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1 Convex functions and inequalities
Definition 1.1. A function ϕ : (a, b)→ R, where −∞ ≤ a < b ≤ ∞, is called convex if

ϕ(λx+ (1− λ)y) ≤ λϕ(x) + (1− λ)ϕ(y) (1)

holds for all x, y ∈ (a, b), 0 ≤ λ ≤ 1
[
or, equivalently,

ϕ(t)− ϕ(x)

t− x
≤ ϕ(y)− ϕ(t)

y − t
, (2)

for any a < x < t < y < b
]
.

Remark 1.2. That (a, b) is open is important as Example 1.5 below will show.

Proposition 1.3. Let ϕ : (a, b)→ R be differentiable. Then ϕ is convex if and only if ϕ′(x) ≤ ϕ′(y) for all
a < x ≤ y < b, i.e. the derivative is an increasing function.

Proof. This follows easily from (2) and the mean value theorem.

Theorem 1.4. A convex function is continuous.

S 

X Y  

T  

Sketch of proof                                                SY
Line through S and X
XT

Proof. For a < s < x < y < t < b and
ψ : (a, b)→ R convex, let S denote (s, ϕ(s)) and
likewise for X , Y and T . The convexity of ϕ
implies that X lies on or below SY so Y lies
on or above the line through S and X . Like-
wise, Y lies on or below XT . This means that,
as y ↓ x, Y necessarily approaches X (y ap-
proaches x and Y has to lie between XT and
the line through S and X), giving continuity
from the right. Continuity from the left is handled analogously, and continuity follows.
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Example 1.5. The assumption that (a, b) is open is particularly important for the conclusion of the
previous theorem. In fact, let ϕ be any bounded, convex function on (a, b). We can now define a
class of functions ϕc on [a, b] by setting ϕc(a) = ϕc(b) = supx∈(a,b) ϕ(x) + c, and ϕc(x) = ϕ(x) for
a < x < b. It is now easy to see that the inequalities (1) and (2) are satisfied for ϕc if c ≥ 0. However,
ϕc may be discontinuous at a or b for c = 0 and is easily seen to necessarily be discontinuous at a
and b if c > 0.

Theorem 1.6 (Jensen’s Inequality). Let µ be a positive measure on a σ-algebra M with µ(Ω) = 1. Let
ϕ : (a, b)→ R be convex and f ∈ L1(µ) with a < f(x) < b for all x ∈ Ω. Then

ϕ

(∫
Ω

f dµ

)
≤
∫

Ω

ϕ ◦ f dµ

Proof. Set t =
∫

Ω
f dµ. Let β be the supremum of the left hand side of (2) for this choice of t and

with the supremum taken over all values of x, a < x < t. Then we have

ϕ(t)− ϕ(x)

t− x
≤ β ≤ ϕ(y)− ϕ(t)

y − t
, a < x < t < y < b,

or, more compactly written,

ϕ(s) ≥ ϕ(t) + β(s− t), a < s < b.

Putting f(x) in place of s and integrating both sides of the inequality with respect to x yields∫
Ω

ϕ ◦ f dµ ≥ ϕ(t) + β

(∫
Ω

f dµ− t
)
,

which, when recalling the definition of t, is seen to be the wanted inequality.

Jensen’s inequality basically says that if you evaluate a convex function at the “average value”
of another function, you get something which is smaller than the “average value” of the convex
function composed with the other function, something which hopefully is relatively obvious from
an intuitive point of view.

Example 1.7. The exponential function exp: (−∞,∞) → R is clearly convex as can be seen from
the definition or by using Proposition 1.3. This means that for a real f ∈ L1(µ) and µ as in Theo-
rem 1.6, we have

exp

(∫
Ω

f dµ

)
≤
∫

Ω

ef dµ . (3)

Assume now that Ω = {p1, . . . , pn} is a finite set and that µ gives each point pi in Ω equal weight
µ(pi) = 1

n
. Then (3) reduces to

exp
( 1

n

(
f(p1) + · · ·+ f(pn)

))
≤ 1

n

(
ef(p1) + · · ·+ ef(pn)

)
. (4)

Setting xi = ef(pi) and rewriting (4) yields the familiar inequality between the geometric and
arithmetic average:

(x1 · · ·xn)
1
n ≤ 1

n
(x1 + · · ·+ xn) . (5)
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Analogously, the left and right-hand side of

exp

(∫
Ω

log(g) dµ

)
≤
∫

Ω

g dµ

are often referred to as the geometric and arithmetic means, respectively, of a positive function g.

Example 1.8. A more general result than (5) can be obtained if the points pi are not given equal
weight, i.e. if µ(pi) = αi > 0 with

∑n
i=1 αi = 1 and αi not necessarily equal to 1

n
. The same

arguments as before now give

xαi
1 · · ·xαn

n ≤ α1x1 + · · ·+ αnxn . (6)

Definition 1.9 (Hölder conjugates). If p = 1 and q =∞ or if p and q are both real and positive and
satisfy

1

p
+

1

q
= 1 , (7)

which can also be written p + q = pq, then p and q are said to be Hölder conjugates or a pair of
conjugate exponents or dual exponents.

We note that the pair 1 and ∞ also satisfies (7), appropriately interpreted, and that it can be
seen as a limit case for a pair of real numbers.

Theorem 1.10 (The Hölder and Minkowski inequalities). Let p and q be Hölder conjugates satisfying
1 < p, q <∞. Let f and g be be measurable functions onX with range in [0,∞]. Then Hölder’s inequality,

‖fg‖1 =

∫
X

fg dµ ≤
(∫

X

fp dµ

)1
p
(∫

X

gq dµ

)1
q

= ‖f‖p‖g‖q

and Minkowski’s inequality

‖f + g‖p =

(∫
X

(f + g)p dµ

)1
p

≤
(∫

X

fp dµ

)1
p

+

(∫
X

gp dµ

)1
p

= ‖f‖p + ‖g‖p

holds true, where, for any complex, measurable function f on X and 0 < p <∞,

‖f‖p =

(∫
X

|f |p dµ

)1
p

.

Remark 1.11. As indicated by the notation, ‖·‖p turns out to be a norm (when properly inter-
preted). However, as norms are, by definition, finite, ‖·‖p is usually (but not in the present context)
restricted to the space of functions f for which ‖f‖p is finite. We will return to this topic in the
next lecture.

Proof of Hölder’s inequality. If ‖f‖p = 0 then f = 0 a.e. and hence ‖fg‖1 = 0 and vice versa for ‖g‖q.
If ‖fg‖1 = 0 or if ‖f‖p‖g‖g =∞, we’re done before we even started, so assume now that ‖fg‖1 > 0
and ‖f‖p‖g‖q <∞. Let

F =
f

‖f‖p
and G =

g

‖g‖q
.
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Then clearly ∫
X

F p dµ =

∫
X

Gq dµ = 1 .

If x ∈ X is such that 0 < F (x), G(x) <∞, then, since exp is onto (0,∞), we can find s, t ∈ R such
that F (x) = es/p and G(x) = et/q. Putting n = 2, α1 = 1

p
and α2 = 1

q
and writing es/p = (es)1/p and

et/q = (et)1/q now gives something suspiciously close to what goes on in Example 1.8 (note that Ω
and the pi’s are irrelevant for the conclusion), so (6) becomes

F (x)G(x) = (es)
1
p (et)

1
q ≤ 1

p
es +

1

q
et =

1

p
F (x)p +

1

q
G(x)q ,

which holds for all x ∈ X such that 0 < F (x), G(x) < ∞ and suitably chosen s and t. Moreover,
the inequality between the leftmost and the rightmost quantities obviously remains true for F (x)
or G(x) equal to 0 or∞. Integrating this inequality yields

1

‖f‖p‖g‖q

∫
X

fg dµ =

∫
X

FG dµ ≤ 1

p

∫
X

F p dµ+
1

q

∫
X

Gq dµ =
1

p
+

1

q
= 1.

The desired inequality now follows from basic algebra.

Proof of Minkowski’s inequality. Minkowski’s inequality can be seen as a corollary of Hölder’s. As
before, we begin by noting that the inequality is trivial if either ‖f + g‖p = 0 or ‖f‖p + ‖g‖p =∞,
so assume ‖f + g‖p > 0 and ‖f‖p + ‖g‖p <∞. Write

(f + g)p = (f + g)(f + g)p−1 = f · (f + g)p−1 + g · (f + g)p−1 (8)

and apply Hölder’s inequality to both terms on the right-hand side:∫
X

f · (f + g)p−1 dµ ≤ ‖f‖p‖(f + g)p−1‖q and (9)∫
X

g · (f + g)p−1 dµ ≤ ‖g‖p‖(f + g)p−1‖q . (10)

Now, since (p− 1)q = p,

‖(f + g)p−1‖q =

(∫
X

(
(f + g)p−1

)q
dµ

)1
q

=

(∫
X

(f + g)p dµ

)1
q

= ‖f + g‖
p
q
p (11)

and hence, putting (8), (9), (10) and (11) together, we get that

‖f + g‖pp ≤ (‖f‖p + ‖g‖p)‖f + g‖
p
q
p . (12)

As p − p
q

= p(1 − 1
q
) = p · 1

p
= 1, we’re done if we can show that ‖f + g‖p < ∞ (because then we

can divide the inequality (12) with ‖f + g‖p/qp — we have already assumed that ‖f + g‖p > 0). But
this follows from the convexity of (0,∞) 3 t 7→ tp ∈ R, as(

f + g

2

)p
≤ 1

2
(fp + gp)

shows that when ‖f‖p + ‖g‖p is finite, so is ‖f + g‖p.
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