Schauder's Fixed Point Theorem

Horia Cornean, d. 25/04/2006.

Theorem 0.1. Let X be a locally convex topological vector space, and let $K \subset X$ be a non-empty, compact, and convex set. Then given any continuous mapping $f: K \to K$ there exists $x \in K$ such that f(x) = x.

Notice that the unit disc of a finite dimensional vector space is always convex and compact hence this theorem extends Brouwer Fixed Point Theorem.

Proof. We suppose that X is a Banach space. The idea of the proof is to reduce ourselves to the finite dimensional case. Given $\epsilon > 0$ notice that the family of open sets $\{B_{\epsilon}(x): x \in K\}$ is an open covering of K. Being K compact there exists a finite subcover, i.e. there exists N points p_1, \ldots, p_N of K such that the balls $B_{\epsilon}(p_i)$ cover the whole set K. Let K_{ϵ} be the convex hull of p_1, \ldots, p_N and let V_{ϵ} be the affine N-1 dimensional space containing these points so that $K_{\epsilon} \subset V_{\epsilon}$.

Now consider a projection $\pi_{\epsilon} \colon X \to V_{\epsilon}$ such that $\|\pi_{\epsilon}(x) - \pi_{\epsilon}(y)\| \le \|x - y\|$ and define

$$f_{\epsilon} \colon K_{\epsilon} \to K_{\epsilon}, \quad f_{\epsilon}(x) = \pi_{\epsilon}(f(x)).$$

This is a continuous function defined on a convex and compact set K_{ϵ} of a finite dimensional vector space V_{ϵ} . Hence by Brouwer fixed point theorem it admits a fixed point x_{ϵ}

$$f_{\epsilon}(x_{\epsilon}) = x_{\epsilon}$$

Since K is sequentially compact we can find a sequence $\epsilon_k \to 0$ such that $x_k = x_{\epsilon_k}$ converges to some point $\bar{x} \in K$.

We claim that $f(\bar{x}) = \bar{x}$.

Clearly $f_{\epsilon_k}(x_k) = x_k \to \bar{x}$. To conclude the proof we only need to show that also $f_{\epsilon_k}(x_k) \to f(\bar{x})$ or, which is the same, that $\|f_{\epsilon_k}(x_k) - f(\bar{x})\| \to 0$. In fact we have

$$\|f_{\epsilon_k}(x_k) - f(\bar{x})\| = \|\pi_{\epsilon_k}(f(x_k)) - f(\bar{x})\|$$

$$\leq \|\pi_{\epsilon_k}(f(x_k)) - f(x_k)\| + \|f(x_k) - f(\bar{x})\|$$

$$\leq \epsilon_k + \|f(x_k) - f(\bar{x})\| \to 0$$

where we used the fact that $\|\pi_{\epsilon}(x) - x\| \leq \epsilon$ being $x \in K$ contained in some ball B_{ϵ} centered on K_{ϵ} .