Integration and Fourier Theory

Lecture 12

Morten Grud Rasmussen

March 18, 2013

1 The L^p -spaces

Last time, the first part of the following definition was sneaked in through the back door (or rather, through the formulation of the theorem containing Hölder's and Minkowski's inequalites):

Definition 1.1. If 0 and*f*is any complex, measurable function on*X*, then we write

$$||f||_p = \left(\int_X |f|^p \,\mathrm{d}\mu\right)^{\frac{1}{p}}$$

and let $L^p(\mu)$ denote the set of all f for which $||f||_p < \infty$. We call $||\cdot||_p$ the L^p -norm.

Remark 1.2. As all of you have already noted, if f = 0 a.e. (but differs from 0 on a set of measure zero), then $||f||_p = ||0||_p = 0$ although $f \neq 0$. This shows that $||\cdot||_p$ is not a proper norm. We will repair this flaw in due course.

In a few important special cases, the notation $L^p(\mu)$ is slightly altered. This includes the case where $X = \mathbb{R}^k$ and μ is the Lebesgue measure on \mathbb{R}^k . In this case, we write $L^p(\mathbb{R}^k)$ instead of $L^p(\mu)$. Another example is when μ is the counting measure on a set A, in which case one writes $\ell^p(A)$, or, when A is countable, sometimes just ℓ^p . An element of ℓ^p may be regarded as a complex sequence $x = \{\xi_n\}_{n=1}^{\infty}$ with

$$||x||_p = \left(\sum_{n=1}^{\infty} |\xi_n|^p\right)^{\frac{1}{p}} < \infty$$

Definition 1.3. For any measurable function $g: X \to [0, \infty]$ let

$$\operatorname{ess\,sup} g = \operatorname{ess\,sup}_{x \in X} \{g(x)\} = \inf \{ \alpha \in \mathbb{R} \mid | \mu(g^{-1}((\alpha, \infty])) = 0 \}$$

denote the *essential supremum* of *g*, i.e. the essential supremum of *g*, ess sup *g*, is the infimum of the set *S* of real α such that $\mu(g^{-1}((\alpha, \infty])) = 0$. Here, the convention $\inf \emptyset = \infty$ is employed.

If *f* is a complex, measurable function on *X*, then let $||f||_{\infty} = \operatorname{ess\,sup}|f|$ denote the *essential bound* or *supremum norm* of *f*. Let $L^{\infty}(\mu)$ (or $L^{\infty}(\mathbb{R}^k)$, $\ell^{\infty}(A)$ or ℓ^{∞} , respectively) denote the set of all *essentially bounded*, measurable functions, i.e. all complex, measurable functions *f* on *X* for which $||f||_{\infty} < \infty$.

Remark 1.4. Since

$$g^{-1}((\operatorname{ess\,sup} g, \infty]) = \bigcup_{n=1}^{\infty} g^{-1}\left(\left(\operatorname{ess\,sup} g + \frac{1}{n}, \infty\right]\right)$$

and each of the countably many sets on the right-hand side has measure zero, we conclude that $\mu(g^{-1}(\operatorname{ess\,sup} g, \infty]) = 0.$

In the case where μ is the counting measure on X = A, essentially boundedness and boundedness is the same, since all nonempty sets have positive measure.

The notation $L^{\infty}(\mu)$ strongly suggests a connection with the L^p -spaces for finite p. This is of course no coincidence and $p = \infty$ may in fact be seen as a limiting case as the following two theorems indicate.

Theorem 1.5. Let p and q be Hölder conjugates $1 \leq p, q \leq \infty$ and $f \in L^p(\mu)$ and $g \in L^q(\mu)$. Then $fg \in L^1(\mu)$ and

$$||fg||_1 \le ||f||_p ||g||_q$$

Proof. For $1 < p, q < \infty$, the statement is simply Hölder's inequality applied to |f| and |g|. Assume $p = \infty$. Then by Remark 1.4, we know that $\mu(\{x \in X || f(x) > ||f||_{\infty}\}) = 0$, so

$$|f(x)g(x)| \le ||f||_{\infty}|g(x)| \qquad \text{a.e. } x \text{ in } X.$$
(1)

Integrating both sides of (1) yields the result for $p = \infty$ and q = 1, and interchanging the rôles of f and g takes care of p = 1 and $q = \infty$.

Theorem 1.6. Let $1 \leq p \leq \infty$ and $f, g \in L^p(\mu)$. Then $f + g \in L^p(\mu)$ and

$$||f + g||_{p} \leq ||f||_{p} + ||g||_{p}$$
(2)

Proof. Note that for $1 \leq p < \infty$,

$$|f+g|^{p} \le (|f|+|g|)^{p}$$
(3)

 $(x \mapsto x^p \text{ is an increasing function})$, so for $1 , (2) follows from Minkowski's inequality. If <math>p = \infty$ or p = 1, (2) trivially follows from (3) with p = 1.

Remark 1.7. If $1 \leq p \leq \infty$, $f \in L^p(\mu)$ and $\alpha \in \mathbb{C}$, then clearly $\alpha f \in L^p(\mu)$ with $\|\alpha f\|_p = |\alpha| \|f\|_p$. In addition, by Theorem 1.6, we have that if also $g \in L^p(\mu)$, then $f + g \in L^p(\mu)$. Hence $L^p(\mu)$ is a *complex vector space*.

In fact, in conjunction with $\|\cdot\|_p$, it is *almost* a *normed* complex vector space, but, as already noted in Remark 1.2, $\|f\|_p = 0$ does not imply f = 0 (it is a so-called *seminormed* vector space). In the following, we will fix this by slightly redefining the L^p -spaces, use the norm to define a metric, and show that the (redefined) L^p -spaces are complete in this metric.

Independently of whether $1 \le p < \infty$ or $p = \infty$, it follows from the definition of $\|\cdot\|_p$ that if $\|f\|_p = 0$ then f = 0 a.e. If we let \mathcal{Z} denote the space of all functions f which are 0 a.e., then the quotient space $L^p(\mu)/\mathcal{Z} = \{f + \mathcal{Z} \mid f \in L^p(\mu)\}$ equipped with the induced norm $\|\|f + \mathcal{Z}\|\|_p = \|f\|_p$ satisfies that $\|\|f + \mathcal{Z}\|\|_p = 0$ if and only if $f + \mathcal{Z} = 0 + \mathcal{Z}$. We begin by showing that $\|\|\cdot\|\|_p$ is well-defined:

Let $f, g \in L^p(\mu)$ be such that f + Z = g + Z. We need to show that $|||f + Z|||_p = |||g + Z|||_p$, i.e. that $||f||_p = ||g||_p$. But this follows from the fact that, since f + Z = g + Z, we have $f - g \in Z$, and hence f = g a.e.

To see that, indeed, $|||f + \mathcal{Z}|||_p = 0$ if and only if $f + \mathcal{Z} = 0 + \mathcal{Z}$, we note that the "if" part follows from $||| \cdot |||_p$ being well-defined, and the "only if" from the fact that $||f||_p = 0$ only if $f \in \mathcal{Z}$.

Having now established a norm on $L^p(\mu)/\mathcal{Z}$, we define the induced metric *d* in the obvious way:

$$d(f + \mathcal{Z}, g + \mathcal{Z}) = |||(f + \mathcal{Z}) - (g + \mathcal{Z})|||_p = ||f - g||_p.$$

We want to show that $L^p(\mu)/\mathcal{Z}$ is a *complete* metric space, i.e. that every Cauchy sequence in $L^p(\mu)/\mathcal{Z}$ converges to an element of $L^p(\mu)/\mathcal{Z}$. Before taking on that challenge, however, we need to agree on something: quotient space notation is really cumbersome, and since we in integration theory actually don't really care about what happens on a set of measure 0, we will drop this notation and just redefine $L^p(\mu)$ to be the quotient space, tacitly work with *representatives* of elements in this space, and write "a.e." in cases where the circumstances require it. In the same vein, we will refrain from using $\|\cdot\|_p$ and stick to the familiar $\|\cdot\|_p$.

Before proceeding to the completeness theorem, we recall (and formulate in terms of L^p -spaces) the definition of convergence, Cauchy sequences and completeness:

Definition 1.8. Let $\{f_n\}_{n=1}^{\infty}$ be a sequence of functions¹ in $L^p(\mu)$. If there exists a function $f \in L^p(\mu)$ such that $||f - f_n||_p \to 0$ as $n \to \infty$, we say that $\{f_n\}$ converges to f in $L^p(\mu)$ (or in p-mean or that it is L^p -convergent). If, for all $\varepsilon > 0$, there exists an N such that for all n, m > N, we have $||f_n - f_m||_p < \varepsilon$, then $\{f_n\}$ is called a *Cauchy sequence* in $L^p(\mu)$.

Obviously, any convergent sequence is a Cauchy sequence. When the reverse statement is true, the underlying space is called *complete*.

Definition 1.9. If any Cauchy sequence on a metric space is convergent, the underlying space is called complete.

Theorem 1.10. Let $1 \le p \le \infty$ and μ be a positive measure. Then $L^p(\mu)$ is a complete metric space.

Proof. First assume that $1 \le p < \infty$. Let $\{f_n\}_{n=1}^{\infty}$ be a Cauchy sequence. By assumption, there exists a subsequence $\{f_n\}_{i=1}^{\infty}$ with $n_1 < n_2 < n_3 < \cdots$ such that

$$\|f_{n_{i+1}} - f_{n_i}\|_p < \frac{1}{2^i} \,. \tag{4}$$

Put

$$g_k = \sum_{i=1}^k |f_{n_{i+1}} - f_{n_i}|, \qquad g = \sum_{i=1}^\infty |f_{n_{i+1}} - f_{n_i}|$$

¹In line with the previous paragraph, we will continue to refer to elements of $L^{p}(\mu)$ as "functions"

From (4) and the Minkowski inequality, it follows that $||g_k||_p < 1$ for all k. Hence we can use Fatou's lemma to get

$$\|g\|_p^p = \int g^p \,\mathrm{d}\mu = \int \liminf_{k \to \infty} g_k^p \,\mathrm{d}\mu \leqslant \liminf_{k \to \infty} \int g_k^p \,\mathrm{d}\mu \leqslant 1$$

This shows, in particular, that $g(x) < \infty$ a.e., so

$$f_{n_1} + \sum_{i=1}^{\infty} (f_{n_{i+1}} - f_{n_i})$$
(5)

converges absolutely a.e. Define f to be equal to the sum in (5) where it converges absolutely, and 0 elsewhere. Since

$$f_{n_1} + \sum_{i=1}^{k-1} (f_{n_{i+1}} - f_{n_i}) = f_{n_k}$$

we see that

$$f(x) = \lim_{k \to \infty} f_{n_k}(x)$$
 a.e.

We have now found a function f which is the pointwise limit a.e. of a subsequence of $\{f_n\}$. We now have to show that this is the L^p -limit of $\{f_n\}$. Let $\varepsilon > 0$ and let N be such that for n, m > N, $||f_n - f_m||_p < \varepsilon$. Again we employ Fatou's lemma:

$$\int_X |f - f_m|^p \,\mathrm{d}\mu = \int_X \liminf_{i \to \infty} (|f_{n_i} - f_m|^p) \,\mathrm{d}\mu \leq \liminf_{i \to \infty} \int_X |f_{n_i} - f_m|^p \,\mathrm{d}\mu \leq \varepsilon^p \,\mathrm{d}\mu$$

This shows first that $(f - f_m) \in L^p(\mu)$, secondly, since $f_m \in L^p(\mu)$ and $f = (f - f_m) + f_m$ that $f \in L^p(\mu)$ and, since ε was arbitrary, that $||f - f_m||_p \to 0$ as $m \to \infty$.

Now assume that $p = \infty$. Let A_k be the set where $|f_k| > ||f_k||_{\infty}$, and $B_{m,n}$ the set where $|f_n - f_m| > ||f_n - f_m||_{\infty}$. There are countably many sets, and each of them have measure 0. Hence their union *E* has measure 0. On the complement E^c of *E* we have

$$|f_n(x) - f_m(x)| \leq ||f_n - f_m||_{\infty}, \qquad \forall x \in E^c,$$
(6)

so $\{f_n(x)\}_{n=1}^{\infty}$ is a Cauchy sequence in \mathbb{C} for each $x \in E^c$ and hence convergent to some number f(x). Define a function $f: X \to \mathbb{C}$ by $x \mapsto f(x)$ for $x \in E^c$ and f(x) = 0 otherwise. The convergence $f_n(x) \mapsto f(x)$ is uniform (see (6)), so $\{f_n\}_{n=1}^{\infty}$ converges uniformly to f a.e. i.e. $||f_n - f||_{\infty} \to 0$ as $n \to \infty$.

The following theorem is clear from the previous proof:

Theorem 1.11. Let $1 \le p \le \infty$ and $\{f_n\}$ be a Cauchy sequence in $L^p(\mu)$ with limit f. Then there exists a subsequence $\{f_{n_i}\}$ which converges pointwise a.e. to f.