
Notes for the course Operatorer i Hilbertrum

Horia Cornean, d. 27/03/2006.

1 Compact (kompakt) and
sequentially compact (følgekompakt) sets

Definition 1.1. Let A be a subset of a metric space (X, d). Let F be an
arbitrary set of indices, and consider the family of sets {Oα}α∈F , where each
Oα ⊆ X is open. This family is called an open covering of A if A ⊆

⋃
α∈F Oα.

Definition 1.2. Assume that {Oα}α∈F is an open covering of A. If F ′ is a
subset of F , we say that {Oα}α∈F ′ is a subcovering if we still have the property
A ⊆

⋃
α∈F ′ Oα. A subcovering is called finite, if F ′ contains finitely many

elements.

Definition 1.3. Let A be a subset of a metric space (X, d). Then we say that
A is covered by a finite ε-net if there exists a natural number Nε < ∞ and the
points {x1, ...,xNε

} ⊆ A such that A ⊆
⋃Nε

j=1Bε(xj).

Definition 1.4. A subset A ⊂ X is called compact, if from ANY open covering
of A one can extract a FINITE subcovering.

Definition 1.5. A ⊂ X is called sequentially compact if from any sequence
{xn}n≥1 ⊆ A one can extract a subsequence {xnk

}k≥1 which converges to some
point x∞ ∈ A.

We will see that in metric spaces the two notions of compactness are equiv-
alent.

1.1 Compact implies sequentially compact

Theorem 1.6. Assume that A ⊆ X is compact. Then A is sequentially com-
pact.

Proof. Assume that there exists a sequence {xn}n≥1 with no convergent sub-
sequence in A. Such a sequence must have an infinite number of distinct points
(exercise). To give a hint, assume that the range of this sequence is {a, b}.
If there only exist a finite number of points in the sequence which are equal
with a, then there must exist an infinite number of points which are equal with
b. These points would thus define a convergent subsequence, contradicting our
hypothesis.

Therefore we can assume that {xn}n≥1 has no accumulation points in A
(otherwise such a point would be the limit of a subsequence). Now choose an
arbitrary point x ∈ A. Because x is not an accumulation point for {xn}n≥1,
there exists εx > 0 such that the ball Bεx

(x) contains at most one element of
{xn}n≥1.

Because {Bεx(x)}x∈A is an open covering for A, and since A is compact, we
can extract a finite subcovering from it:

A ⊆
N⋃

j=1

Bεxj
(xj), N <∞.
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But since {xn}n≥1 ⊆ A, and because we know that there are at most N distinct
points of this sequence in the union

⋃N
j=1Bεxj

(xj), we conclude that {xn}n≥1

can only have a finite number of distinct points, thus it must admit a convergent
subsequence. This contradicts our hypothesis.

1.2 Sequentially compact implies compact

The proof of this fact is slightly more complicated. We need a preparatory
result:

Proposition 1.7. Let A be a sequentially compact set. Then for every ε > 0,
A can be covered by a finite ε-net (see Definition 1.3).

Proof. If A contains finitely many points, then the proof is obvious. Thus we
assume #(A) = ∞.

Now assume that there exists some ε0 > 0 such that A cannot be covered by
a finite ε0-net. This means that for any N points of A, {x1, ..., xN}, we have:

A 6⊂
N⋃

j=1

Bε0(xj). (1.1)

We will now construct a sequence with elements in A which cannot have a
convergent subsequence. Choose an arbitrary point x1 ∈ A. We know from
(1.1), for N = 1, that we can find x2 ∈ A such that x2 ∈ A \ B(x1, ε0). This
means that d(x1, x2) ≥ ε0. We use (1.1) again, for N = 2, in order to get
a point x3 ∈ A \ [B(x1, ε0) ∪ B(x2, ε0)]. This means that d(x3, x1) ≥ ε0 and
d(x3, x2) ≥ ε0. Thus we can continue with this procedure and construct a
sequence {xn}n≥1 ⊆ A which obeys

d(xj , xk) ≥ ε0, j 6= k.

In other words, we constructed a sequence in A which consists only from isolated
points, and which cannot have a convergent subsequence. This contradicts
Definition 1.5.

Let us now prove the theorem:

Theorem 1.8. Assume that A ⊆ X is sequentially compact. Then A is com-
pact.

Proof. Consider an arbitrary open covering of A:

A ⊆
⋃

α∈F
Oα.

We will show that we can extract a finite subcovering from it.
For every x ∈ A, there exists at least one open set Oα(x) such that x ∈ Oα(x).

Because Oα(x) is open, we can find ε > 0 such that Bε(x) ⊆ Oα(x).
For a fixed x, we consider the supremum over all radii ε > 0 which obey

the condition that there exists at least one α ∈ F such that Bε(x) ⊆ Oα. This
supremum is larger than zero, since there exists at least one positive such ε.
Now write this supremum as 2εx > 0. It means that if we take ε′ > 2εx, then
for every α ∈ F we have Bε′(x) 6⊆ Oα.
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Let us write an important relation:

A ⊆
⋃

x∈A

Bεx
(x) ⊆

⋃
α∈F

Oα. (1.2)

The first inclusion is obvious, while the second one follows from the above
discussion.

We now need to prove a lemma:

Lemma 1.9. If A is sequentially compact, then

inf
x∈A

εx =: 2ε0 > 0.

In other words, there exists ε0 > 0 such that Bε0(x) ⊆ Bεx
(x), for every x ∈ A.

Proof. Assume that infx∈A εx = 0. This implies that there exists a sequence
{xn}n≥1 ⊆ A such that εxn

≤ 1/n for every n ≥ 1. Since A is sequentially
compact, there exists a convergent subsequence {xnk

}k≥1 which converges to a
point x0 ∈ A, i.e.

lim
k→∞

xnk
= x0. (1.3)

Because x0 belongs to A, we can find an open set Oα(x0) which contains x0,
thus we can find ε1 > 0 such that

Bε1(x0) ⊆ Oα(x0). (1.4)

Now (1.3) implies that there exists K > 0 large enough such that:

d(xnk
, x0) ≤ ε1/4, whenever k > K. (1.5)

If y belongs to Bε1/4(xnk
) (i.e. d(y, xnk

) < ε1/4), then the triangle inequality
implies (use also (1.5)):

d(y, x0) ≤ d(y, xnk
) + d(xnk

, x0) < ε1/2 < ε1, k > K.

But this shows that we must have y ∈ Bε1(x0), or:

Bε1/4(xnk
) ⊆ Bε1(x0) ⊆ Oα(x0), ∀k > K. (1.6)

Thus we got the inclusion

Bε1/4(xnk
) ⊆ Oα(x0), ∀k > K,

which shows that ε1/4 must be less or equal than 2εxnk
, or ε1/8 ≤ εxnk

, for
every k > K. But this is in contradiction with the fact that εxn

≤ 1/n for every
n ≥ 1.
Finishing the proof of Theorem 1.8. We now use Proposition 1.7, and find
a finite ε0-net for A. Thus we can choose {y1, ...yN} ⊆ A such that

A ⊆
N⋃

n=1

Bε0(yn) ⊆
N⋃

n=1

Bεyn
(yn) ⊆

N⋃
n=1

On,

where On is one of the possibly many other open sets which contain Bεyn
(yn).

We have thus extracted our finite subcovering of A and the proof of the theorem
is over.
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2 Continuous functions on compact sets

Proposition 2.1. Let (X, d) be a metric space, (Y, || · ||) a normed space, and
H a non-empty, compact subset of X. We define

C(H;Y ) := {f : H → Y | f is continuous}.

We also define the map:

|| · ||∞ : C(H;Y ) → R+, ||f ||∞ := sup
x∈H

||f(x)||.

Then (C(H;Y ), || · ||∞) is a normed space.

Proof. We start by showing that ||f ||∞ <∞ for every continuous f .
First, due to the inequality | ||y|| − ||y0|| | ≤ ||y − y0|| for every y, y0 ∈ Y ,

we easily get that the map Y 3 y → ||y|| ∈ R+ is continuous. Second, for every
f ∈ C(H;Y ), the map

H 3 x→ ||f(x)|| ∈ R+

is a continuous real valued function, defined on a compact set. Then Theorem
10.63 in Wade says that we can find xM ∈ H such that

sup
x∈H

||f(x)|| = ||f(xM )|| <∞.

Finally, let us prove the triangle inequality. Take f, g ∈ C(H;Y ); then for
every x ∈ H we apply the triangle inequality in (Y, || · ||):

||f(x) + g(x)|| ≤ ||f(x)||+ ||g(x)|| ≤ ||f ||∞ + ||g||∞.

Thus ||f ||∞ + ||g||∞ is an upper bound for the set {||f(x) + g(x)|| : x ∈ H},
hence

sup
x∈H

||f(x) + g(x)|| = ||f + g||∞ ≤ ||f ||∞ + ||g||∞.

Proposition 2.2. Assume that (Y, || · ||) is a Banach space. Then the normed
space (C(H;Y ), || · ||∞) is a Banach space, too.

Proof. We need to prove that every Cauchy sequence is convergent. Assume
that {fn}n≥1 ⊂ C(H;Y ) is Cauchy, i.e. for every ε > 0 one can find NC(ε) > 0
such that ||fp − fq||∞ < ε if p, q > NC(ε). We have to show that the sequence
has a limit f which belongs to C(H;Y ).

We first construct f . For every x0 ∈ H we consider the sequence {fn(x0)}n≥1 ⊂
Y . Note the difference between {fn(x0)}n≥1 (a sequence of vectors from Y )
and {fn}n≥1 (a sequence of functions from C(H;Y )). It is easy to see that
{fn(x0)}n≥1 is Cauchy in Y (exercise), and because Y is complete, then {fn(x0)}n≥1

has a limit in Y . We denote it with f(x0).
Second, we prove the ”uniform convergence” part, or the convergence in the

norm || · ||∞. More precisely, it means that for every ε > 0 we must construct
N1(ε) > 0 so that:

sup
x∈H

||f(x)− fn(x)|| < ε whenever n > N1(ε). (2.1)
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In order to do that, take an arbitrary point x ∈ H. For every p, n ≥ 1 we have

||f(x)− fn(x)|| ≤ ||f(x)− fp(x)||+ ||fp(x)− fn(x)||
≤ ||f(x)− fp(x)||+ ||fp − fn||∞. (2.2)

If we choose n, p > NC(ε/2), then we have ||fp − fn||∞ < ε/2 and

||f(x)− fn(x)|| ≤ ||f(x)− fp(x)||+ ε/2, n, p > NC(ε/2).

But the above left hand side does not depend on p, thus if we take p → ∞ on
the right hand side, we get:

||f(x)− fn(x)|| ≤ ε/2 < ε, n > NC(ε/2). (2.3)

Note that this inequality holds true for every x. This means that ε/2 is an
upper bound for the set {||f(x)− fn(x)|| : x ∈ H}, hence (2.1) holds true with
N1(ε) = NC(ε/2).

Third, we must prove that f is a continuous function on H. Fix some point
a ∈ H. Choose ε > 0. Since limn→∞ fn(a) = f(a), we can find N2(ε, a) > 0 such
that ||fn(a)− f(a)|| < ε/3 whenever n > N2. We define n1 := max{N1(ε/3) +
1, NC(ε/3) + 1, N2 + 1}. Because fn1 is continuous at a, we can find δ(ε, a) > 0
so that for every x ∈ H with d(x, a) < δ we have ||fn1(x)−fn1(a)|| < ε/3. Thus

||f(x)− f(a)|| ≤ ||f(x)− fn1(x)||+ ||fn1(x)− fn1(a)||+ ||fn1(a)− f(a)||
< ε/3 + ε/3 + ε/3 = ε, (2.4)

We used (2.1) in order to replace the first and the third term with ε/3, and
continuity of fn1 at a for the second term. Since a is arbitrary, we can conclude
that f is continuous on H, thus belongs to C(H;Y ). Therefore we can rewrite
(2.1) as:

||f − fn||∞ < ε whenever n > N1(ε), (2.5)

and the proof is over.

Remark 2.3. The ”ordinary” convergence in the functional space (C(H;Y ), d∞)
(given in (2.5)) is nothing but the uniform convergence of a sequence of func-
tions defined on the set H (see (2.1)). One can find more details in Wade,
exercise 6 in Chapter 10.6 (page 314).

3 Compact sets in (C(H; Rn), || · ||∞)

We here are interested in finding some sufficient conditions for a subset of
(C(H; Rn), || · ||∞), n ≥ 1, in order to be compact. (We know that in the
Euclidian space (Rn, || · ||) a set is compact if and only if it is bounded and
closed; this is the Heine-Borel theorem).

Definition 3.1. We say that f : H → Y is uniformly continuous if for every
ε > 0, we can find δ(f, ε) > 0 such that for all points x, y ∈ H which fulfill
d(x, y) ≤ δ(f, ε) we have that ||f(x)− f(y)|| ≤ ε.

Theorem 9.32 in Wade (Heine’s theorem) shows that a function f : H → Rn

is continuous if and only if it is uniformly continuous.
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Definition 3.2. A family of functions K ⊂ C(H; Rn) is called equibounded if
there exists a constant MK <∞ such that

sup
x∈H

||f(x)|| = ||f ||∞ ≤MK , ∀f ∈ K. (3.1)

Definition 3.3. A family of functions K ⊂ C(H; Rn) is called uniformly
equicontinuous if for every ε > 0 there exists δ(ε) > 0, such that for every
f ∈ K and for every pair of points x, y ∈ H which obey d(x, y) ≤ δ(ε), one has
that ||f(x)− f(y)|| ≤ ε. In other words, (see Definition 3.1)

inf
f∈K

δ(f, ε) = δK(ε) > 0. (3.2)

Definition 3.4. A subset Z of a metric space (M,d) is called dense in M if
every point x ∈ M is the limit of a sequence {xn}n≥1 ⊆ Z. A set Z is called
countable if there exists a map j : Z → N which is injective. A metric space is
called separable if it contains a countable dense subset.

Theorem 3.5. (Arzela-Ascoli). Let (X, d) be a metric space, and let H be
a compact subset of X. Assume that Z ⊂ H is countable and dense in H
(i.e. (H, d) is separable). Denote by K ⊂ C(H; Rn) the family of all functions
which are equibounded by some MK and uniformly equicontinuous with some δK
(ækvibegrænset og uniformt ækvikontinuert). Then K is sequentially compact
(følgekompakt) and thus compact. The closure in C(H; Rn) of any subset of K
is also compact.

Proof. We will show that given an arbitrary sequence of functions {fn}n≥1 ⊂
K, one can always find a subsequence which converges to a ”point” in K (note
that a point in K means a function defined on H; we denote this ”point” with
f). This would prove that K is sequentially compact.

Because the dense set Z is countable, we can represent it in the following
way:

Z = {z1, z2, z3, ...}.
The sequence {fn(z1)}n≥1 ⊂ Rn is bounded because we have ||fn(z1)|| ≤ MK

for every n, see (3.1). The Bolzano-Weierstrass theorem allows us to find a
subsequence {fn1(z1)}n1≥1 ⊂ Rn, which converges to a point in Rn; we call this
point with f(z1).

Now consider the sequence {fn1(z2)}n1≥1 ⊂ Rn. This sequence is also
bounded, thus we can find a second subsequence

{fn2(z2)}n2≥1 ⊆ {fn1(z2)}n1≥1,

which converges to a point in Rn; we call this point with f(z2). Note that the
subsequence of functions {fn2}n2≥1 ⊆ {fn1}n1≥1 converges pointwise in both z1
and z2.

We can continue this procedure and obtain a subsequence of functions {fnp
}np≥1

where
{fnp

}np≥1 ⊆ {fnp−1}np−1≥1 ⊆ ... ⊆ {fn}n≥1

and {fnp}np≥1 converges pointwise in all the points {z1, ..., zp} towards the
limits {f(z1), ..., f(zp)}. More precisely, for every ε > 0, there exists N(p, ε) > 1
such that

||fnp(zk)− f(zk)|| < ε, whenever np > N(p, ε), k ∈ {1, ..., p}. (3.3)
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Introduce the notation Np := N(p, 1/p) + 1. Then we have the important
estimate:

||fNp
(zk)− f(zk)|| < 1/p, whenever k ∈ {1, ..., p}. (3.4)

This means that we have constructed a ”diagonal subsequence” {fNp
}p≥1 having

the property that {fNp
(zk)}p≥1 ⊂ Rn is convergent for every fixed k, and we

denote the limits with:

lim
p→∞

fNp
(zk) = f(zk), k fixed. (3.5)

This is the same thing as to say that the sequence {fNp
}p≥1 converges pointwise

on Z:
lim

p→∞
fNp

(z) = f(z), ∀z ∈ Z. (3.6)

In the next lemma we will show that the sequence {fNp}p≥1 is a Cauchy
sequence in C(H; Rn). Let us now assume that this holds true, and let us prove
the Arzela-Ascoli theorem.

If this sequence is Cauchy, then according to Proposition 2.2 it will have a
limit in C(H; Rn), which we denote by F . But then F is continuous on H and
equal to f(z) for every z ∈ Z. The only thing remained to prove is that F ∈ K,
i.e. to verify that F verifies (3.1) and (3.2).

First, (3.1) follows from:

||F (x)|| = lim
p→∞

||fNp(x)||, ||fNp(x)|| ≤MK , x ∈ H,

and (3.2) from:

||F (x)− F (y)|| = lim
p→∞

||fNp
(x)− fNp

(y)||,

||fNp
(x)− fNp

(y)|| ≤ ε whenever d(x, y) ≤ δ(ε). (3.7)

Thus F ∈ K, and the theorem is proved. Hence the only remaining technical
ingredient is the following lemma:

Lemma 3.6. For every ε′ > 0, there exists NC(ε′) > 0 such that for every
p, q > NC(ε′) we have

sup
x∈H

||fNp
(x)− fNq

(x)|| = ||fNp
− fNq

||∞ < ε′.

Bevis. Choose 0 < ε < ε′. Consider δK(ε/3) as it was defined in (3.2).
Let us now show that

{BδK(ε/3)/2(zj) : zj ∈ H}

is an open covering of H. First, because Z is dense in H, then for every point
x ∈ H there exists a sequence {xm}m≥1 ⊂ Z such that xm → x. Second, we may
find xM ∈ Z such that BδK(ε/3)/3(x) ⊂ BδK(ε/3)/2(xM ) provided d(x, xM ) <
δK(ε/3)/6 (exercise). Thus we can write:

H ⊂
⋃

x∈H

BδK(ε/3)/3(x) ⊂
∞⋃

k=1

BδK(ε/3)/2(zk).
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Because H is compact, we can extract a finite open subcovering:

H ⊆
m(ε)⋃
l=1

BδK(ε/3)/2(zkl
). (3.8)

Now take an arbitrary point x ∈ H. We can find some l ∈ {1, ...,m(ε)} such
that x ∈ BδK(ε/3)/2(zkl

). We can write:

||fNp
(x)− fNq

(x)|| (3.9)
≤ ||fNp

(x)− fNp
(zkl

)||+ ||fNp
(zkl

)− fNq
(zkl

)||+ ||fNq
(zkl

)− fNq
(x)||.

Because K is uniformly equicontinuous, and because d(x, zkl
) < δK(ε/3), then

the first and third term in the right hand side of (3.9) are less than ε/3 (see
Definition 3.3), uniformly in p and q. Thus

||fNp
(x)− fNq

(x)|| ≤ 2ε/3 + ||fNp
(zkl

)− fNq
(zkl

)||, ∀p, q ≥ 1. (3.10)

Note the very important thing that there only are a finite number of points
of the type zkl

, i.e. m(ε) of them. Hence (3.5) implies that the m(ε) sequences
{fNr

(zkl
)}r≥1 ⊂ Rn are all Cauchy at the same time; we can thus find a large

enough index N1(ε/3) such that if p, q > N1(ε/3) then

||fNp
(zkl

)− fNq
(zkl

)|| < ε/3, 1 ≤ l ≤ m(ε).

Use this in (3.10) and obtain:

||fNp
(x)− fNq

(x)|| < ε, whenever p, q ≥ NC(ε′) := N1(ε/3). (3.11)

Because NC(ε′) is independent of x, we can write

sup
x∈H

||fNp(x)− fNq (x)|| ≤ ε < ε′, p, q ≥ NC(ε′)

and the lemma is proved, and so is the theorem.

4 The completion of a normed space

Theorem 4.1. Let (A, || · ||a) be a normed space. Then there exists a Banach
space B with a norm || · ||b and a linear mapping I : A→ B such that

||I(x)||b = ||x||a, ∀x ∈ A,

and I(A) is dense in B with respect to || · ||b. We call (B, || · ||b) the completion
of (A, || · ||a).

Proof. Let us denote by

l∞(A) := {ψ : N → A : sup
n
||ψ(n)||a <∞}.

This is nothing but the space of all bounded sequences with elements in A. We
now organize l∞(A) as a linear space. If ψ and φ are in l∞(A), then αψ + βφ
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is also a bounded sequence, for every α and β in the scalar field of A. A norm
on l∞(A) is:

||ψ||∞ := sup
n≥1

||ψ(n)||a. (4.12)

We consider the linear subspace

c0(A) := {ψ ∈ l∞(A) : lim
n→∞

||ψ(n)||a = 0}.

Since c0(A) ⊂ l∞(A), we can define the quotient (the space of all equivalence
classes of l∞(A) with respect to c0(A)) in the following way:

A 3 ψ 7→ Ψ := {ψ + f : ∀f ∈ c0(A)}
Y := {Ψ : ∀ψ ∈ A}. (4.13)

Thus Y is a set of sets containing functions. We call ψ a representative of Ψ;
any other function of the type ψ + f where f ∈ c0(A) is a representative for Ψ.

We organize Y as a linear space in the usual way. For any two scalars α, β,
and for any two equivalence classes Ψ,Φ (with representatives ψ, φ), we define
αΨ + βΦ to be the equivalence class associated to αψ + βφ.

Let us now define an application on Y , which we later on will prove it is a
norm:

Y 3 Ψ → ||Ψ||y := inf
g∈c0(A)

||ψ + g||∞ ∈ R+. (4.14)

It is easy to see that the application is well-defined (i.e. it is independent of the
choice we make for the representative ψ; prove it!).

We have a first result:

Lemma 4.2. Let ψ ∈ Ψ. Then

||Ψ||y = lim sup
n→∞

||ψ(n)||a = inf
n≥1

{ sup
m≥n

||ψ(m)||}. (4.15)

Proof. We first prove:

||Ψ||y ≤ inf
n≥1

{ sup
m≥n

||ψ(m)||}. (4.16)

In order to do that, define the function fn ∈ c0(A) such that fn(m) = −ψ(m)
for m < n and fn(m) = 0 if m ≥ n. Then the function ψ + fn is different from
zero only for m > n and we have (see definition (4.12))

||ψ + fn||∞ = sup
m≥n

||ψ(m)||a.

Then since ||Ψ||y is the infimum over functions in c0(A), we can write

||Ψ||y ≤ ||ψ + fn||∞ = sup
m≥n

||ψ(m)||a.

Thus ||Ψ||y is a lower bound for the sequence {supm≥n ||ψ(m)||a}n≥1, and so it
is smaller than the largest lower bound of the sequence, hence (4.16) holds true.

Now we prove the reversed inequality:

inf
n≥1

{ sup
m≥n

||ψ(m)||} ≤ ||Ψ||y. (4.17)
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Choose ε > 0. Since ||Ψ||y is an infimum given in (4.14), then there exists
gε ∈ c0(A) such that

||ψ + gε||∞ ≤ ||Ψ||y + ε/2. (4.18)

From the definition of the infinity norm, we see that

sup
m≥n

||ψ(m) + gε(m)||a ≤ ||ψ + gε||∞, ∀n ≥ 1, (4.19)

because we take the supremum over a smaller set of indices. The triangle in-
equality gives us

||ψ(m)||a − ||gε(m)||a ≤ ||ψ(m) + gε(m)||a, ∀m ≥ n. (4.20)

Because gε is in c0(A), it obeys limn→∞ ||gε(n)||a = 0. Thus we can find nε such
that for every m ≥ nε we have

||gε(m)||a ≤ ε/2, ∀m ≥ nε. (4.21)

Use (4.21) in (4.20) with n = nε. We obtain:

||ψ(m)||a − ε/2 ≤ ||ψ(m) + gε(m)||a, ∀m ≥ nε. (4.22)

Take the supremum over m ≥ nε and use (4.19):

sup
m≥nε

||ψ(m)||a − ε/2 ≤ ||ψ + gε||∞. (4.23)

Use (4.18) and write:

inf
n≥1

{ sup
m≥n

||ψ(m)||} ≤ sup
m≥nε

||ψ(m)||a ≤ ||Ψ||y + ε, ∀ε > 0,

and since ε is arbitrary, the proof of the lemma is over.

The next result states that Y is a normed space.

Lemma 4.3. The map || · ||y is a norm.

Proof. (i). If Ψ = c0(A) (i.e. the ”zero” equivalence class, its representative
being the zero function), then clearly ||Ψ||y = 0. Now assume ||Ψ||y = 0. Pick
any representative ψ. Use (4.15) and get lim supn→∞ ||ψ(n)||a = 0. But this
implies that limn→∞ ||ψ(n)||a = 0 hence ψ ∈ c0(A) and Ψ = c0(A).

(ii). Use (4.15) to prove the homogeneity: ||λΨ||y = |λ| · ||Ψ||y.
(iii). For the triangle inequality, consider Ψ and Φ in Y , with representatives

ψ and φ. Choose ε > 0. There exist fε, gε ∈ c0(A) such that ||ψ + fε||∞ ≤
||Ψ||y + ε/2 and ||φ + gε||∞ ≤ ||Φ||y + ε/2. But since fε + gε ∈ c0(A), we also
have that

||Ψ + Φ||y ≤ ||ψ+ φ+ fε + gε||∞ ≤ ||ψ+ fε||∞ + ||φ+ gε||∞ ≤ ||Ψ||y + ||Φ||y + ε

where we applied the triangle inequality for the ||·||∞ norm, and we are done.

The last preparatory result is the following:
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Lemma 4.4. The normed space (Y, || · ||y) is a Banach space.

Proof. We only need to show that every Cauchy sequence with elements in Y
has a limit in Y . Consider a Cauchy sequence {Ψp}p≥1 ⊂ Y . It means that for
every ε > 0, we can find pε large enough such that

||Ψk+p −Ψp||y < ε, ∀k ≥ 0, ∀p ≥ pε. (4.24)

If we choose ε = 1/2j for every j ≥ 1, we obtain a sequence of indices pj given
by the above pε’s. We can assume without loss of generality that pj is a strictly
increasing sequence with j. Now define

Φj := Ψpj
, j ≥ 1.

Note that (4.24) implies:

||Φk+j − Φj ||y < 2−j , ∀k ≥ 1, ∀j ≥ 1. (4.25)

The strategy is to construct a limit for the subsequence {Φj}j≥1, which (as is
well-known) will also be a limit for the whole sequence.

A representative of Φj is denoted by φj . Using (4.25) and (4.15), we have

inf
n≥1

{ sup
m≥n

||φk+j(m)− φj(m)||a} < 2−j

which means that 2−j is not a lower bound for the n-depending sequence
{supm≥n ||φk+j(m) − φj(m)||a}n≥1. This leads to the observation that we can
find n(j) large enough such that

||φj+1(m)− φj(m)||a < 2−j , ∀m ≥ n(j). (4.26)

Without loss of generality, we can choose n(j) to be strictly increasing with j.
Now define a particular Ψ∞ having the representative given by ψ∞(m) =

φj+1(m) if n(j) ≤ m < n(j + 1). For a fixed p ≥ 1 we have

||Ψ∞ − Φp||y ≤ sup
m≥n

||ψ∞(m)− φp(m)||a, ∀n ≥ 1.

Now choose n = n(p) in the above inequality, and let us estimate the supre-
mum on the right hand side. We can exhaust the interval [n(p),∞) by consid-
ering all situations in which m ∈ [n(j), n(j + 1)), and j ≥ p. For such an m we
can write:

||ψ∞(m)− φp(m)||a = ||
j∑

k=p

(φk+1(m)− φk(m)||a

≤
j∑

k=p

||φk+1(m)− φk(m)||a. (4.27)

Because m ≥ n(j) > n(j − 1) > ... > n(p) it follows (see (4.26)):

||φk+1(m)− φk(m)||a < 2−k, k ∈ {p, p+ 1, ..., j}. (4.28)
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Using this in (4.27) we obtain that for every m ∈ [n(j), n(j + 1)) we have the
inequality

||ψ∞(m)− φp(m)||a ≤
j∑

k=p

2−k ≤
∞∑

k=p

2−k = 2−p+1

and this estimate in now independent of j, thus the supremum over m ≥ n(p)
cannot be larger than 2−p+1. We therefore proved that ||Ψ∞ − Φp||y ≤ 2−p+1

for all p ≥ 1, thus the subsequence {Φp}p≥1 is convergent, hence the whole
original sequence {Ψn}n≥1 converges to Ψ∞. The proof is over.

End of the proof of Theorem 4.1. Now we can construct the Banach space
B. For every x ∈ A, define the function i(x) ∈ l∞(A) which obeys [i(x)](n) = x
for every n ≥ 1. Denote by I(x) the equivalence class in Y whose representative
is i(x). Since ||[i(x)](m)||a = ||x||a for every m ≥ 1, then using (4.15) we obtain
||I(x)||y = ||x||a.

Now consider the subset of Y defined by

I(A) := {I(x) : ∀x ∈ A}.

It clearly is a linear subspace of Y (exercise), which can be organized as a
normed space with the norm induced by || · ||y. Redenote the old norm || · ||y by
|| · ||b. Then by taking the closure of I(A) in Y with respect to || · ||b we obtain
a closed linear subspace I(A) which is also a Banach space since Y is a Banach
space (exercise). Therefore B = I(A) and we conclude the theorem.

5 Zorn’s Lemma

A set S is partially ordered if there exists an order relation ≤ which is reflexive
(x ≤ x for all x), antisymmetric (if x ≤ y and y ≤ x then x = y) and transitive
(x ≤ y and y ≤ z implies x ≤ z). If x ≤ y and x 6= y, then we write x < y or
y > x.

A chain in S is a subset C in which any two elements are comparable, that
is for every x, y ∈ C then either x ≤ y or y ≤ x.

An element m ∈ S is called maximal if there is no other x ∈ S such that
m < x. This does not mean that m is the largest element, which would be an
element M ∈ S such that x ≤M for every x ∈ S.

Theorem 5.1. (Zorn’s lemma). Let S be a partially ordered set in which every
chain has an upper bound. Then S has at least one maximal element.

Proof. We first prove a weaker version, in which we assume that every chain
has a least upper bound (supremum). More precisely, for every chain C there
exists an element called sup(C) which (i) is an upper bound for C, i.e. for every
x ∈ C we have x ≤ sup(C), and (ii) is the smallest upper bound, i.e. for every
x ∈ C such that x < sup(C) there exists z ∈ C such that x < z ≤ sup(C).

Proposition 5.2. Let S be a partially ordered set in which every chain has a
supremum. Then S has at least one maximal element.

Proof. Define a ”successor” operation on S as follows: if x is non-maximal,
choose some y > x and set φ(x) = y. If x is maximal, put φ(x) = x. Note that
the existence of φ is insured by the axiom of choice.
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Now we say that a subset N ⊆ S is a tower if we have the following two
properties:

P1. If x ∈ N , then φ(x) ∈ N ;
P2. For any chain C ⊆ N , then sup(C) ∈ N .

Let us note that S itself is a tower, and the intersection of any family of
towers is a tower (exercise). In particular, the intersection of all possible towers
is a tower. Denote the smallest (non-empty) tower of S with M .

Definition 5.3. (P3) We say that x ∈M has the property P3 if for any y ∈M ,
we either have y ≤ x or y ≥ φ(x).

Lemma 5.4. Assume that P3 holds for all x ∈ M . Then M is a chain, and
M has a largest element which also is a maximal element of S.

Proof. Let us prove that M is chain. For, take x, y ∈M . Then P3 applied for
x says that if we do not have y ≤ x, then we must have φ(x) ≤ y. But φ(x) ∈M
due to P1, and x ≤ φ(x). The transitivity then gives x ≤ y, hence M is a chain.
Now becauseM is a chain, then due to P2 it must contain its supremum sup(M).
But then sup(M) is a maximal element, because on one hand φ(sup(M)) ≥
sup(M), and on the other hand due to P1 we have that φ(sup(M)) ∈M hence
φ(sup(M)) ≤ sup(M). The antisymmetry gives φ(sup(M)) = sup(M) and we
get our maximal element, thus proving the lemma.

From the above lemma we see that the proposition is proved if we can show
that P3 holds for all point of M . In order to do that, we first need another
definition:

Definition 5.5. (P4) We say that x ∈ M has property P4 if for any y ∈ M
with y < x we have φ(y) ≤ x.

Lemma 5.6. If x ∈M obeys P4, then it also obeys P3.

Proof. Let
M ′ := {y ∈M : y ≤ x or y ≥ φ(x)}.

If we can prove that M ′ is a tower, then M ′ = M because M is the smallest
tower of S. So we need to verify P1 and P2 for M ′. We start with P1, that
is we need to show that for any y ∈ M ′ we have φ(y) ∈ M ′. Indeed, if y ∈ M ′

then we either have a) y < x, b) y = x or c) y ≥ φ(x). If a) holds, then P4(x)
says that φ(y) ≤ x hence φ(y) ∈ M ′, thus P1 holds. If either b) or c) holds,
then we trivially have φ(y) ≥ φ(x), thus φ(y) ∈M ′, hence P1 holds.

In order to verify P2, we need to show that if C ⊆ M ′ is a chain, then
sup(C) ∈M ′. Clearly, because C is also a chain inM , we have that sup(C) ∈M .

Now we have two possibilities: a) z ≤ x for all z ∈ C, and b) there exists
some z ∈ C, z > x. If a) holds, then x is an upper bound hence sup(C) ≤ x,
thus sup(C) ∈ M ′. If b) holds, then because z > x and z ∈ M ′ implies that
z ≥ φ(x), hence sup(C) ≥ φ(x), thus sup(C) ∈ M ′. Since P2 is also verified,
then M ′ is a tower and M = M ′.

The last step in the proof of the proposition, is showing that P4 holds true
for every x ∈M . For, denote by N the set of points x ∈M which obey P4. As
above, it suffices to show that N is a tower.
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We start with proving P1 for N . Take x ∈ N , and we want to show that
φ(x) ∈ N . For that, look at all y ∈ M with y < φ(x) and try to show that
φ(y) ≤ φ(x).

Because we know from Lemma 5.6 that x obeys P3, the only possibility is
to have y ≤ x. Then a) y < x or b) y = x. If a) holds, then because x was
supposed to obey P4 we get φ(y) ≤ x, hence φ(y) ≤ φ(x). If b) holds, then
trivially φ(y) ≤ φ(x). In both cases we proved that φ(x) ∈ N hence P1 is
fulfilled.

We now prove that P2 holds. Consider a chain C ⊆ N ; we want to show
that sup(C) ∈ N , i.e. sup(C) has the property P4. In other words, for every
y ∈ M with y < sup(C) we need to show that φ(y) ≤ sup(C). Now from
y < sup(C) it means that y is not an upper bound for C, so it exists z ∈ C
such that z 6≤ y. This means that either a) y and z are not comparable, or b)
y < z. But z ∈ N has property P4 and hence P3 (from Lemma 5.6), thus z and
y ∈ M are comparable, hence b) holds. Now apply P4(z): it gives φ(y) ≤ z,
hence φ(y) ≤ sup(C). Therefore sup(C) ∈ N , and P2 is verified. We conclude
that N is a tower, therefore N = M .

Finishing the proof of Proposition 5.2. We have just shown that all points
of M have the property P4. Lemma 5.6 showed that P4 implies P3. Then
Lemma 5.4 says that M must have a largest element, which was shown to be a
maximal element of S. Thus Proposition 5.2 is proved.

We now use Proposition 5.2 for proving the Hausdorff maximal principle:

Lemma 5.7. (The Hausdorff maximal principle). Let Q be a partially ordered
set. Then Q contains a maximal chain (i.e. a chain which is not contained in
a bigger chain).

Proof. Define S to be the set of all chains of Q, partially ordered with respect
to the set inclusion. More precisely, if C1 and C2 are chains in Q (and elements
of S), then we say that C1 ≤S C2 in S if C1 ⊆ C2 in Q. It is easy to prove that
≤S is a partial order (exercise).

Another important property is that the intersection in Q of two chains is a
chain, and in fact an arbitrary intersection of chains from Q is a chain (exercise).

Now let us denote an arbitrary chain in S by K. Note that the elements of
K in S consist of chains in Q. Denote by #K the set K seen as a set formed
of elements of Q; clearly, #K is a chain in Q. If Q has no maximal chain, then
there should exist at least one element k ∈ Q such that x <Q k for all x ∈ #K.
Then #K̃ := #K ∪ {k} is a chain in Q, and K̃ := K ∪ {k} is an upper bound
for K in S.

Now if A1 and A2 in S are upper bounds for K, then A1 ∩ A2 is also an
upper bound for K (exercise). Define sup(K) as the intersection of all possible
upper bounds of K; then sup(K) is a chain in Q, and by construction it is a
least upper bound for K.

Therefore S is a partially ordered set where all chains K have a supremum.
Proposition 5.2 now states that there exists a maximal element K ∈ S. But
this is the same with saying that #K is a chain in Q which is not included in
a longer chain, and the proof of this lemma is over.
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Finishing the proof of Zorn’s Lemma. We can now lift the extra-condition
in Proposition 5.2. Assume that S is a partially ordered set, where every chain
has an upper bound. According to the Hausdorff maximum principle, there
exists a maximal chain C ⊆ S. Being a chain, C must have an upper bound
x ∈ S, and this means that C ∪ {x} is another chain in S. But C is maximal,
therefore x ∈ C. Moreover, x must be the largest element of C. Finally, x is
a maximal element in S and φ(x) = x, because if φ(x) > x we can consider
C ∪ {φ(x)} which would contradict the maximality of C. The proof of the
theorem is over.

6 Baire’s Category Theorem

Denote the open ball of radius ε and centred at x by Bε(x) := {y ∈ B : ||y−x|| <
ε}. The complementary in B of a set S ⊆ B is denoted by Sc.

Theorem 6.1. Consider a Banach space B, and a sequence of closed sets
{Sn}n≥1 such that

B =
⋃
n≥1

Sn. (6.29)

Then there exists at least one set Sn with non-empty interior.

Proof. Assume the contrary, that is each Sn has an empty interior. One can
re-state this in a more formal way: for every x ∈ Sn, and for every ε > 0, we
have:

Bε(x) ∩ Sc
n 6= ∅, ∀ε > 0. (6.30)

We can assume that all sets Sn are non-empty. We also have that Sc
n 6= ∅, since

otherwise Sn = B which would have a non-empty interior.
Let therefore x1 be a point of Sc

1. Because S1 is closed, we have that Sc
1 is

open, therefore there exists ε1 > 0 such that

Bε1(x1) ⊂ Sc
1. (6.31)

Starting from x1 and ε1, we will inductively define two sequences {xn}n≥1 ⊂ B
and {εn}n≥1 ⊂ R+, having several properties. First, we need:

εn+1 <
εn
3
, n ≥ 1. (6.32)

Second, we need that:
Bεn

(xn) ⊂ Sc
n, n ≥ 1, (6.33)

and third:
||xn+1 − xn|| <

εn
3
, n ≥ 1. (6.34)

Let us investigate the consequences of having such sequences, and we will later
on prove their existence. First, (6.32) leads us to the estimate:

εj <
εj−1

3
< ... <

εn
3j−n

, ∀ j > n ≥ 1. (6.35)

In particular, εn < ε1/3n−1 → 0 when n→∞.
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Second, we can prove that {xn}n≥1 is a Cauchy sequence, because for every
p ≥ 1 we can write

||xn+p − xn|| = ||
n+p−1∑

j=n

[xj+1 − xj ]|| ≤
n+p−1∑

j=n

||xj+1 − xj ||

<

n+p−1∑
j=n

εj/3 <
∞∑

j=n

εj/3

<
εn
3

∑
k≥0

3−k =
εn
2
→ 0, n→∞. (6.36)

In the first line we used the triangle inequality, in the second line we used (6.34),
and in the third line (6.35).

Because B is a Banach space, {xn}n≥1 is convergent and has a limit x ∈ B.
But then we have (use the triangle inequality)

||x− xn|| ≤ ||x− xn+p||+ ||xn+p − xn|| < ||x− xn+p||+
εn
2
, ∀ p ≥ 1.

Since limp→∞ ||x − xn+p|| = 0, taking p to infinity in the above estimate gives
us ||x − xn|| < εn, or x ∈ Bεn(xn), or x ∈ Sc

n (see (6.33)), or x 6∈ Sn for all n.
But this contradicts (6.29).

Therefore the only remaining thing is the construction of our sequences. Let
us first construct x2 and ε2.

(i). If x1 ∈ Sc
2, then put x2 = x1. Then since Sc

2 is open, we can find ε′ > 0
such that Bε′(x1) ⊂ Sc

2. Now choose ε2 to be the minimum between ε′ and ε1/4.
Clearly, (6.32) and (6.34) hold true for n = 1 (we here have ||x1 − x2|| = 0),
while (6.33) holds true for n = 1, 2.

(ii). If x1 6∈ Sc
2, then of course x1 ∈ S2. From (6.30) we have that for every

ε′ > 0 we can find y(ε′) ∈ Bε′(x1) ∩ Sc
2, that is ||y(ε′)− x1|| < ε′. Define x2 :=

y(ε1/4) ∈ Sc
2. Because Sc

2 is open, we can find ε′′ > 0 such that Bε′′(x2) ⊂ Sc
2.

Finally define ε2 as the minimum between ε′′ and ε1/4. Then we have ε2 < ε1/3,
||x2 − x1|| < ε′ < ε1/3, and Bε2(x2) ⊂ Sc

2.
The induction step from xn and εn to xn+1 and εn+1 is identical to the one

from 1 to 2. The theorem is proved.
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