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1 Orthonormal systems

Definition 1.1 (Linear combination, linear independence, span). Let V be a vector space and
x1, . . . , xk P V . Then, for any scalars c1, . . . , ck, we call c1x1 � � � � � ckxk a linear combination. If
c1x1 � � � � � ckxk � 0 implies c1 � � � � � ck � 0 (i.e. the only linear combination which equals 0 is
the trivial one), then x1, . . . , xk are said to be (linearly) independent. Let S � V be any set. Then S
is said to be (linearly) independent if all finite subsets of S are independent. We let rSs � spanS
denote the set of all (finite) linear combinations of members of S.

Remark 1.2. Note that spanS is a subspace. In fact, it is the smallest subspace containing S.

Definition 1.3 (Orthonormal system). LetH be a Hilbert space andA an index set. A set of vectors
tuαuαPA is said to be orthonormal (or an orthonormal system) if

puα, uβq �

#
1 if α � β

0 if α � β
.

Remark 1.4. The 0 when α � β is the background for the “ortho-”, and the 1 when α � β the
background for the “-normal” part of the name.

If tuαuαPA is an orthonormal set, we associate to each x P H a function x̂ : AÑ C by

x̂pαq � px, uαq .

The numbers x̂pαq are sometimes referred to as Fourier coefficients.

Theorem 1.5. Assume that tuαuαPA is an orthonormal system in the Hilbert space H and that F � A is
a finite set. Write MF � spantuα |α P F u.
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(a) Let ϕ : AÑ C have support in F . Then

y �
¸
αPF

ϕpαquα

satisfies that ŷ � ϕ, i.e. ŷpαq � ϕpαq for all α P A, and that

‖y‖2 �
¸
αPF

|ϕpαq|2. (1)

(b) Let x P H and
sF pxq �

¸
αPF

x̂pαquα . (2)

Then
‖x� sF pxq‖   ‖x� s‖ (3)

for every s PMF except sF pxq and

‖sF pxq‖2 �
¸
αPF

|x̂pαq|2 ¤ ‖x‖2 . (4)

Remark 1.6. The right-hand side of (1) is the `2-norm of ϕ. Coincidence? Hardly. . . The identity
(1) is a particular instance of Parseval’s identity and the inequality (4) is a special case of the Bessel
inequality. The inequality (3) states that the “partial sum” sF pxq of the “Fourier series”

°
x̂pαquα

is the best approximation to x in MF relative to the metric defined by the Hilbert space norm.

Proof of Theorem 1.5. Part (a) follows trivially from the assumptions:

‖y‖2 � py, yq �

� ¸
αPF

ϕpαquα,
¸
αPF

ϕpαquα



�
¸
αPF

|ϕpαq|2 . (5)

To see (b), write sF for sF pxq and note that ŝF pαq � x̂pαq for all α P F . Hence sF � x K uα for
all α P F which implies that sF � x K s for all s PMF . Therefore

‖x� s‖2 � ‖px� sF q � ps� sF q‖2 � ‖x� sF‖2 � ‖s� sF‖2 , (6)

which gives (3) and, for s � 0, (4).

2 The Bessel inequality and Parceval’s identity
Given Remark 1.6, it should not come as a surprise that the topic of this section is to extend
Theorem 1.5. In fact, we will show that Theorem 1.5 also holds, even for uncountable F .

Obviously, this means that we need to make sense of sums such as
°
αPA ϕpαq for any set A:

Definition 2.1. Let ϕ : AÑ r0,8s. Then we define¸
αPA

ϕpαq � suptϕpα1q � � � � � ϕpαkq | k P N, αi P A, i � 1, . . . , k, αi � αj for i � ju , (7)

i.e. the symbol
°
αPA ϕpαq denotes the supremum of all finite sums ϕpα1q � � � � � ϕpαkq, where k

runs over all natural numbers and αi, i � 1, . . . , k, all distinct values in A.
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Remark 2.2. Note that (7) is in fact just the Lebesgue integral of ϕ : A Ñ r0,8s relative to the
counting measure on A. [If this is not clear to you, it is worthwhile spending some time on your
own with paper and a pencil making it clear to yourself.] This means that

°
αPA ϕpαq   8 exactly

when ϕ P `1pAq, or, more generally,
°
αPA|ϕpαq|p   8 if and only if ϕ P `ppAq, 0   p   8.

In today’s self study session, you saw that L2pµq is a Hilbert space for any measure µ when
the inner product is given by pf, gq �

³
fḡ dµ ([Rudin, Example 4.5(b)]). In particular, `2pAq is a

Hilbert space with the inner product

pϕ, ψq �
¸
αPA

ϕpαqψ̄pαq .

Note that ϕψ̄ P `1pAq when ϕ, ψ P `2pAq by Hölder’s inequality.
We recall the following theorem from this morning’s self study session ([Rudin, Theorem 3.13]):

Theorem 2.3. Let S be the class of all complex, measurable, simple functions on X such that

µptx | spxq � 0u   8 .

If 1 ¤ p   8, then S is dense in Lppµq.

In the present context, this means that the functions that are zero except on some finite subset of A
are dense in `ppAq, in particular in `2pAq. Moreover, if ϕ P `ppAq, then the set tα P A |ϕpαq � 0u is at
most countable. To see this, note that if An � tα P A | |ϕpαq| ¡ 1

n
u, then the number of elements of

An is
#An �

¸
αPAn

1  
¸
αPAn

np|ϕpαq|p ¤ np
¸
αPA

|ϕpαq|p   8 ,

i.e. there are only finitely many α for which |ϕpαq| ¡ 1
n

. As the set of α with nonzero ϕpαq is

tα P A |ϕpαq � 0u �
8¤
n�1

An ,

a countable union of finite sets, hence it is at most countable.

Remark 2.4. The situation is quite different in `8pAq: If A is uncountable (e.g. A � R equipped
with the counting measure), then ϕ : A Ñ C given by ϕpαq � 1 for all α P A is measurable and
(essentially) bounded, so ϕ P `8pAq, but tα P A |ϕpαq � 0u � A, which was assumed to be
uncountable.

Before proceeding to the proof of the Bessel inequality and Parseval’s identity, we prove a
lemma which will make it easy to pass from the finite to the infinite setup.

Lemma 2.5. Assume that the following holds:

(a) X and Y are metric spaces, X is complete,

(b) f : X Ñ Y is continuous,

(c) X has a dense subset X0 on which f is an isometry, and

(d) fpX0q is dense in Y .

Then f is an isometry of X onto Y .
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Recall that an isometry f between two metric spaces X and Y is a function which satisfies
dXpx1, x2q � dY pfpx1q, fpx2qq, where dX and dY are the metrics on X and Y , respectively, i.e. an
isometry is a function which preserves distances.

Remark 2.6. The most important part of the conclusion of the lemma is the fact that f is onto Y .
Note that the conclusion also implies that Y is complete, meaning that assumptions (a)–(d) cannot
all be satisfied if Y is not complete.

Proof of Lemma 2.5. As X0 is dense in X and f is an isometry on X0 and continuous everywhere, it
is an isometry everywhere: dXpxn, ynq � dY pfpxnq, fpynqq for all xn, yn P X0 and continuity implies
that dXpx, yq � dY pfpxq, fpyqq for all x, y P X .

Let y P Y . Since fpX0q is dense in Y , one can find a sequence txnu8n�1 inX0 such that fpxnq Ñ y
when n Ñ 8. Hence tfpxnqu8n�1 is a Cauchy sequence in Y , and since f is an isometry on X0,
txnu

8

n�1 is a Cauchy sequence in X . X is complete, so xn Ñ x for some x P X . But by continuity
of f , this implies that fpxq � fp lim

nÑ8
xnq � lim

nÑ8
fpxnq � y.

Theorem 2.7. Let tuαuαPA be an orthonormal set in a Hilbert space H and let P � spantuαuαPA, the set
of all (finite) linear combinations of elements of tuαuαPA.

The inequality ¸
αPA

|x̂pαq|2 ¤ ‖x‖2 (8)

holds for every x P H . The mapping H Q x ÞÑ x̂ P `2pAq is continuous, linear and onto, and its restriction
to P̄ , the closure of P , is an isometry of P̄ onto `2pAq.

Remark 2.8. The inequality (8) is known as the Bessel inequality, and the “onto” part of the theorem
is known as the Riesz-Fischer theorem.

Proof of Theorem 2.7. The Bessel inequality (8) follows from (4) and the definition of infinite sums.
In the following, the function H Q x ÞÑ x̂ is called f , i.e. fpxq � x̂. Then the Bessel inequality

shows that f maps into `2pAq. The linearity of f is obvious. If we apply (8) to x� y then

‖fpxq � fpyq‖2 � ‖x̂� ŷ‖2 ¤ ‖x� y‖ ,

which shows that f is continuous. Theorem 1.5(a) shows that f is an isometry from P onto the
dense subset of `2pAq consisting of those functions whose support is a finite set F � A. Since H is
complete, P̄ is complete, and we conclude the proof by applying Lemma 2.5 withX � P̄ , X0 � P ,
Y � `2pAq and f � f .

Definition 2.9. An orthonormal set tuαuαPA is said to be a maximal orthonormal set, a complete
orthonormal set or an orthonormal basis if one cannot add a vector to the set tuαuαPA and still
have orthonormality.

Theorem 2.10. Let tuαuαPA be an orthonormal set. The following are equivalent:

(i) The set tuαuαPA is an orthonormal basis.

(ii) The span of the set tuαuαPA, P � spantuαuαPA, is dense in H .
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(iii) The equality ¸
αPA

‖x̂pαq‖2 � ‖x‖2 (9)

holds for every x P H .

(iv) The equality ¸
αPA

x̂pαqŷpαq � px, yq (10)

holds for all x, y P H .

Remark 2.11. Both (9) and (10) are referred to as Parseval’s identity. As we will soon see, whether
we choose one or the other is not very important.

Proof. We will prove the equivalence through the following cycle: (i) ñ (ii) ñ (iii) ñ (iv) ñ (i).
Assume (i). If P is not dense, then P̄ is not equal to H and the corollary of [Rudin, Theo-

rem 4.11] implies that there exists a nonzero vector in PK. But this violates (i), so P must be
dense.

Assume (ii). Then Theorem 2.7 tell us that fpxq � x̂ is an isometry from P̄ � H onto `2pAq.
The left-hand side of (9) is exactly the `2-norm of fpxq which equals the right-hand side because
f is an isometry.

Assume (iii). The left-hand side of (10) is the inner product in `2pAq, while the right-hand side
is the inner product in H . This means that if we can express inner products in terms of Hilbert
space norms, (10) follows from (9). But it is easy to verify that

4px, yq � ‖x� y‖2 � ‖x� y‖2 � i‖x� iy‖2 � i‖x� iy‖2 . (11)

Assume (iv). If (i) fails, then there exists a nonzero u P H with pu, uαq � 0 for all α. Put
x � y � u. Then the left-hand side of (10) is 0, while the right-hand side is ‖u‖2 � 0. This
contradicts (iv).

Remark 2.12. Note that the polarization identity (11) in fact tells us that we only need to know
the norm of a Hilbert space to know the inner product, or, in other words, when you know the
inner product on the “diagonal”, you know it everywhere. This important fact relies heavily on
the fact that we are working in a complex Hilbert space. One can also define real Hilbert spaces,
but in real Hilbert spaces, no such identity holds true.
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