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1 The Lp-spaces
Last time, the first part of the following definition was sneaked in through the back door (or rather,
through the formulation of the theorem containing Hölder’s and Minkowski’s inequalites):

Definition 1.1. If 0   p   8 and f is any complex, measurable function on X , then we write

‖f‖p �
�»

X

|f |p dµ

1

p

and let Lppµq denote the set of all f for which ‖f‖p   8. We call ‖�‖p the Lp-norm.

Remark 1.2. As all of you have already noted, if f � 0 a.e. (but differs from 0 on a set of measure
zero), then ‖f‖p � ‖0‖p � 0 although f � 0. This shows that ‖�‖p is not a proper norm. We will
repair this flaw in due course.

In a few important special cases, the notation Lppµq is slightly altered. This includes the case
where X � Rk and µ is the Lebesgue measure on Rk. In this case, we write LppRkq instead of
Lppµq. Another example is when µ is the counting measure on a set A, in which case one writes
`ppAq, or, when A is countable, sometimes just `p. An element of `p may be regarded as a complex
sequence x � tξnu

8

n�1 with

‖x‖p �
�
8¸

n�1

|ξn|p

1

p

  8 .

Definition 1.3. For any measurable function g : X Ñ r0,8s let

ess sup g � ess sup
xPX

tgpxqu � inftα P R }µpg�1ppα,8sqq � 0u

denote the essential supremum of g, i.e. the essential supremum of g, ess sup g, is the infimum of the
set S of real α such that µpg�1ppα,8sqq � 0. Here, the convention infH � 8 is employed.
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If f is a complex, measurable function on X , then let ‖f‖8 � ess sup|f | denote the essential
bound or supremum norm of f . Let L8pµq (or L8pRkq, `8pAq or `8, respectively) denote the set of all
essentially bounded, measurable functions, i.e. all complex, measurable functions f on X for which
‖f‖8   8.

Remark 1.4. Since

g�1ppess sup g,8sq �
8¤

n�1

g�1
��

ess sup g �
1

n
,8
�


and each of the countably many sets on the right-hand side has measure zero, we conclude that
µpg�1pess sup g,8sq � 0.

In the case where µ is the counting measure on X � A, essentially boundedness and bound-
edness is the same, since all nonempty sets have positive measure.

The notation L8pµq strongly suggests a connection with the Lp-spaces for finite p. This is of
course no coincidence and p � 8 may in fact be seen as a limiting case as the following two
theorems indicate.

Theorem 1.5. Let p and q be Hölder conjugates 1 ¤ p, q ¤ 8 and f P Lppµq and g P Lqpµq. Then
fg P L1pµq and

‖fg‖1 ¤ ‖f‖p‖g‖q

Proof. For 1   p, q   8, the statement is simply Hölder’s inequality applied to |f | and |g|. Assume
p � 8. Then by Remark 1.4, we know that µptx P X } fpxq ¡ ‖f‖8uq � 0, so

|fpxqgpxq| ¤ ‖f‖8|gpxq| a.e. x in X . (1)

Integrating both sides of (1) yields the result for p � 8 and q � 1, and interchanging the rôles of
f and g takes care of p � 1 and q � 8.

Theorem 1.6. Let 1 ¤ p ¤ 8 and f, g P Lppµq. Then f � g P Lppµq and

‖f � g‖p ¤ ‖f‖p � ‖g‖p (2)

Proof. Note that for 1 ¤ p   8,
|f � g|p ¤ p|f |� |g|qp (3)

(x ÞÑ xp is an increasing function), so for 1   p   8, (2) follows from Minkowski’s inequality. If
p � 8 or p � 1, (2) trivially follows from (3) with p � 1.

Remark 1.7. If 1 ¤ p ¤ 8, f P Lppµq and α P C, then clearly αf P Lppµq with ‖αf‖p � |α|‖f‖p.
In addition, by Theorem 1.6, we have that if also g P Lppµq, then f � g P Lppµq. Hence Lppµq is a
complex vector space.

In fact, in conjunction with ‖�‖p, it is almost a normed complex vector space, but, as already
noted in Remark 1.2, ‖f‖p � 0 does not imply f � 0 (it is a so-called seminormed vector space).
In the following, we will fix this by slightly redefining the Lp-spaces, use the norm to define a
metric, and show that the (redefined) Lp-spaces are complete in this metric.
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Independently of whether 1 ¤ p   8 or p � 8, it follows from the definition of ‖�‖p that if
‖f‖p � 0 then f � 0 a.e. If we let Z denote the space of all functions f which are 0 a.e., then the
quotient space Lppµq{Z � tf � Z | f P Lppµqu equipped with the induced norm ~f � Z~p � ‖f‖p
satisfies that ~f � Z~p � 0 if and only if f � Z � 0 � Z . We begin by showing that ~ � ~p is
well-defined:

Let f, g P Lppµq be such that f � Z � g � Z . We need to show that ~f � Z~p � ~g � Z~p, i.e.
that ‖f‖p � ‖g‖p. But this follows from the fact that, since f �Z � g �Z , we have f � g P Z , and
hence f � g a.e.

To see that, indeed, ~f � Z~p � 0 if and only if f � Z � 0 � Z , we note that the “if” part
follows from ~ � ~p being well-defined, and the “only if” from the fact that ‖f‖p � 0 only if f P Z .

Having now established a norm on Lppµq{Z , we define the induced metric d in the obvious
way:

dpf � Z, g � Zq � ~pf � Zq � pg � Zq~p � ‖f � g‖p .

We want to show that Lppµq{Z is a complete metric space, i.e. that every Cauchy sequence in
Lppµq{Z converges to an element of Lppµq{Z . Before taking on that challenge, however, we need
to agree on something: quotient space notation is really cumbersome, and since we in integration
theory actually don’t really care about what happens on a set of measure 0, we will drop this nota-
tion and just redefine Lppµq to be the quotient space, tacitly work with representatives of elements
in this space, and write “a.e.” in cases where the circumstances require it. In the same vein, we
will refrain from using ~ � ~p and stick to the familiar ‖�‖p.

Before proceeding to the completeness theorem, we recall (and formulate in terms of Lp-
spaces) the definition of convergence, Cauchy sequences and completeness:

Definition 1.8. Let tfnu8n�1 be a sequence of functions1 in Lppµq. If there exists a function f P Lppµq
such that ‖f � fn‖p Ñ 0 as n Ñ 8, we say that tfnu converges to f in Lppµq (or in p-mean or that
it is Lp-convergent). If, for all ε ¡ 0, there exists an N such that for all n,m ¡ N , we have
‖fn � fm‖p   ε, then tfnu is called a Cauchy sequence in Lppµq.

Obviously, any convergent sequence is a Cauchy sequence. When the reverse statement is
true, the underlying space is called complete.

Definition 1.9. If any Cauchy sequence on a metric space is convergent, the underlying space is
called complete.

Theorem 1.10. Let 1 ¤ p ¤ 8 and µ be a positive measure. Then Lppµq is a complete metric space.

Proof. First assume that 1 ¤ p   8. Let tfnu8n�1 be a Cauchy sequence. By assumption, there
exists a subsequence tfni

u8i�1 with n1   n2   n3   � � � such that

‖fni�1
� fni

‖p  
1

2i
. (4)

Put

gk �
ķ

i�1

|fni�1
� fni

|, g �
8¸
i�1

|fni�1
� fni

|

1In line with the previous paragraph, we will continue to refer to elements of Lppµq as “functions”
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From (4) and the Minkowski inequality, it follows that ‖gk‖p   1 for all k. Hence we can use
Fatou’s lemma to get

‖g‖pp �
»
gp dµ �

»
lim inf
kÑ8

gpk dµ ¤ lim inf
kÑ8

»
gpk dµ ¤ 1 .

This shows, in particular, that gpxq   8 a.e., so

fn1 �
8¸
i�1

pfni�1
� fni

q (5)

converges absolutely a.e. Define f to be equal to the sum in (5) where it converges absolutely, and
0 elsewhere. Since

fn1 �
k�1̧

i�1

pfni�1
� fni

q � fnk

we see that
fpxq � lim

kÑ8
fnk

pxq a.e.

We have now found a function f which is the pointwise limit a.e. of a subsequence of tfnu. We
now have to show that this is the Lp-limit of tfnu. Let ε ¡ 0 and let N be such that for n,m ¡ N ,
‖fn � fm‖p   ε. Again we employ Fatou’s lemma:

»
X

|f � fm|p dµ �
»
X

lim inf
iÑ8

p|fni
� fm|pq dµ ¤ lim inf

iÑ8

»
X

|fni
� fm|p dµ ¤ εp .

This shows first that pf � fmq P Lppµq, secondly, since fm P Lppµq and f � pf � fmq � fm that
f P Lppµq and, since ε was arbitrary, that ‖f � fm‖p Ñ 0 as mÑ 8.

Now assume that p � 8. Let Ak be the set where |fk| ¡ ‖fk‖8, and Bm,n the set where
|fn � fm| ¡ ‖fn � fm‖8. There are countably many sets, and each of them have measure 0. Hence
their union E has measure 0. On the complement Ec of E we have

|fnpxq � fmpxq| ¤ ‖fn � fm‖8 , @x P Ec , (6)

so tfnpxqu
8

n�1 is a Cauchy sequence in C for each x P Ec and hence convergent to some number
fpxq. Define a function f : X Ñ C by x ÞÑ fpxq for x P Ec and fpxq � 0 otherwise. The conver-
gence fnpxq ÞÑ fpxq is uniform (see (6)), so tfnu8n�1 converges uniformly to f a.e. i.e. ‖fn�f‖8 Ñ 0
as nÑ 8.

The following theorem is clear from the previous proof:

Theorem 1.11. Let 1 ¤ p ¤ 8 and tfnu be a Cauchy sequence in Lppµq with limit f . Then there exists a
subsequence tfni

u which converges pointwise a.e. to f .
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