
Integration and Fourier Theory

Lecture 14

Morten Grud Rasmussen

March 25, 2013

1 Trigonometric Series
Denote the unit circle in the complex plane by T � tx P C | |x| � 1u (’T’ for ’torus’). Note that
R Q t ÞÑ eit P T is onto. This means that if F : T Ñ C is a function on T , then the function
f : R Ñ C defined by

fptq � F peitq

is a 2π-periodic function containing all information on F . Likewise, for any 2π-periodic function
f , i.e. a function f satisfying fptq � fpt � 2πq for all t, there exists a function F : T Ñ C such that
fptq � F peitq. This means that we can identify 2π-periodic functions f on R with functions on T ,
and, for simplicity of notation, we shall sometimes write fptq instead of fpeitq, even if we think of
f as being defined on T .

With these conventions in mind, we define LppT q for 1 ¤ p ¤ 8:

Definition 1.1. Let 1 ¤ p   8. Then we define LppT q to be the set of all Lebesgue measurable,
2π-periodic functions f : R Ñ C with norm

‖f‖p �
�

1

2π

» π

�π

|fptq|p dt

1
p

  8 . (1)

The factor 1
2π

is just to normalize the measure of r�π, πs to 1, i.e. ensure that the constant
function fptq � 1 integrates to 1, a fact that will simplify certain things in the following.

Definition 1.2. For p � 8, we let LppT q denote the set of 2π-periodic members of L8pRq equipped
with the usual essential supremum norm. We let CpT q denote the set of all complex, continuous
2π-periodic functions, and also equip this space with the supremum norm (the word “essential”
can be skipped here because of the continuity).

Note that also these two spaces contain the constant function fptq � 1 and that its norm is
again 1.
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Definition 1.3. A trigonometric polynomial is a function f : R Ñ C of the following form

fptq � a0 �
Ņ

n�1

pan cospntq � bn sinpntqq , (2)

where a0, a1, . . . , aN and b1, . . . , bN are complex numbers.

By using Euler’s identities, one sees that (2) can also be written in the form

fptq �
Ņ

n��N

cne
int ,

which is usually a more convenient form. Note that all trigonometric polynomials are in LppT q
for any 1 ¤ p ¤ 8 and they are also in CpT q.

L2pT q with the norm (1) is a Hilbert space, and the inner product is

pf, gq �
1

2π

» π

�π

fptqgptq dt .

If we now, for every n P Z, define:
unptq � eint ,

then

pun, umq �
1

2π

» π

�π

eipn�mqt dt �

#
1 if n � m

0 if n � m
,

as a quick calculation shows. In other words, the set tun P L2pT q |n P Zu is an orthonormal system
in L2pT q. In fact, it turns out to be complete.

2 Completeness of the trigonometric system I
We saw last time how completeness of an orthonormal system was equivalent to density of its
span. We clearly have the following inclusions: spantununPZ � CpT q � L2pT q, and by [Rudin,
Theorem 3.14], the latter inclusion is dense (in L2-sense). We thus only need to show that the
former inclusion also is dense in L2-sense, i.e. that to every f P CpT q and every ε ¡ 0, there exists
a trigonometric polynomial P P spantununPZ such that ‖f�P‖2   ε. But since the natural norm on
CpT q, ‖�‖8, satisfies ‖g‖2 ¤ ‖g‖8 for every g P CpT q, we are done if we can show that ‖f�P‖8   ε,
i.e. that spantununPZ is dense in CpT q in ‖�‖8-sense. We will show this using something called an
approximation to the identity, a concept of a more general nature. However, we will only introduce
a specific version which is suitable in the present setup.

Remark 2.1. The alert student has noticed that CpT q is a space of functions, while L2pT q is a
space of classes of functions. It should be obvious, however, how to interpret the statement that
CpT q � L2pT q. The only thing one should be careful about noticing is that whenever one works
with a continuous function (or a class of functions in L2 of which a continuous representative can
be chosen), we will refrain from the “a.e.” and not hesitate to consider the value of the (continuous
representative of the) function (class) in specific points.
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3 Approximation to the identity
Last time, in the self-study part of Lecture 13, you learned that every continuous, linear functional
on a Hilbert space H is of the form H Q x ÞÑ px, yq for some y P H ([Rudin, Theorem 4.12]). Now
consider CpT q � L2pT q and the obviously linear functional CpT q Q f ÞÑ fp0q P C.

It is easy to see that it is continuous (on CpT q equipped with the supremum norm), but also
clear that one cannot hope to extend it to a continuous, linear functional on L2pT q, if not for other
reasons, then because fp0q is not in general well-defined for a function f P L2pT q. This means that
we cannot hope to find an element g P L2pT q such that pf, gq � fp0q, not even if f is continuous.

An approximation to the identity on L2pT q is something which in a sense comes as close as possi-
ble to doing what we wanted of g above. To touch upon why it is called an approximation to the
identity, we note that one can define a so-called convolution (usually denoted by �) between two
functions f, g (at least if they are both in L1pT q) by

f � gptq �
1

2π

» π

�π

fpt� sqgpsq ds . (3)

Note that the assumed 2π-periodicity of f ensures that even though t� s might not lie in r�π, πs,
it is still enough to specify f on this interval (and changes of variables in the integral are easy).

Now if we had a g P L2pT qXL1pT q which satisfied that pf, gq � fp0q, then we would have that

f � gptq �
1

2π

» π

�π

fpt� sqgpsq ds � pfpt� �q, gq � fpt� 0q � fptq .

This means that in the triple pL1pT q,�, �q, which has the algebraic property of being a ring, g
would be an identity. Having already established the nonexistence of such an element, the above
discussion may seem to be overly hypothetical. Getting back to the real world, we will now show
that if a sequence of functions tknu8k�1 has the property of being an approximation to the identity
(defined below), then for f P CpT q, we have that pf, knq Ñ fp0q when nÑ 8.

Definition 3.1 (Approximation of the identity). A sequence tknu8n�1 is called an approximation of
the identity if the following holds:

(a) For every n, we have kn ¥ 0.

(b) We have kn P L1pT q X L8pT q with
1

2π

» π

�π

knptq ds � 1 for all n.

(c) If for every δ ¡ 0, Dδ � tt | π ¥ |t| ¥ δu, then ‖χDδkn‖8 Ñ 0 as nÑ 8.

Remark 3.2. The above assumptions means that the weights of the functions kn concentrate on
an increasingly smaller neighborhood of 0. The following things are worth noting:

1. We have that kn � kn by (a).

2. It can be proved that (b) implies that kn P L2pT q.

3. In other words, (c) can be formulated as: kn converges uniformly to 0 on any set bounded
away from 0. As r�π, πs is compact, it implies that ‖χDδkn‖1 Ñ 0 when n Ñ 8. Had we
been working on p�8,8q, we would have needed to assume this as a fourth condition.

Theorem 3.3. Let f P CpT q and tknu8n�1 be an approximation to the identity. Then lim
nÑ8

‖f�f �kn‖8 � 0.
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Remark 3.4. So far, we have only stated (and not proved) that f � g is well-defined if f, g P L1pT q.
However, from the assumptions on f and kn, it is clear that (3) defines an element of L8pT q, so
‖f � f � kn‖8 is well-defined and finite for every n.

Corollary 3.5. Let f P CpT q and tknu8n�1 be an approximation to the identity. Then lim
nÑ8

pf, knq � fp0q.

Proof of Theorem 3.3. Let ε ¡ 0 and f P CpT q be given. Since f is uniformly continuous on T , there
is a δ ¡ 0 such that |fpxq � fpyq|   ε whenever |x� y|   δ. Since ‖kn‖1 � 1, we have

fptq � f � knptq �
1

2π

» π

�π

�
fptq � fpt� sq

�
knpsq ds .

Since kn ¥ 0, we can write

|fptq � f � knptq| ¤
1

2π

» π

�π

|fptq � fpt� sq|knpsq ds

�
1

2π

» δ

�δ

|fptq � fpt� sq|knpsq ds�
1

2π

»
π¥|t|¥δ

|fptq � fpt� sq|knpsq ds . (4)

Call the two terms in (4) for A1 and A2. Then by the choice of δ, we have

A1 �
1

2π

» δ

�δ

|fptq � fpt� sq|knpsq ds   ε

» δ

�δ

knpsq ds ¤ ε‖kn‖1 � ε .

In A2, we have that ‖χDδkn‖8 Ñ 0. Hence, by the triangle inequality, we have

A2 �
1

2π

»
π¥|t|¥δ

|fptq � fpt� sq|knpsq ds ¤ 2‖f‖8‖χDδkn‖8   ε

for n sufficiently large. This means that

|fptq � f � knptq|   2ε

for the same sufficiently large n, independently of t, and we are done.

4 Completeness of the trigonometric system II
What is left to show is that: (1) we can find an approximation to the identity tknu8n�1 which consists
of trigonometric polynomials, and (2) when kn is a trigonometric polynomial, so is f � kn.

Ad (1): put

knptq � cn

�
1� cosptq

2


n
,

where cn is chosen so that ‖kn‖1 � 1. Then kn is obviously a trigonometric polynomial and kn ¥ 0.
It remains to show that ‖χDδkn‖8 Ñ 0. Since kn is even, we have

1 � ‖kn‖1 �
cn
π

» π

0

�
1� cosptq

2


n
dt ¡

cn
π

» π

0

�
1� cosptq

2


n
sinptq dt �

2cn
πpn� 1q

,
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where we used that

d

dt

�
1� cosptq

2


n�1

� �
n� 1

2

�
1� cosptq

2


n
sinptq .

But then cn  
πpn�1q

2
. Since kn is decreasing on r0, πs, we have that

knptq ¤ knpδq ¤
πpn� 1q

2

�
1� cospδq

2


n
for 0   δ ¤ |t| ¤ π,

which shows that ‖χDδkn‖8 Ñ 0 as nÑ 8.
Ad (2): let p be a trigonometric polynomial. Then p can be written as

pptq �
Ņ

n��N

ane
int.

But, for f P CpT q, we have

f � pptq �
1

2π

» π

�π

fpt� sqppsq ds

�
1

2π

» π

�π

fpt� sqpp�sq ds

�
1

2π

» π

�π

fpsqppt� sq ds

�
1

2π

» π

�π

fpsq
Ņ

n��N

ane
inpt�sq ds

�
Ņ

n��N

ane
int 1

2π

» π

�π

fpsqe�ins ds,

which is clearly a trigonometric polynomial.
We have thus proved the following important result:

Theorem 4.1. If f P CpT q and ε ¡ 0, then there is a trigonometric polynomial P such that

|fptq � P ptq|   ε

for every real t.

By the discussion in Section 2, this means that

Corollary 4.2. The trigonometric polynomials are dense in L2pT q and teintunPZ is an orthonormal basis
for L2pT q.
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