+ (x),

for (x||<1and O<z< 1.
As f is continuously differentiable, so is g, and there is a constant C such that

llg(y)—g(oll < Clly —x||
for all x,y in B™. If 0<¢<1/C, and f,(x)=£,(y), then
lIx—yll=llzg(y) — tgX)ll
<tClly—x]|,
and x=y as tC < 1. Thus, the map f, from B” to B" is injective when 0<r<1/C.

As the partial differential coefficients of g with respect to x;,x,,...,x, are uniformly bounded,

the Jacobian matrix
of, of, of, \ _ dg odg ag
(a—xl,&;,...,a—xn —In+t('5;l-,'5.x-;,...,axn) ' (5)

is dominated by its diagonal and so is nonsingular provided 0 <¢ <#,, with ¢, a sufficiently small
positive number. Now, for 0<7 </, the inverse function theorem tells us that f, maps the
interior of B” into an open set, G, say, contained in B". Consider any point e in B” that is not in
G, for some ¢ with 0 <t <, Join e to any point g of G, and choose a point b on the line segment
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e,g on the boundary of G,. As the image of B” under f, is compact, b=f,(x) for some x in B". As
b is not in G,, x is not in the interior of B” and so has ||x||=1. Hence b=x, and e as well as b lies
on the boundary of B”. As f, maps S"~! onto itself, we see that, when 0<#<#, f, maps B”
bijectively to itself.

Now consider the integral

s of, of o,
I(t)— B"&dx—f f"det(a—l,%,...,ﬁ: dxldx2 dx,,,

for 0<¢< 1. When 0 <? <, we have a formula for the volume ¥, of the unit ball B,. Thus I(¢)
has the constant value ¥V, for 0<¢ </, But it is clear from (5) that I(f) is a polynomial in ¢.
Hence I(¢) is constant and has the positive value ¥, for all 7. But, we have

fl' f] = 1
identically, so that
o,

axi'f,=0, 1<i<n,

and
det( of, of, of, )=0,

a_‘xl 9 'a-g 9oy Ex_n
for all x in B”. Thus I(1)=0, and we have the required contradiction.

Note added December 1979. Dr. Roger Smart has explained to me that Brouwer’s fixed-point theorem for
continuously differentiable maps can be obtained directly from Lemma 2, without use of Lemma 1. The general
case of Brouwer’s theorem then follows by a simpler application of the Weierstrass approximation theorem.
Theorem 1 then follows easily from the general Brouwer theorem.
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