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1 Compact (kompakt) and
sequentially compact (følgekompakt) sets

Definition 1.1. Let A be a subset of a metric space (X, d). Let F be an
arbitrary set of indices, and consider the family of sets {Oα}α∈F , where each
Oα ⊆ X is open. This family is called an open covering of A if A ⊆

⋃
α∈F Oα.

Definition 1.2. Assume that {Oα}α∈F is an open covering of A. If F ′ is a
subset of F , we say that {Oα}α∈F ′ is a subcovering if we still have the property
A ⊆

⋃
α∈F ′ Oα. A subcovering is called finite, if F ′ contains finitely many

elements.

Definition 1.3. Let A be a subset of a metric space (X, d). Then we say that
A is covered by a finite ε-net if there exists a natural number Nε < ∞ and the
points {x1, ...,xNε} ⊆ A such that A ⊆

⋃Nε

j=1 Bε(xj).

Definition 1.4. A subset A ⊂ X is called compact, if from ANY open covering
of A one can extract a FINITE subcovering.

Definition 1.5. A ⊂ X is called sequentially compact if from any sequence
{xn}n≥1 ⊆ A one can extract a subsequence {xnk

}k≥1 which converges to some
point x∞ ∈ A.

We will see that in metric spaces the two notions of compactness are equiv-
alent.

1.1 Compact implies sequentially compact

Theorem 1.6. Assume that A ⊆ X is compact. Then A is sequentially com-
pact.

Proof. Assume that there exists a sequence {xn}n≥1 with no convergent sub-
sequence in A. Such a sequence must have an infinite number of distinct points
(exercise). To give a hint, assume that the range of this sequence is {a, b}.
If there only exist a finite number of points in the sequence which are equal
with a, then there must exist an infinite number of points which are equal with
b. These points would thus define a convergent subsequence, contradicting our
hypothesis.

Therefore we can assume that {xn}n≥1 has no accumulation points in A
(otherwise such a point would be the limit of a subsequence). Now choose an
arbitrary point x ∈ A. Because x is not an accumulation point for {xn}n≥1,
there exists εx > 0 such that the ball Bεx(x) contains at most one element of
{xn}n≥1.

Because {Bεx(x)}x∈A is an open covering for A, and since A is compact, we
can extract a finite subcovering from it:

A ⊆
N⋃

j=1

Bεxj
(xj), N < ∞.
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But since {xn}n≥1 ⊆ A, and because we know that there are at most N distinct
points of this sequence in the union

⋃N
j=1 Bεxj

(xj), we conclude that {xn}n≥1

can only have a finite number of distinct points, thus it must admit a convergent
subsequence. This contradicts our hypothesis.

1.2 Sequentially compact implies compact

The proof of this fact is slightly more complicated. We need a preparatory
result:

Proposition 1.7. Let A be a sequentially compact set. Then for every ε > 0,
A can be covered by a finite ε-net (see Definition 1.3).

Proof. If A contains finitely many points, then the proof is obvious. Thus we
assume #(A) = ∞.

Now assume that there exists some ε0 > 0 such that A cannot be covered by
a finite ε0-net. This means that for any N points of A, {x1, ..., xN}, we have:

A 6⊂
N⋃

j=1

Bε0(xj). (1.1)

We will now construct a sequence with elements in A which cannot have a
convergent subsequence. Choose an arbitrary point x1 ∈ A. We know from
(1.1), for N = 1, that we can find x2 ∈ A such that x2 ∈ A \ B(x1, ε0). This
means that d(x1, x2) ≥ ε0. We use (1.1) again, for N = 2, in order to get
a point x3 ∈ A \ [B(x1, ε0) ∪ B(x2, ε0)]. This means that d(x3, x1) ≥ ε0 and
d(x3, x2) ≥ ε0. Thus we can continue with this procedure and construct a
sequence {xn}n≥1 ⊆ A which obeys

d(xj , xk) ≥ ε0, j 6= k.

In other words, we constructed a sequence in A which consists only from isolated
points, and which cannot have a convergent subsequence. This contradicts
Definition 1.5.

Let us now prove the theorem:

Theorem 1.8. Assume that A ⊆ X is sequentially compact. Then A is com-
pact.

Proof. Consider an arbitrary open covering of A:

A ⊆
⋃

α∈F
Oα.

We will show that we can extract a finite subcovering from it.
For every x ∈ A, there exists at least one open set Oα(x) such that x ∈ Oα(x).

Because Oα(x) is open, we can find ε > 0 such that Bε(x) ⊆ Oα(x).
For a fixed x, we consider the supremum over all radii ε > 0 which obey

the condition that there exists at least one α ∈ F such that Bε(x) ⊆ Oα. This
supremum is larger than zero, since there exists at least one positive such ε.
Now write this supremum as 2εx > 0. It means that if we take ε′ > 2εx, then
for every α ∈ F we have Bε′(x) 6⊆ Oα.
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Let us write an important relation:

A ⊆
⋃

x∈A

Bεx(x) ⊆
⋃

α∈F
Oα. (1.2)

The first inclusion is obvious, while the second one follows from the above
discussion.

We now need to prove a lemma:

Lemma 1.9. If A is sequentially compact, then

inf
x∈A

εx =: 2ε0 > 0.

In other words, there exists ε0 > 0 such that Bε0(x) ⊆ Bεx
(x), for every x ∈ A.

Proof. Assume that infx∈A εx = 0. This implies that there exists a sequence
{xn}n≥1 ⊆ A such that εxn ≤ 1/n for every n ≥ 1. Since A is sequentially
compact, there exists a convergent subsequence {xnk

}k≥1 which converges to a
point x0 ∈ A, i.e.

lim
k→∞

xnk
= x0. (1.3)

Because x0 belongs to A, we can find an open set Oα(x0) which contains x0,
thus we can find ε1 > 0 such that

Bε1(x0) ⊆ Oα(x0). (1.4)

Now (1.3) implies that there exists K > 0 large enough such that:

d(xnk
, x0) ≤ ε1/4, whenever k > K. (1.5)

If y belongs to Bε1/4(xnk
) (i.e. d(y, xnk

) < ε1/4), then the triangle inequality
implies (use also (1.5)):

d(y, x0) ≤ d(y, xnk
) + d(xnk

, x0) < ε1/2 < ε1, k > K.

But this shows that we must have y ∈ Bε1(x0), or:

Bε1/4(xnk
) ⊆ Bε1(x0) ⊆ Oα(x0), ∀k > K. (1.6)

Thus we got the inclusion

Bε1/4(xnk
) ⊆ Oα(x0), ∀k > K,

which shows that ε1/4 must be less or equal than 2εxnk
, or ε1/8 ≤ εxnk

, for
every k > K. But this is in contradiction with the fact that εxn ≤ 1/n for every
n ≥ 1.
Finishing the proof of Theorem 1.8. We now use Proposition 1.7, and find
a finite ε0-net for A. Thus we can choose {y1, ...yN} ⊆ A such that

A ⊆
N⋃

n=1

Bε0(yn) ⊆
N⋃

n=1

Bεyn
(yn) ⊆

N⋃
n=1

On,

where On is one of the possibly many other open sets which contain Bεyn
(yn).

We have thus extracted our finite subcovering of A and the proof of the theorem
is over.

3


