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Disclaimer: all theorems presented here are nothing more than very detailed versions of some
fundamental results which can be found in a number of excellent books by Walter Rudin (Princi-
ples of mathematical analysis, Real and complex analysis and Functional analysis) and Peter Lax
(Functional analysis).

1 The natural topology of a metric space

Let (X, d) be a metric space. We define the open ball of radius r > 0 and center at a ∈ X the set
Br(a) := {x ∈ X : d(x, a) < r}.

Given a set A ⊂ X and a ∈ A, we say that a is an interior point of A if there exists r > 0 such
that Br(a) ⊂ A. The set of all interior points of A is denoted by Int(A). We say that A is an open
set if all its points are interior points, i.e. Int(A) = A. By convention, the empty set ∅ is open.

Lemma 1.1. Any ball Br(a) is an open set.

Proof. Let x0 ∈ Br(a). We have that d(x0, a) < r. Define r0 := (r − d(x0, a))/2 > 0. Then for all
x ∈ Br0(x0) we have that d(x, x0) < r0 and:

d(x, a) ≤ d(x, x0) + d(x0, a) < (r − d(x0, a))/2 + d(x0, a) = (r + d(x0, a))/2 < r,

which shows that Br0(x0) ⊂ Br(a). Thus Br(a) has only interior points.

Lemma 1.2.
(i). Let {Vα}α∈F be an arbitrary collection of open sets. Then A := ∪αVα is open.
(ii). Let {Vj}nj=1 be a finite collection of open sets. Then B := ∩nj=1Vj is open.

Proof. We start with (i). Let a ∈ ∪αVα. There must exist αa ∈ F such that a ∈ Vαa . Since Vαa
is open, there exists ra > 0 such that

Bra(a) ⊂ Vαa ⊂ ∪αVα = A

hence a is an interior point of A.
We continue with (ii). Let a ∈ ∩nj=1Vj . Thus a ∈ Vj for all j. Hence there exists rj > 0

such that Brj (a) ⊂ Vj . Let r := min{r1, . . . rn} > 0. Thus Br(a) ⊂ Brj (a) ⊂ Vj for all j, hence
Br(a) ⊂ B and we are done.

We say that a set A ⊂ X is closed if Ac := {x ∈ X : x 6∈ A} is open. Given a set B ⊂ X and
b ∈ X, we say that b is an adherent point of B if there exists a sequence {xn}n≥1 ⊂ B such that
xn ∈ B 1

n
(b) and limn→∞ xn = b. The set of all adherent points of B is denoted by B.

Theorem 1.3. Let B ⊂ X. Then B ⊂ B. Moreover, B = B if and only if B is closed.

Proof. If a ∈ B we can define the constant sequence xn = a ∈ B which converges to a, thus a ∈ B
and B ⊂ B.

Now assume that B = B. We want to prove that B is closed, i.e. Bc is open. Let a ∈ Bc = B
c
.

Then a is not an adherent point, which means that there exists ε > 0 such that no point of B lies
in the ball Bε(a). In other words, Bε(a) ⊂ Bc, hence Bc is open.
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Now assume that B is closed. We want to prove that B = B. Assume that this is not true; it
would imply the existence of a point b ∈ B such that b ∈ Bc. Since Bc is open, there exists ε > 0
such that Bε(b) ⊂ Bc, i.e. Bε(b) ∩B = ∅. But this is incompatible with b ∈ B.

2 Compact and sequentially compact sets

Definition 2.1. Let A be a subset of a metric space (X, d). Let F be an arbitrary set of indices,
and consider the family of sets {Oα}α∈F , where each Oα ⊆ X is open. This family is called an
open covering of A if A ⊆

⋃
α∈F Oα.

Definition 2.2. Assume that {Oα}α∈F is an open covering of A. If F ′ is a subset of F , we say
that {Oα}α∈F ′ is a subcovering if we still have the property A ⊆

⋃
α∈F ′ Oα. A subcovering is

called finite, if F ′ contains finitely many elements.

Definition 2.3. Let A be a subset of a metric space (X, d). Then we say that A is covered by a
finite ε-net if there exists a natural number Nε < ∞ and the points {x1, ...,xNε} ⊆ A such that

A ⊆
⋃Nε
j=1Bε(xj).

Definition 2.4. A subset A ⊂ X is called compact, if from any open covering of A one can extract
a finite subcovering.

Definition 2.5. A ⊂ X is called sequentially compact if from any sequence {xn}n≥1 ⊆ A one can
extract a subsequence {xnk}k≥1 which converges to some point x∞ ∈ A.

We will see that in metric spaces the two notions of compactness are equivalent.

2.1 Compact implies sequentially compact

We begin with two lemmas:

Lemma 2.6. Assume that the sequence {xn}n≥1 ⊂ A has a range consisting of finitely many
points. Then it admits a convergent subsequence whose limit is one of the elements in the range.

Proof. Assume that the range of the sequence consists of the distinct points a1, a2, . . . , aN . At least
one of these points, say a1, is taken infinitely many times by the sequence elements. Denote by nk
(with k ≥ 1) the increasing sequence of indices for which xnk = a1. This defines our convergent
subsequence.

Lemma 2.7. Assume that the sequence {xn}n≥1 ⊂ A has an accumulation point a ∈ A, i.e. for
every ε > 0 there exists some xn 6= a such that xn ∈ Bε(a). Then {xn}n≥1 admits a convergent
subsequence whose limit is a.

Proof. Since a is an accumulation point, there exists an index j ≥ 1 such that xj 6= a and
xj ∈ B1(a). Denote by n1 the smallest index for which these two properties hold true. Let
r1 := d(xn1 , a) > 0. Define n2 to be the smallest index j for which xj 6= a and xj ∈ Bmin{r1, 12}

(a).

We must have n2 ≥ n1 since xn2
∈ B1(a); moreover, because r2 := d(xn2

, a) < r1, we cannot
have n1 = n2. In general, if k ≥ 2 we define nk to be the smallest index j for which xj 6= a
and xj ∈ Bmin{rk−1,

1
k }

(a); moreover, since rk := d(xnk , a) < rk−1 < · · · < r1, we must have

nk > · · · > n1. Then {nk}k≥1 is a strictly increasing sequence and 0 < d(xnk , a) < 1/k. This
shows that {xnk}k≥1 is a subsequence which converges to a.

Theorem 2.8. Let A ⊆ X be compact. Then A is sequentially compact.
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Proof. We will assume the opposite, i.e. there exists a sequence {xn}n≥1 with no convergent
subsequence in A. Such a sequence must have an infinite number of distinct points in the range,
due to Lemma 2.6. Moreover, we can assume that {xn}n≥1 has no accumulation points in A
(otherwise such a point would be the limit of a subsequence according to Lemma 2.7).

Since no x ∈ A can be an accumulation point for {xn}n≥1, there exists εx > 0 such that the
ball Bεx(x) contains at most one element of the range of {xn}n≥1.

Clearly, {Bεx(x)}x∈A is an open covering for A. Because A is compact, we can extract a finite
subcovering from it:

A ⊆
N⋃
j=1

Bεyj (yj), N <∞, {y1, . . . , yN} ⊂ A.

Now remember that {xn}n≥1 ⊆ A ⊆
⋃N
j=1Bεyj (yj) and at the same time, there are at most N

distinct points of the range of {xn}n≥1 in the union
⋃N
j=1Bεyj (yj). We conclude that {xn}n≥1

can only have a finite number of distinct points in its range, thus it must admit a convergent
subsequence according to Lemma 2.6. This contradicts our hypothesis.

2.2 Sequentially compact implies compact

The proof of this fact is slightly more complicated. We need two preparatory results:

Proposition 2.9. Let A be a sequentially compact set. Then for every ε > 0, A can be covered
by a finite ε-net (see Definition 2.3).

Proof. If A contains finitely many points, then the proof is obvious, thus we may assume that
#(A) =∞.

Now suppose that there exists some ε0 > 0 such that A cannot be covered by a finite ε0-net.
This means that for any N points of A, {x1, ..., xN}, we have:

A 6⊂
N⋃
j=1

Bε0(xj). (2.1)

We will now construct a sequence with elements in A which cannot have a convergent subse-
quence. Choose an arbitrary point x1 ∈ A. We know from (2.1), for N = 1, that we can find
x2 ∈ A such that x2 ∈ A \ Bε0(x1). This means that d(x1, x2) ≥ ε0. We use (2.1) again, for
N = 2, in order to get a point x3 ∈ A \ [Bε0(x1) ∪ Bε0(x2)]. This means that d(x3, x1) ≥ ε0 and
d(x3, x2) ≥ ε0. Thus we can continue with this procedure and construct a sequence {xn}n≥1 ⊆ A
which obeys

d(xj , xk) ≥ ε0, j 6= k.

In other words, we constructed a sequence in A which cannot have a Cauchy subsequence. This
contradicts Definition 2.5.

The second result states that a compact set is bounded:

Lemma 2.10. Let A be a (sequentially) compact set. Then there exists a ball which contains A.

Proof. We know that A can be covered by any finite ε-net; choose ε = 1. Then here exist N points
of A denoted by {x1, ..., xN} such that A ⊂

⋃N
j=1B1(xj).

Denote by R = max{1 + d(xj , xk) : 1 ≤ j, k ≤ N}. Then we have B1(xj) ⊂ BR(x1) for every
j, thus A ⊂ BR(x1) and we are done.

Let us now prove the theorem:

Theorem 2.11. Assume that A ⊆ X is sequentially compact. Then A is compact.
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Proof. Consider an arbitrary open covering of A:

A ⊆
⋃
α∈F
Oα.

We will show that we can extract a finite subcovering from it.
For every x ∈ A, there exists at least one open set Oα(x) such that x ∈ Oα(x). Because Oα(x)

is open, we can find ε > 0 such that Bε(x) ⊆ Oα(x).
For a fixed x, we define the set

Ex := {r > 0 : there exists α ∈ F such that Br(x) ⊆ Oα} ⊂ R.

From the above argument we conclude that no Ex is empty. Moreover, if r ∈ Ex, then the open
interval (0, r) is included in Ex.

If for some x in A we have an unbounded Ex, it follows that for every r > 0 we can find some
open set Oα such that Br(x) ⊆ Oα. But if r is chosen to be large enough, it will contain the ball
we constructed in Lemma 2.10, thus Oα will also contain A. In this case we found our subcovering,
which consists of just one open set.

It follows that we may assume that all the sets Ex are bounded intervals admitting a positive
and finite supremum supEx. Define 0 < εx := 1

2 supEx < supEx. Note the important thing that
εx ∈ Ex. Let us also observe that:

A ⊆
⋃
x∈A

Bεx(x) ⊆
⋃
α∈F
Oα. (2.2)

The first inclusion is obvious, while the second one follows from the above discussion.
We now need to prove a lemma:

Lemma 2.12. If A is sequentially compact, then

inf
x∈A

εx =: 2ε0 > 0.

In other words, there exists ε0 > 0 such that Bε0(x) ⊆ Bεx(x), for every x ∈ A.

Proof. Assume that infx∈A εx = 0. This implies that there exists a sequence {xn}n≥1 ⊆ A such
that εxn ≤ 1/n for every n ≥ 1. Since A is sequentially compact, there exists a convergent
subsequence {xnk}k≥1 which converges to a point x0 ∈ A, i.e.

lim
k→∞

xnk = x0. (2.3)

Because x0 belongs to A, we can find an open set Oα(x0) which contains x0, thus we can find
ε1 > 0 such that

Bε1(x0) ⊆ Oα(x0). (2.4)

Now (2.3) implies that there exists K > 0 large enough such that:

d(xnk , x0) ≤ ε1/4, whenever k > K. (2.5)

If y belongs to Bε1/4(xnk) (i.e. d(y, xnk) < ε1/4), then the triangle inequality implies (use also
(2.5)):

d(y, x0) ≤ d(y, xnk) + d(xnk , x0) < ε1/2 < ε1, k > K.

But this shows that we must have y ∈ Bε1(x0), or:

Bε1/4(xnk) ⊆ Bε1(x0) ⊆ Oα(x0), ∀k > K. (2.6)

Thus we got the inclusion
Bε1/4(xnk) ⊆ Oα(x0), ∀k > K,
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which shows that ε1/4 must be less or equal than 2εxnk , or ε1/8 ≤ εxnk , for every k > K. But
this is in contradiction with the fact that εxn ≤ 1/n for every n ≥ 1.
Finishing the proof of Theorem 2.11. We now use Proposition 2.9, and find a finite ε0-net for A.
Thus we can choose {y1, ...yN} ⊆ A such that

A ⊆
N⋃
n=1

Bε0(yn) ⊆
N⋃
n=1

Bεyn (yn) ⊆
N⋃
n=1

On,

where On is one of the possibly many open sets which contain Bεyn (yn). We have thus extracted
our finite subcovering of A and the proof of the theorem is over.

2.3 The Bolzano-Weierstrass Theorem

We start with the case in which the metric space is R with the Euclidean distance.

Theorem 2.13. Let {xn} ⊂ R be a bounded real sequence, i.e. there exists M ≥ 0 such that
|xn| ≤ M for all n ≥ 1. Then there exists a subsequence {xnk}k≥1 and some s ∈ R such that
limk→∞ xnk = s.

Proof. We have that −M ≤ xn ≤ M for all n. Define by a1 := −M and b1 := M . Since either
−M ≤ xn ≤ 0 or 0 ≤ xn ≤ M for any given n, it follows that at least one of the two intervals
[−M, 0] and [0,M ] must contain xn for infinitely many different values of n. If there are infinitely
many indices such that xn ∈ [−M, 0], then define a2 := a1 and b2 := (a1 + b1)/2. If this is not
true, then define a2 := (a1 + b1)/2 and b2 := b1. If the first case holds true, we define n1 to be the
smallest index n for which −M = a2 ≤ xn ≤ b2 = 0, while if the second case is true, we define n1

to be the smallest index n for which 0 = a2 ≤ xn ≤ b2 = M .
In either case, we know that there exist infinitely many indices n such that a2 ≤ xn ≤ b2, and

n1 is the smallest of them. If the interval [a2, (a2 + b2)/2] contains xn for infinitely many values
of n, then define a3 := a2 and b3 := (a2 + b2)/2. If this is not true, then define a3 := (a2 + b2)/2
and b3 := b2; the interval [a3, b3] will thus contain xn infinitely many times. We can thus choose
n2 to be the smallest index n > n1 for which a3 ≤ xn ≤ b3. By induction, for a given k ≥ 1,
we can construct nk > nk−1 > · · · > n1 such that ak+1 ≤ xnk ≤ bk+1, where either ak+1 := ak
and bk+1 := (ak + bk)/2 (if the interval [ak, (ak + bk)/2] contains xn infinitely many times),
or ak+1 := (ak + bk)/2 and bk+1 := bk otherwise. By construction we have that ak ≤ ak+1 and
bk+1 ≤ bk for all k. Moreover, ak ≤ bk for all k, and in particular ak ≤ b1 = M and a1 = −M ≤ bk.
By induction, we can also prove that bk − ak = (b1 − a1)/2k−1.

Thus {ak}k≥1 is increasing and bounded from above, hence it converges to α := supk≥1 ak.
The sequence {bk}k≥1 is decreasing and bounded from below, thus it converges to β := infk≥1 bk.
By taking the limit k → ∞ in the equality bk − ak = (b1 − a1)/2k−1 we conclude that α = β.
Since ak ≤ xnk ≤ bk, by the comparison theorem it follows that {xnk}k≥1 is convergent and has
the limit s := α = β.

We can generalize this result to Rd, with d ≥ 2. Without loss of generality, assume that d = 2;
the general case follows by induction. If x = [u, v] ∈ R2, then we define ||x|| =

√
u2 + v2. Clearly,

max{|u|, |v|} ≤ ||x|| ≤ |u| + |v|. The Euclidean distance between two vectors x = [u1, v1] and
y = [u2, v2] is given by d(x,y) = ||x − y|| =

√
(u1 − u2)2 + (v1 − v2)2. It is easy to check that

d(x,y) ≤ |u1 − u2|+ |v1 − v2|.
Now assume that the sequence {xn}n≥1 ⊂ R2 is bounded, i.e. there exists M ≥ 0 such

that ||xn|| ≤ M for all n. We denote the components of xn with [un, vn]. The real sequence
{un}n≥1 ⊂ R is also bounded by M , thus from Theorem 2.13 it follows that we can find a
subsequence {unk}k≥1 which is convergent to some t ∈ R, i.e. limk→∞ unk = t. Define zk := vnk ;
then {zk}k≥1 is also bounded by M and according to Theorem 2.13 we can find a subsequence
{zkj}j≥1 which is convergent to some s ∈ R, i.e. limj→∞ zkj = s. Thus we have that vnkj converges

to s while unkj still converges to t, as a subsequence of the convergent sequence {unk}k≥1.
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Define y := [t, s]. We have 0 ≤ d(xnkj ,y) ≤ |unkj − t| + |vnkj − s| for all j ≥ 1, which shows

that y is the limit of {xnkj }j≥1.

2.4 The Heine-Borel Theorem

Lemma 2.14. Let A be a compact set in a metric space (X, d). Then A is bounded and closed.

Proof. We already know that a compact set A is bounded (see Lemma 2.10). Let us prove that it
is closed. Assume it is not. According to Theorem 1.3 it means that there exists an adherent point
a ∈ A which does not belong to A. Being an adherent point, there exists a sequence {xn}n≥1 ⊂ A
which converges to a, thus all of its subsequences must converge to the same limit. Since A is
(sequentially) compact, there exists a subsequence {xnk}k≥1 which converges to some point of A,
which has to be a. This contradicts the fact that a 6∈ A.

Theorem 2.15. Consider Rd with the Euclidean distance. In this metric space, a set A is (se-
quentially) compact if and only if A is both bounded and closed.

Proof. The previous lemma showed that a compact set is always bounded and closed; this fact
holds for all metric spaces, not just for the Euclidean ones.

If the space is Euclidean, then we can also show the reversed implication. Assume that A
is bounded and consider an arbitrary sequence {xn}n≥1 ⊂ A. The Bolzano-Weierstrass theorem
implies the existence of a subsequence {xnk}k≥1 which converges to some point a ∈ Rd. Thus
a ∈ A, and due to Theorem 1.3 we know that A = A, thus a ∈ A. This proves that A is sequentially
compact, therefore compact.

3 Continuous functions on metric spaces

Let (X, d) and (Y, ρ) be two metric spaces. If A ⊂ X, the image of A through f is the set

f(A) := {y ∈ Y : there exists xy ∈ A such that f(xy) = y} ⊂ Y.

If B ⊂ Y the preimage of B through f is the set

f−1(B) := {x ∈ X : such that f(x) ∈ B} ⊂ X.

Note that the notation f−1(B) does not imply that f is invertible.

Lemma 3.1. If A1 ⊂ A2 ⊂ X and B1 ⊂ B2 ⊂ Y then f(A1) ⊂ f(A2) and f−1(B1) ⊂ f−1(B2).

Proof. We only prove the first inclusion. Assume that y ∈ f(A1). Then there exists xy ∈ A1 such
that f(xy) = y. But at the same time xy ∈ A2, hence y ∈ f(A2).

A map f : X → Y is said to be continuous at a point a ∈ X if for every ε > 0 there exists
δ > 0 such that

Bδ(a) ⊂ f−1(Bε(f(a))), (3.1)

which implies that f(Bδ(a)) ⊂ Bε(f(a)). The function is continuous on X if it is continuous at
all the points of X.

Theorem 3.2. A function between two metric spaces f : X → Y is continuous on X if and only
if for every nonempty open set V ⊂ Y we have that f−1(V ) is open in X.
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Proof. First we assume that f is continuous on X. Let V a nonempty open set in Y . If f−1(V ) is
empty then we know that it is open. Otherwise, let a ∈ f−1(V ). Thus f(a) ∈ V . Since V is open,
f(a) is an interior point of V , thus there exists ε > 0 such that Bε(f(a)) ⊂ V . Applying Lemma
3.1 we get that f−1(Bε(f(a))) ⊂ f−1(V ). But from (3.1) it follows that Bδ(a) ⊂ f−1(V ), thus a
is an interior point.

We now assume that f returns any nonempty open set V of Y in an open set f−1(V ) of X.
Fix a ∈ X. Let ε > 0 and consider the ball Bε(f(a)). Lemma 1.1 implies that V = Bε(f(a))
is open in Y . Thus f−1(Bε(f(a))) must be open in X. Since a ∈ f−1(Bε(f(a))), it must be an
interior point. Thus there exists δ > 0 such that Bδ(a) ⊂ f−1(Bε(f(a))), which shows that f is
continuous at a.

Let (X, d) and (Y, ρ) be two metric spaces and consider a subset A ⊂ X. We can organize A
as a metric space with the natural distance dA induced by d. We say that the map f : A 7→ Y is
continuous on A if it is continuous between the metric spaces (A, dA) and (Y, ρ).

We say that f : A 7→ Y is sequentially continuous at a point a ∈ A if for every sequence
{xn}n≥1 ⊂ A which converges to a we have that {f(xn)}n≥1 ⊂ Y converges to f(a). We say that
f : A 7→ Y is sequentially continuous on A if it is sequentially continuous at all points of A.

Theorem 3.3. With the above notation, consider a map f : A 7→ Y . Then f is continuous on A
if and only if it is sequentially continuous on A.

Proof. First, assume that f is continuous at a ∈ A. Consider any sequence {xn}n≥1 ⊂ A which
converges to a. From (3.1) we know that for every ε > 0 we have that ρ(f(xn), f(a)) < ε if
d(xn, a) < δ. But the second inequality holds if n is larger than some Nδ ≥ 1. Thus {f(xn)}n≥1 ⊂
Y converges to f(a).

Second, assume that f is sequentially continuous at a ∈ A. We will show that f must be
continuous at a. Suppose this is not true: it means that there exists ε0 > 0 such that for all δ > 0
we have that Bδ(a) 6⊂ f−1(Bε0(f(a))). By letting δ = 1/n for all n ≥ 1, we can find a point
xn ∈ B 1

n
(a) such that f(xn) 6∈ Bε0(f(a)), or ρ(f(xn), f(a)) ≥ ε0. In this way we constructed

a sequence {xn}n≥1 ⊂ A which converges to a while {f(xn)}n≥1 does not converge to f(a),
contradiction.

Theorem 3.4. With the above notation, consider a continuous map f : A 7→ Y where A ⊂ X is
compact. Then f(A) is compact.

Proof. We show that f(A) is sequentially compact. Let {yn}n≥1 ⊂ f(A) be an arbitrary sequence.
There exists {xn}n≥1 ⊂ A such that f(xn) = yn. Since A is sequentially compact, there exists
a subsequence {xnk}k≥1 ⊂ {xn}n≥1 which converges to some point a ∈ A. But f is sequentially
continuous at a, hence ynk = f(xnk) converges to f(a) ∈ f(A). Hence f(A) is sequentially
compact.

The next lemma recalls a general result which says that real continuous functions defined on
compact sets attain their extremal values. See also Theorem 10.61 in Wade.

Lemma 3.5. Let (X, d) be a metric space and let H ⊂ X be a compact set. Let f : H 7→ R
be continuous on H. Then there exist xm and xM in H such that f(xM ) = supx∈H f(x) and
f(xm) = infx∈H f(x).
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Proof. We only prove this for supx∈H f(x). Let B := f(H) ⊂ R. Let us show that there exists a
sequence {xn}n≥1 ⊂ H such that limn→∞ f(xn) = supx∈H f(x) = sup(B).

Since B is compact, it is bounded. Thus sup(B) = supx∈H f(x) < ∞. For every n ≥ 1 we
know that sup(B) − 1/n is not an upper bound for B, thus there must exist xn ∈ H such that
sup(B)− 1/n < f(xn) ≤ sup(B). Thus limn→∞ f(xn) = sup(B).

Because H is compact, we can find a subsequence {xnk}k≥1 which converges towards some
point a ∈ H. Since f is continuous, we have that limk→∞ f(xnk) = f(a). Since {f(xnk)}k≥1 is a
subsequence of the convergent sequence {f(xn)}n≥1, we must have f(a) = sup(B). Thus we can
choose xM to be a.

We say that f : A 7→ Y is uniformly continuous on A if for every ε > 0 there exists δ > 0 such
that ρ(f(x), f(y)) < ε as soon as x, y ∈ A and d(x, y) < δ. Clearly, if f is uniformly continuous on
A then it is also continuous. The next result gives sufficient conditions for the reciprocal statement:

Lemma 3.6. Let (X, d) and (Y, ρ) be two metric spaces and let H ⊂ X be a compact set. Let
f : H 7→ Y be continuous on H. Then f is uniformly continuous on H.

Proof. Assume that the conclusion is false. Then there exists ε0 > 0 such that regardless how large
n ≥ 1 is, we may find two points xn and yn in H which obey d(xn, yn) < 1

n and ρ(f(xn), f(yn)) ≥
ε0. Since H is sequentially compact, there exists a subsequence {xnk}k≥1 which converges to some
point a ∈ H. Because d(ynk , a) ≤ 1

k + d(xnk , a) for all k ≥ 1, it follows that ynk also converges to
a. The function f is sequentially compact at a, thus both f(xnk) and f(ynk) converge to f(a). In
particular, this contradicts our assumption that ρ(f(xnk), f(ynk)) ≥ ε0 for all k.

4 Elementary considerations about measurability

Definition 4.1. Consider a set X. We call the collection of sets S to be a σ-algebra if the
following three conditions are fulfilled:

1. X ∈ S;

2. If A ∈ S then Ac = X \A ∈ S;

3. If each Aj ∈ S for j ≥ 1, then A := ∪∞j=1Aj ∈ S.

Note that from the definition of S we conclude that ∅ = Xc ∈ S, and moreover, since( ∞⋃
j=1

Bcj

)c
=

∞⋂
j=1

Bj

it follows that any countable intersection of elements of S is also an element of the σ-algebra.
Also, since A \B = A ∩Bc, it follows that set differences belong to S, too.

Proposition 4.2. Let τ denote the set of all open sets in X (called the topology). Then there
exists a σ-algebra Sx which contains τ , and Sx is also contained in any other σ-algebra which
contains τ . We call Sx as the Borel σ-algebra, and its elements are called Borel sets.

Proof. Denote by P(X) the set of all subsets of X. This is the maximal σ-algebra, which clearly
contains the topology τ , hence the set of all σ-algebras Sτ containing τ is not empty. Define
Sx :=

⋂
Sτ to be the intersection of all these σ-algebras. We have that τ ⊂ Sx and Sx ⊂ Sτ for

all Sτ , thus we only need to show that Sx is a σ-algebra.
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We have that X ∈ Sτ for all Sτ , hence X ∈ Sx. If A ∈ Sx it follows that A ∈ Sτ for all Sτ ,
hence Ac ∈ Sτ for all Sτ , thus Ac ∈ Sx. Finally, assume that Aj ∈ Sx for j ≥ 1. Then given any
Sτ we have that Aj ∈ Sτ for j ≥ 1. Since Sτ is a σ-algebra, we have that A = ∪∞j=1Aj ∈ Sτ for
all Sτ . Thus A ∈ Sx and we are done.

Let X and Y be topological spaces with the topologies τx and τy. Consider the corresponding
Borel σ-algebras Sx and Sy.

Definition 4.3. We say that f : X 7→ Y is (Borel) measurable if f−1(V ) ∈ Sx for every open set
V ⊂ Y .

Clearly, every continuous function is Borel measurable, because in this case f−1(V ) is open in
X, see Theorem 3.2. The next result shows that if a map is Borel measurable, then f−1(B) ∈ Sx

for every Borel set B ∈ Sy.

Proposition 4.4. Let f : X 7→ Y be Borel measurable. Denote by

Ω := {B ⊂ Y : f−1(B) ∈ Sx}.

Then Ω contains all open sets in Y and it is a σ-algebra. Thus Sy ⊂ Ω.

Proof. Clearly, if B is open then f−1(B) is measurable and belongs to Sx. Thus Ω contains all
the open sets. If we can prove that Ω is a σ-algebra, then it must contain Sy.

First, Y ∈ Ω because X = f−1(Y ) ∈ Sx. Second, if A ∈ Ω we have that f−1(A) ∈ Sx, hence
f−1(Ac) = X \ f−1(A) ∈ Sx and Ac ∈ Ω. Third, if Aj ∈ Ω for all j, we have f−1(∪jAj) =
∪jf−1(Aj) ∈ Sx, thus ∪jAj ∈ Ω.

We now consider an important particular case, where we allow f to take infinite values. Here
Y = R ∪ {±∞} := [−∞,∞]. The set Y is not a metric space but we can see it as a topological
space containing all the open sets of R together with sets of the type (α,∞] and [−∞, α) which
are by definition open sets containing ±∞. The next result gives a very useful criterion for when
a function is Borel measurable.

Theorem 4.5. Let f : X 7→ [−∞,∞]. If for every α ∈ R we have f−1((α,∞]) ∈ Sx, then f is
Borel measurable.

Proof. We have to prove that for every possibile open set V ⊂ [−∞,∞] we have f−1(V ) ∈ Sx.
First, we note that f−1([−∞, β]) = X \ f−1((β,∞]) ∈ Sx for all β ∈ R. Moreover, we have:

f−1([−∞, β)) =
⋃
n≥1

f−1([−∞, β − 1/n]) ∈ Sx

and f−1([α,∞]) = X \ f−1([−∞, α)) ∈ Sx. Now if α < β we have:

f−1((α, β)) = f−1((α,∞])
⋂
f−1([−∞, β)) ∈ Sx

which shows that every open interval is returned into a Borel set in X.
Now assume that V is some nonempty open set in R. Let I := Q∩ V be the set of all rational

points which belong to V .
Define the set:

W :=
⋃

q∈Q+,a∈I,(a−q,a+q)⊂V

(a− q, a+ q).

Clearly, the above union is at most countable. Moreover,

f−1(W ) =
⋃

q∈Q+,a∈I,(a−q,a+q)⊂V

f−1((a− q, a+ q)) ∈ Sx,

9



hence if we can prove that W = V we are done.
One inclusion W ⊂ V is trivial, because all the intervals (a−q, a+q) are included in V . We show

the other inclusion. For every x ∈ V there exists r > 0 such that (x− r, x+ r) ⊂ V . The point x
belongs to (α, β) and we can find a sequence of rational numbers an ∈ Q such that limn→∞ an = x.
Moreover, there exists a sequence of positive rational numbers qj such that limj→∞ qj = r. Thus
we can find an ∈ Q and qj ∈ Q+ such that |an − x| < r/10 and |qj − r| < r/10. Thus

x− r < an − qj/2 < x < an + qj/2 < x+ r

which shows that x ∈ (an − qj/2, an + qj/2) ⊂W and we are done.

Theorem 4.6. Let fn : X 7→ [−∞,∞], n ≥ 1, be a sequence of measurable functions. Define
f(x) = supn≥1 fn(x) and g(x) = infn≥1 fn(x). Then both f and g are Borel measurable. Moreover,
the functions defined by lim infn→∞ fn(x) and lim supn→∞ fn(x) are measurable.

Proof. We start with f . According to Theorem 4.5 we have to prove that

A(α) := {x ∈ X : α < f(x)}

is a Borel set in X for every α ∈ R. Denote by An(α) := {x ∈ X : α < fn(x)} = f−1
n ((α,∞]).

Because fn is measurable, then each An(α) is Borel. Since fn(x) ≤ f(x) for every n, it follows
that An(α) ⊂ A(α) hence

⋃
n≥1An(α) ⊂ A(α).

Now assume that x ∈ A(α). This gives α < f(x). We can find nx large enough such that
α < fnx(x), hence x ∈ Anx(α) ⊂

⋃
n≥1An(α) ⊂ A(α). Thus A(α) ⊂

⋃
n≥1An(α), hence the two

sets are equal. But then A(α) equals a countable union of Borel sets, hence it is a Borel set.
The proof for g is similar: one proves that

g−1([α,∞]) =
⋂
n≥1

f−1
n ([α,∞]).

Indeed, if x ∈ g−1([α,∞]) then α ≤ g(x) ≤ fn(x) for all n, hence x ∈ f−1
n ([α,∞]) for all n. The

other way around: let x such that α ≤ fn(x) for all n. Then α is a lower bound and α ≤ g(x),
hence x ∈ g−1([α,∞]). Now since each f−1

n ([α,∞]) is Borel, it follows that g−1([α,∞]) is Borel.
Finally we use:

g−1((α,∞]) =
⋃
n≥1

g−1([α+ 1/n,∞])

and we can apply Theorem 4.5.
For liminf and limsup: we note that

lim inf fn(x) = sup
k≥1
{ inf
n≥k

fn(x)}, lim sup fn(x) = inf
k≥1
{sup
n≥k

fn(x)}

hence the problem is reduced to the previous two cases.

The last thing we want to discuss here is the fact that continuous operations with real Borel
functions produce Borel functions. We start with a technical result:

Lemma 4.7. Let f1, f2 : X 7→ R be two Borel functions. Let F : X 7→ R2 with F (x) =
[f1(x), f2(x)] ∈ R2. Then F is measurable. The same results holds if R is replaced with [−∞,∞].

Proof. Let V be an open set in R2. Let I = Q2 ∩ V . We denote by R(q, p, s) a rectangle centered
at a point q ∈ Q2 and with side lengts p, s ∈ Q+. Reasoning as in Theorem 4.5 we can prove that

V =
⋃

q∈I,R(q,p,s)⊂V

R(q, p, s),

10



where the union is at most countable. Each such rectangle can be written as a cartesian product
of the type (a, b)× (c, d). Thus

F−1((a, b)× (c, d)) = f−1
1 ((a, b))

⋂
f−1

1 ((c, d)) ∈ SX ,

and we conclude by using

F−1(V ) =
⋃

q∈I,R(q,p,s)⊂V

F−1(R(q, p, s)) ∈ SX .

If we work with [−∞,∞] instead of R then we have to allow the above rectangles to include
sets like (a,∞]× [−∞, d) and all the other possible combinations.

Theorem 4.8. Let φ : R2 7→ R be a continuous function, and f1, f2 : X 7→ R be two Borel
functions. Then the function:

X 3 x 7→ f3(x) := φ(f1(x), f2(x)) ∈ R

is Borel measurable.

Proof. We note that f3 = φ ◦ F , where F was defined in Lemma 4.7. Let V open in R. Then
φ−1(V ) is open in R2 and f−1

3 (V ) = F−1(φ−1(V ) is Borel.

This proves in particular that the sum of two measurable functions is measurable.

5 Urysohn’s Lemma and partition of unity

We will assume in this section that our metric space X is locally compact, which means that for
every x ∈ X we can find an open set W such that x ∈W and W is compact. Because of the metric
space structure, one can show that W can always be chosen to be an open ball whose closure is
compact. Indeed, since x is an interior point of W , we can find ε > 0 such that

Bε/2(x) ⊂ Bε(x) ⊂W.

Since Bε/2(x) ⊂ W and W is (sequentially) compact, then Bε/2(x) is also sequentially compact,
hence compact. Note that this does not mean that all bounded and closed balls are compact in
this space.

Let us start with a technical result:

Proposition 5.1. Let (X, d) be a locally compact metric space, K a compact set, V open, and
K ⊂ V . Then there exists an open set U such that

K ⊂ U ⊂ U ⊂ V

such that U is compact.

Proof. We know that for every x ∈ K there exists ε > 0 such that Bε/2(x) is compact. Note that

for every δ < ε/2 we have Bδ(x) ⊂ Bε/2(x) and Bδ(x) is also compact.
Since the same point x ∈ V and V is open, we can find ε′ > 0 such that Bε′(x) ⊂ V . Thus by

choosing a δ smaller than both ε/2 and ε′/2 we have that Bδ(x) is compact and Bδ(x) ⊂ V .
Now since K is compact and K ⊂

⋃
x∈K Bδ(x), we can extract a finite subcovering U :=⋃N

j=1Bδj (xj) ⊂ V , where U =
⋃N
j=1Bδj (xj) ⊂ V . Moreover, U is compact.
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We will give here a simplified proof of the Urysohn Lemma, only valid in metric spaces. We
say that a function f : X 7→ C has compact support if the set

supp(f) := {x ∈ X : f(x) 6= 0}

is compact. We denote the set of continuous and compactly supported functions on X by Cc(X).

Theorem 5.2. (Urysohn’s Lemma). Let (X, d) be a locally compact metric space, K a compact
set, and V a bounded open set such that K ⊂ V . Then there exists u ∈ Cc(X), 0 ≤ u ≤ 1, such
that u(x) = 1 if x ∈ K and u(x) = 0 if x ∈ V c.

Proof. We start with a technical result concerning closed sets. Let A = A be a closed set in X,
and define the real function

X 3 x 7→ f(x) = d(x;A) := inf
y∈A

d(x, y) ∈ R.

Now let us show that f is uniformly continuous, and f(x) = 0 iff x ∈ A. Indeed, if x, x′ ∈ X
then f(x′) ≤ d(x′, y) ≤ d(x′, x) + d(x, y) for all y ∈ X, which means that f(x′) − d(x′, x) is a
lower bound for d(x, y) for all y, which gives f(x′) − d(x′, x) ≤ f(x), or f(x′) − f(x) ≤ d(x′, x).
By symmetry, we conclude that |f(x′) − f(x)| ≤ d(x′, x) which immediately implies that f is
uniformly continuous.

Now if x ∈ A, clearly f(x) = 0. The other way around: assume that f(x) = d(x;A) = 0. It
means that there exists a sequence of points yn ∈ A such that 0 = d(x;A) ≤ d(x, yn) ≤ 1/n. But
this means that yn converges to x, i.e. x is an adherent point of A, hence belongs to A.

Getting back to our problem, let us first construct the set U as in Proposition 5.1, which has
the property that K ⊂ U ⊂ U ⊂ V and U is compact. Note that both K and U c are closed sets.
We observe that we have d(x;K) + d(x;U c) > 0 for all x. This is because either d(x;U c) > 0 and
we are done, or d(x;U c) = 0 which implies x ∈ U c and x /∈ K, in other words d(x;K) > 0.

Finally, the function we are looking for can be defined as:

u(x) =
d(x;U c)

d(x;U c) + d(x;K)
,

where the continuity is obvious, and by construction, supp(u) = U is compact.

Theorem 5.3. Let (X, d) be a metric space, K a compact set, and {Vj}Nj=1 are bounded open sets

such that K ⊂
⋃N
j=1 Vj. Then there exist some continuous non-negative functions gj : X 7→ [0, 1],

j ∈ {1, . . . , N}, such that gj(x) = 0 if x /∈ Vj, and if h(x) := g1(x) + · · ·+ gN (x), then 0 ≤ h ≤ 1,

h is compactly supported, h(x) = 1 if x ∈ K and h(x) = 0 if x /∈
⋃N
j=1 Vj.

Proof. For every x ∈ K, there exists some j such that x ∈ Vj . We can choose ε > 0 such that

x ∈ Bε/2(x) ⊂ Bε(x) ⊂ Vj

and where Bε/2(x) is compact. We have the inclusion K ⊂
⋃
x∈K Bε/2(x) from which we can find

a finite subcovering:

K ⊂
M⋃
m=1

Bεm/2(xm) ⊂
M⋃
m=1

Bεm/2(xm).

Each compact set Bεm/2(xm) is included in some set Vj . Denote by Kj the union of all closed

balls Bεm/2(xm) which are included in a given Vj . Then Kj is compact and Kj ⊂ Vj . According
to Urysohn’s lemma, we can find a continuous, compactly supported function 0 ≤ uj ≤ 1 which
equals 1 on Kj and supp(uj) ⊂ Vj , for all j ∈ {1, . . . , N}.

Let us define g1 = u1 and g2 = u2(1 − g1). We see that the support of g2 is included in the
support of u2, thus it must be compact (a closed subset of a compact set is compact). We also have
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that 0 ≤ g1 + g2 ≤ 1. Moreover, g1 + g2 equals g1 = u1 = 1 on K1, equals g1 + (1− g1) = 1 on K2,
and g1 + g2 = 0 outside V1

⋃
V2. The support of g1 + g2 is a closed subset of supp(g1)

⋃
supp(g2)

thus it must be compact.
In conclusion, 0 ≤ g1 + g2 ≤ 1 is compactly supported, equals 1 on K1

⋃
K2 and equals 0

outside V1

⋃
V2. Now let us assume that we constructed the compactly supported functions g1,...,

gm such that 0 ≤ g1 + · · ·+ gm ≤ 1 equals 1 on
⋃m
j=1Kj , and equals 0 outside

⋃m
j=1 Vj . Then we

can construct gm+1 = um+1(1− g1− · · · − gm) and check that the induction step is fulfilled. Note

that h = g1 + · · ·+ gN equals 1 on K because K ⊂
⋃N
j=1Kj .

Remark. If χA denotes the characteristic function of a set A, then we have:

0 ≤ gj ≤ χVj , χK ≤ h ≤ χ⋃N
j=1 Vj

.

6 The Riesz representation theorem

Again we assume that we work in a locally compact metric space (X, d). A map Λ : Cc(X) 7→ C
is called a linear positive functional if Λ is linear, and Λ(f) ≥ 0 if f ≥ 0. Note that this implies
the monotony property:

Λ(f) = −Λ(g − f) + Λ(g) ≤ Λ(g), if f ≤ g. (6.1)

Theorem 6.1. Let Λ be a positive linear functional on Cc(X). Then there exists a sigma algebra
S in X which contains the Borel sets in X (in particular the open and compact sets), and there
exists a unique positive measure µ defined on S such that:
(a). Λ(f) =

∫
X
fdµ, for all f ∈ Cc(X);

(b). µ(K) <∞ if K is compact;
(c). For every E ∈ S we have the identity:

µ(E) = inf{µ(V ) : E ⊂ V, V is open};

(d). If E ∈ S is either open or µ(E) <∞, we have the identity:

µ(E) = sup{µ(K) : K ⊂ E, K is compact};

(e). Suppose that E ∈ S with µ(E) = 0. Then every subset A ⊂ E has the property that A ∈ S
and µ(A) = 0.

Remark. Although we will follow quite closely the presentation of Rudin, we will give more details
and try to explain things in a more pedagogical manner. The rest of this section is dedicated to
the proof of Riesz’ theorem, which will be split in a number of technical lemmas.

Lemma 6.2. If such a measure exists, then it is unique.

Proof. We assume that there exist two measures µ1 and µ2 which obey all the above five conditions.
We start by proving that µ1(K) = µ2(K) for any compact set K.

Fix some compact K. Using (b) and (c) for µ2 and E = K, we know that for every n ≥ 1, we
can find some open set Vn with K ⊂ Vn such that

µ2(K) ≤ µ2(Vn) ≤ µ2(K) + 1/n.

From Urysohn’s Lemma we know that we can find some function un ∈ Cc(X) such that
χK ≤ un ≤ χVn . Then we have:

µ1(K) ≤
∫
X

un(x)dµ1(x) = Λ(un) =

∫
X

un(x)dµ2(x) ≤ µ2(Vn) ≤ µ2(K) + 1/n.
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Taking the limit, it gives µ1(K) ≤ µ2(K). By swapping µ1 with µ2 in the above argument we can
also prove the reversed inequality, thus the two values must be equal.

Knowing that µ1 and µ2 coincide on compact sets, then due to (d) we conclude that µ1(V ) =
µ2(V ) for every open set V . Note the important thing, that if V is open, then µj(V ) can be
infinite.

Now if E is any set in S which is neither open nor compact for which both µj(E) <∞, then
again (c) implies that µ1(E) = µ2(E).

The last possibility is when µ1(E) <∞ and µ2(E) =∞ for some E which is neither open nor
compact. Since µ1(E) < ∞, from (c) there must exist some open set V which contains E and
µ1(V ) <∞. But then µ2(V ) = µ1(V ) <∞ which shows that µ2(E) ≤ µ2(V ) <∞, contradiction.

Now we start the construction of both S and µ. First we consider a map F defined on the
maximal σ-algebra P(X) (consisting of all possible subsets of X), in the following way: if V is
open, then

F (V ) := sup{Λ(f) : f ∈ Cc(X), 0 ≤ f ≤ χV }, F (∅) := 0, (6.2)

and if E is an arbitrary set which is not open then:

F (E) := inf{F (V ) : E ⊂ V, V open}. (6.3)

We observe that if U ⊂ V are open sets, then the inequality f ≤ χV is implied by f ≤ χU , thus
we have the inclusion:

{Λ(f) : f ∈ Cc(X), 0 ≤ f ≤ χU} ⊂ {Λ(f) : f ∈ Cc(X), 0 ≤ f ≤ χV },

which imediately implies that F (U) ≤ F (V ). This also shows that (6.3) is compatible with the
situation in which E is allowed to be open, since in this case F (E) is a minimum because the
infimum is realized for V = E.

Lemma 6.3. Let F : P(X) 7→ R+ defined as above. If E1 ⊂ E2, then F (E1) ≤ F (E2).

Proof. We have already proved the monotony if E1 and E2 are open sets. For the general case,
we observe that if V is an open set such that E2 ⊂ V , then we also have E1 ⊂ V . This shows that
we have the inclusion:

{F (V ) : E2 ⊂ V, V open} ⊂ {F (V ) : E1 ⊂ V, V open},

thus F (E1) is a lower bound for the set {F (V ) : E2 ⊂ V, V open}, which leads to F (E1) ≤ F (E2).

Definition 6.4. We define M ⊂ P(X) as the collection of all sets E for which F (E) < ∞ and
moreover, the following identity is satisfied:

F (E) = sup{F (K) : K ⊂ E, K compact}. (6.4)

We are now ready to define our σ-algebra S and the measure µ.

Definition 6.5. We denote by S the collection of all the sets E which obey the condition that for
every compact set K, we have that E

⋂
K ∈M. We also denote by µ the restriction of F to S.

In the rest of this section we will prove that S is a σ-algebra containing all the Borel sets, and
that µ is a positive measure obeying (a)-(e).

6.1 S is a σ-algebra and µ is a positive measure

Here we will more or less follow the ten steps (numberred from I to X) in Rudin’s book.
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6.1.1 Step I

We start with a general technical result which is valid for the map F :

Lemma 6.6. Let F : P(X) 7→ R+ defined as above. If {Ej}∞j=1 are arbitrary sets, then

F
( ∞⋃
j=1

Ej

)
≤
∞∑
j=1

F (Ej). (6.5)

Proof. Let us start by showing that if V1 and V2 are open sets, then F (V1 ∪ V2) ≤ F (V1) +F (V2).
The set V = V1 ∪ V2 is open, thus according to the definition of F (V ) we have to estimate the
supremum of Λ(f) for every f ∈ Cc(X) with f ≤ χV . Denote by K the support of f . Then
K ⊂ V1∪V2, thus using the partition of unity theorem 5.3 we can find two Cc(X) functions g1 and
g2 such that g1 ≤ χV1

and g2 ≤ χV2
, such that g1 + g2 = 1 on K. This means that f = fg1 + fg2,

where fg1 ≤ χV1
and fg2 ≤ χV2

. Thus:

Λ(f) = Λ(fg1) + Λ(fg2) ≤ F (V1) + F (V2),

inequality which shows that F (V1) + F (V2) is an upper bound for our set. Since F (V ) is the
smallest upper bound, we must have F (V ) ≤ F (V1) + F (V2).

Now let us treat the general case. If there exists some i for which F (Ei) = ∞, the proof is
over. Hence we may assume that all F (Ej) <∞.

Let us fix ε > 0. According to formula (6.3), for every j ≥ 1 we can find an open set Vj such
that Ej ⊂ Vj and

F (Ej) ≤ F (Vj) ≤ F (Ej) + ε2−j . (6.6)

Clearly,
⋃∞
j=1Ej ⊂

⋃∞
j=1 Vj , thus using the monotony from Lemma 6.3 we have:

F
( ∞⋃
j=1

Ej

)
≤ F

( ∞⋃
j=1

Vj

)
.

Denote by V =
⋃∞
j=1 Vj ; from Lemma 1.2 we know that V is open. We have to estimate F (V ). As

before, choose any f ∈ Cc(X) with f ≤ χV . The support K of f is compact and K ⊂ V =
⋃∞
j=1 Vj .

Thus we can extract a finite subcovering, i.e. K ⊂
⋃N
k=1 Vjk . Using again the partition of unity

theorem 5.3 we can find g1, ...,gN such that gi ≤ χVji and g1 + · · ·+ gN = 1 on K. Reasoning as
before, we have:

Λ(f) = Λ(fg1) + · · ·+ Λ(fgN ) ≤ F (Vj1) + · · ·+ F (VjN ) ≤
∑
j≥1

F (Vj).

This inequality holds true for every f , thus:

F
( ∞⋃
j=1

Ej

)
≤ F (V ) ≤

∑
j≥1

F (Vj).

Now using the second inequality in (6.6) we have:

F
( ∞⋃
j=1

Ej

)
≤
∑
j≥1

F (Ej) + ε,

which finishes the proof.
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6.1.2 Step II

Step 2 in Rudin’s proof corresponds to the next lemma, which coupled with the monotony property
and (6.4) it shows that every compact set belongs to M and obviously to S.

Lemma 6.7. Let F : P(X) 7→ R+ defined as above. If K is compact, then F (K) <∞.

Proof. Every compact set is bounded, thus there exists some ball V such that K ⊂ V . According
to Lemma 5.1, we can always find an open set U with U compact such that K ⊂ U ⊂ U ⊂ V .
Due to Urysohn’s lemma we can find a function fu ∈ Cc(X) such that χU ≤ fu ≤ χV . Thus for
every f ∈ Cc(X) with 0 ≤ f ≤ χU we must have f ≤ fu and hence Λ(f) ≤ Λ(fu). Taking the
supremum over all such f ’s, according to (6.2) we must have F (U) ≤ Λ(fu) < ∞. Then (6.3)
finally implies F (K) ≤ F (U) <∞.

6.1.3 Step III

This step is split into two lemmas.

Lemma 6.8. Let f ∈ Cc(X) with f ≤ 1 and let K be the support of f . Then Λ(f) ≤ F (K).

Proof. Let V be any open set containing K. Due to Urysohn’s Lemma, there exists some non-
negative g ∈ Cc(X) with χK ≤ g ≤ χV , hence f ≤ g, which implies Λ(f) ≤ Λ(g). Due to the
definition of F (V ) in (6.2), we have that Λ(g) ≤ F (V ).

Thus we have just shown that Λ(f) ≤ F (V ) for every open V containing K. It means that Λ(f)
is a lower bound for the set on the right hand side of (6.3) if E = K. Hence Λ(f) ≤ F (K).

Lemma 6.9. Every open set satisfies (6.4), hence all open sets V with F (V ) <∞ belong to M.

Proof. Let V be a fixed non-empty open set. The monotony property implies that F (V ) is an
upper bound for the set containing all the numbers F (K) with K ⊂ V . It remains to show
that F (V ) is an adherent point for this set. The strategy is to show that for every real number
α < F (V ), there exists a compact set Kα ⊂ V such that α < F (Kα) ≤ F (V ). Note that this also
covers the case in which F (V ) =∞, because in that case we can take α to be any natural number.

From the definition of F (V ) in (6.2), we know that given α < F (V ) we can find fα ∈ Cc(X)
with its support Kα ⊂ V such that α < Λ(fα) ≤ F (V ). On one hand, F (Kα) ≤ F (V ), while on
the other hand, due to Lemma 6.8 we know that: α < Λ(fα) ≤ F (Kα).

6.1.4 Step IV

Here we prove that F is additive on M. We start with a preparatory result.

Lemma 6.10. Let K1 and K2 be two disjoint compact sets. Then F (K1∪K2) = F (K1)+F (K2).

Proof. The set Kc
2 is open and K1 ⊂ Kc

2. According to Proposition 5.1, we can find an open set
U1 with U1 compact, such that K1 ⊂ U1 ⊂ U1 ⊂ Kc

2. In an analogous way, we can construct
an open set U2 with U2 compact, such that K2 ⊂ U2 ⊂ U2 ⊂ U1

c
. In particular, U1 and U2 are

disjoint.
We already know from Lemma 6.6 that F (K1 ∪K2) ≤ F (K1) + F (K2), thus we only need to

prove the reverse inequality. Fix ε > 0.
From (6.3) we know that there exists V open, with K1 ∪K2 ⊂ V such that F (V ) < F (K1 ∪

K2) + ε. Denote by V1 := V ∩ U1 and V2 := V ∩ U2. We have (V1 ∪ V2) ⊂ V hence

F (V1 ∪ V2) ≤ F (V ) < F (K1 ∪K2) + ε.
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Now let f1 and f2 be two arbitrary non-negative Cc(X) functions with 0 ≤ fj ≤ χVj . Because
f1 and f2 cannot be simultaneously non-zero (V1 and V2 are disjoint), it turns out that 0 ≤
f1 + f2 ≤ χV1∪V2

. Thus Λ(f1 + f2) ≤ F (V1 ∪ V2) and:

Λ(f1) + Λ(f2) = Λ(f1 + f2) ≤ F (V1 ∪ V2).

Now we can separately take the supremum over f1 and f2, which gives:

F (V1) + F (V2) ≤ F (V1 ∪ V2).

Since Kj ⊂ Vj , we have F (Kj) ≤ F (Vj) and we conclude:

F (K1) + F (K2) ≤ F (V1) + F (V2) ≤ F (V1 ∪ V2) ≤ F (V ) < F (K1 ∪K2) + ε.

Lemma 6.11. Let E1 and E2 be two disjoint sets in M. Then E1 ∪E2 ∈M and F (E1 ∪E2) =
F (E1) + F (E2).

Proof. Denote by E = E1 ∪ E2. Since Ej ∈ M, according to the definition we know F (Ej) <∞.
Hence Step I implies that F (E) <∞.

Moreover, (6.4) is satisfied for Ej . Given ε > 0, we can find Kj ⊂ Ej two compact disjoint
sets such that F (Ej) < F (Kj) + ε/2. Thus together with Step I we have:

F (E) ≤
2∑
j=1

F (Ej) < ε+

2∑
j=1

F (Kj) = ε+ F (K1 ∪K2) ≤ ε+ F (E)

where the equality in the middle is a consequence of the previous lemma, and the last inequality
comes from monotony since K1 ∪K2 ⊂ E.

Lemma 6.12. Let {Ej}j≥1 be disjoint sets in M and define E :=
⋃
j≥1Ej. Then F (E) =∑

j≥1 F (Ej). Moreover, if F (E) <∞ then E ∈M.

Proof. From Step I, we know that

F (E) ≤
∑
j≥1

F (Ej),

hence if F (E) =∞, the proof is over.
Now let us assume that F (E) < ∞. Fix ε > 0. As before, for every j ≥ 1 there exists a

compact Kj ⊂ Ej such that F (Ej) < F (Kj) + ε2−j . Then for every N ≥ 1 we have:

N∑
j=1

F (Ej) ≤ ε+

N∑
j=1

F (Kj) = ε+ F
( N⋃
j=1

Kj

)
≤ ε+ F (E),

where the identity in the middle is a consequence of Lemma 6.10 (all Kj ’s are disjoint), while the

last inequality is due to monotony. The increasing sequence
∑N
j=1 F (Ej) is bounded from above,

thus it converges, and we must have:

F (E) ≤
∑
j≥1

F (Ej) ≤ ε+ F (E),

which shows that F (E) =
∑
j≥1 F (Ej) <∞. Moreover, the increasing real sequence F

(⋃N
j=1Kj

)
is also convergent and:

F (E) ≤ ε+ lim
N→∞

F
( N⋃
j=1

Kj

)
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which shows that if Nε is large enough, then

F (E) < 2ε+ F
( Nε⋃
j=1

Kj

)
which shows that E ∈M.

6.1.5 Step V

Lemma 6.13. Fix E ∈M. For every ε > 0 there exists an open set V and a compact set K such
that K ⊂ E ⊂ V , F (K) ≤ F (E) ≤ F (V ) and F (V \K) < ε.

Proof. We have F (E) < ∞, hence due to (6.3) there exists V open such that E ⊂ V and
F (V ) < F (E) + ε/2. From (6.4) we obtain a compact K ⊂ E such that F (E) < F (K) + ε/2. This
leads to

F (V ) < F (K) + ε.

The set V \K = V ∩Kc is open, included in V , hence F (V \K) <∞. Due to Lemma 6.9 in
Step III, we know that V \K ∈M. Then both K and V \K belong to M, they are disjoint and
according to Lemma 6.10 we have:

F (V \K) = F (V )− F (K) < ε

and we are done.

6.1.6 Step VI

Lemma 6.14. Let A and B be two sets in M. Then A \B, A ∪B and A ∩B belong to M.

Proof. We start by showing that A \ B ∈ M. First, F (A \ B) ≤ F (A) < ∞. Second, we need
to prove (6.4), i.e. given ε > 0 we need to construct a certain compact K included in A \ B such
that F (A \B) < F (K) + ε.

From Step V (Lemma 6.13) we know that there exists an open set Va and a compact set Ka

such that Ka ⊂ A ⊂ Va and F (Va \Ka) < ε/2. In the same way, there exists an open set Vb and
a compact set Kb such that Kb ⊂ B ⊂ Vb and F (Vb \Kb) < ε/2.

The set K := Ka \ Vb = Ka ∩ V cb is compact because V cb is closed. We have the inclusion:

A \B ⊂ Va \Kb ⊂ (Va \Ka) ∪K ∪ (Vb \Kb).

Thus Step I implies:

F (A \B) ≤ F (Va \Ka) + F (K) + F (Vb \Kb) < ε+ F (K).

Thus A \B ∈M. Then we can write A∪B = (A \B)∪B, where A \B and B are disjoint, hence
due to Lemma 6.11 we get that A∪B ∈M. Finally, using A∩B = A \ (A \B) the proof is over.

6.1.7 Step VII

Lemma 6.15. The collection of sets S is a σ-algebra containing all the Borel sets in X.

Proof. The collection S is defined in Definition 6.5. In order to show that S is a σ-algebra, we
need to prove three things:

1. ∅ ∈ S; this is trivial. Moreover, since X ∩ K = K for every compact K, we have that
X ∈ S.
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2. If A ∈ S then we have to prove that Ac ∈ S. In other words, for every compact K we
need to show that Ac ∩K ∈ M. Note that Ac ∩K = K \ (K ∩ A). Since A ∈ S it means that
K ∩A ∈M. Then Step VI (Lemma 6.14) shows that Ac ∩K ∈M.

3. If {Aj}j≥1 ⊂ S then we have to prove that A := ∪j≥1Aj ∈ S. Fix some compact K.

Denote by Ãj := Aj ∩K ∈ M. Define B1 := Ã1 and Bn := Ãn \ Ãn−1 if n ≥ 2. The sets Bj are
all distinct and belong to M due to Step VI. We have the identity:

A ∩K = ∪j≥1Bj .

We note that F (A ∩K) ≤ F (K) <∞, thus according to Lemma 6.12 we have that A ∩K ∈ M.
Hence A ∈ S.

Finally, we need to prove that all open sets are in S. We will prove instead that all closed sets
are in S; then if V is open, we have that V = (V c)c and we are done. Now if C is closed, then for
any compact K we have that C ∩K is compact, hence C ∩K ∈M and C ∈ S.

6.1.8 Step VIII

Remember that µ denotes the restriction of F to S.

Lemma 6.16. We have:
M = {E ∈ S : µ(E) <∞}.

Proof. We first prove the inclusion ’⊂’. Let A ∈M. Then for every compact K (which belongs to
M according to Step II) we have that A ∩K ∈ M from Step VI. Thus A ∈ S, and since A ∈ M
we have F (A) = µ(A) <∞.

Now we prove the other inclusion. Let A ∈ S with µ(A) < ∞. From the definition of
F (A) = µ(A) in (6.3), it follows that there exists some open set V with A ⊂ V , F (V ) < ∞ and
F (V ) < µ(A) + ε/2. Due to Lemma 6.9 in Step III we conclude that V ∈M (hence in S).

From Lemma 6.13 in Step V applied to E = V ∈ M (there we can put E = V and the result
is unchanged), we can construct a compact H ⊂ V such that F (V \H) ≤ ε/2.

Since A ∩H belongs to M, there exists a compact K ⊂ (A ∩H) ⊂ A such that F (A ∩H) <
F (K) + ε/2. Since A ⊂ (A ∩H) ∪ (V \H), from Step I we have:

F (A) ≤ F (A ∩H) + F (V \H) < F (K) + ε.

Thus A ∈M.

6.1.9 Step IX

Lemma 6.17. µ is a measure on S.

Proof. The non-negativity of µ comes from the definition of F . We need to prove that µ is
countably additive. Let {Aj} ⊂ S be disjoint sets and denote by A := ∪j≥1Aj . From Step
VII we know that S is a σ-algebra thus A ∈ S. Now if µ(A) = ∞, from Step I it follows that
∞ = µ(A) =

∑
j≥1 µ(Aj).

If µ(A) < ∞, then from Step VIII it follows that A ∈ M. Since Aj ⊂ A it follows that
µ(Aj) ≤ µ(A) < ∞, thus Step VIII implies again that all Aj ’s are in M. Finally, from Step IV
(Lemma 6.12) it follows that

∑
j≥1 µ(Aj) = µ(A) and we are done.

6.1.10 Step X

Lemma 6.18. For every f ∈ Cc(X) we have Λ(f) =
∫
X
fdµ.

Proof. Every function f ∈ Cc(X) can be written as f = u + iv where u and v are continuous
and real valued. Since Λ is linear, it is enough to prove the lemma for real valued f . In fact it is
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enough to prove that Λ(f) ≤
∫
X
fdµ for every real valued function; this is because we would also

have:

−Λ(f) = Λ(−f) ≤
∫
X

(−f)dµ = −
∫
X

fdµ

which provides the other inequality.
Now fix ε > 0. Let K be the compact support of a given f . Since f is continuous, Theorem

3.4 implies that f(K) ⊂ R is compact, thus it must be bounded and closed. Hence there exists an
interval [a, b] which contains the range of f(X) = f(K) ∪ {0} (actually, for continuous functions
we have 0 ∈ f(K), or more precisely, f(∂K) = {0}).

Choose n + 1 points {yj}nj=0 such that y0 < a < y1 < . . . yn = b and maxnj=1 |yj − yj−1| < ε.
Introduce the sets

Ej := K ∩ f−1((yj−1, yj ]) = {x ∈ K : yj−1 < f(x) ≤ yj}, j ∈ {1, . . . n}.

Because f is continuous, and because all intervals of the type (α, β] ⊂ R are Borel sets, then the
f−1((yj−1, yj ])’s are disjoint Borel sets in X and must belong to S (see Step VII). Then the Ej ’s

belong toM. Thus we can find some open sets Ṽj in X such that Ej ⊂ Ṽj and µ(Ṽj) < µ(Ej)+ε/n.
Since f−1((yj−1, yj + ε)) is open according to Theorem 3.2, and includes Ej , then

Vj = Ṽj ∩ f−1((yj−1, yj + ε))

is open, contains Ej and

µ(Vj) ≤ µ(Ṽj) < µ(Ej) + ε/n,

and at the same time:
f(x) ≤ yj + ε, ∀x ∈ Vj .

Clearly, K ⊂ ∪nj=1Ej ⊂ ∪nj=1Vj , and according to the partition of unity theorem we can find
some functions hj such that

∑
j hj = 1 on K and hj is supported in Vj . Hence:

f(x) =

n∑
j=1

f(x)hj(x) ≤
n∑
j=1

(yj + ε)hj(x).

Then using the monotony and linearity of Λ, we have:

Λ(f) ≤
n∑
j=1

(yj + ε)Λ(hj) = −|a|
n∑
j=1

Λ(hj) +

n∑
j=1

(yj + |a|+ ε)Λ(hj).

Now
∑n
j=1 Λ(hj) = Λ(

∑n
j=1 hj) ≥ µ(K) right from the definition of µ. Together with the fact

that yj + |a| > 0 for all j ≥ 1, we have:

Λ(f) ≤ −|a|µ(K) +

n∑
j=1

(yj + |a|+ ε)Λ(hj)

≤ −|a|µ(K) +

n∑
j=1

(yj + |a|+ ε)µ(Vj) ≤ −|a|µ(K) +

n∑
j=1

(yj + |a|+ ε)(µ(Ej) + ε/n)

≤ −|a|µ(K) +

n∑
j=1

(|a|+ 2ε)(µ(Ej) + ε/n) +

n∑
j=1

(yj − ε)µ(Ej) +
ε

n

n∑
j=1

(yj − ε).

On each Ej with j ∈ {1, . . . , n} we have that yj − ε ≤ yj−1 < f(x) hence

n∑
j=1

(yj − ε)χEj (x) ≤ f(x).
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Thus we have:

n∑
j=1

(yj − ε)µ(Ej) ≤
∫
X

fdµ,

n∑
j=1

µ(Ej) = µ(K) <∞, yj ≤ b.

This gives:

Λ(f) ≤
∫
X

fdµ+ 2εµ(K) + ε(b+ |a|+ ε).

Since ε was arbitrary, the proof is over.

6.2 Summarizing the proof of Riesz’ Theorem

We have proved in Lemma 6.2 that if such a measure exists, then it must be unique. Then in
Definition 6.5 we introduced a collection of sets S and a map µ : S 7→ R+ which turn out to be a
σ-algebra (proved in Lemma 6.15) and a measure (proved in Lemma 6.17).

The identity claimed in (a) is proved in Step X (see Lemma 6.18). The estimate (b) is proved
in Step II (see Lemma 6.7). The identity (c) is fulfilled right from the beggining, in the way µ was
defined (through F ) in (6.2) and (6.3). Point (d) is shown for open sets in Step III (see Lemma
6.9), while for arbitrary sets E ∈ S with µ(E) < ∞ it is shown in Step VIII (see Lemma 6.16).
Finally, point (e) follows from (d): if A ⊂ E then F (A) ≤ F (E) = µ(E) = 0 and every compact
K ⊂ A has F (K) ≤ F (A) = 0, thus A ∈ S and µ(A) = 0.

7 Spaces of bounded/continuous functions

Proposition 7.1. Let (X, d) be a metric space, (Y, || · ||) a normed space, and H an arbitrary
non-empty subset of X. We define

B(H;Y ) := {f : H → Y : sup
x∈H
||f(x)|| <∞}.

Define the map || · ||∞ : B(H;Y ) → R+, ||f ||∞ := supx∈H ||f(x)||. Then (B(H;Y ), || · ||∞) is a
normed space.

Proof. Clearly, ||f ||∞ = 0 if and only if f(x) = 0 for all x ∈ H. Moreover,

||λf ||∞ = sup
x∈H
||λf(x)|| = |λ| sup

x∈H
||f(x)|| = |λ| ||f ||∞.

Finally, let us prove the triangle inequality. Take f, g ∈ B(H;Y ); then for every x ∈ H we
apply the triangle inequality in (Y, || · ||):

||f(x) + g(x)|| ≤ ||f(x)||+ ||g(x)|| ≤ ||f ||∞ + ||g||∞.

Thus ||f ||∞ + ||g||∞ is an upper bound for the set {||f(x) + g(x)|| : x ∈ H}, hence

sup
x∈H
||f(x) + g(x)|| = ||f + g||∞ ≤ ||f ||∞ + ||g||∞.

Proposition 7.2. We denote by C(H;Y ) the set B(H;Y ) where the functions are also continuous.
Assume that (Y, || · ||) is a Banach space. Then (C(H;Y ), || · ||∞) is a Banach space, too.
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Proof. We need to prove that every Cauchy sequence is convergent. Assume that {fn}n≥1 ⊂
C(H;Y ) is Cauchy, i.e. for every ε > 0 one can find NC(ε) > 0 such that ||fp − fq||∞ < ε if
p, q > NC(ε). We have to show that the sequence has a limit f which belongs to C(H;Y ).

We first construct f . For every x0 ∈ H we consider the sequence {fn(x0)}n≥1 ⊂ Y . Note
the difference between {fn(x0)}n≥1 (a sequence of vectors from Y ) and {fn}n≥1 (a sequence of
functions from C(H;Y )). It is easy to see that {fn(x0)}n≥1 is Cauchy in Y (exercise), and because
Y is complete, then {fn(x0)}n≥1 has a limit in Y . We denote it with f(x0).

Second, we prove the ”uniform convergence” part, or the convergence in the norm || · ||∞. More
precisely, it means that for every ε > 0 we must construct N1(ε) > 0 so that:

sup
x∈H
||f(x)− fn(x)|| < ε whenever n > N1(ε). (7.1)

In order to do that, take an arbitrary point x ∈ H. For every p, n ≥ 1 we have

||f(x)− fn(x)|| ≤ ||f(x)− fp(x)||+ ||fp(x)− fn(x)||
≤ ||f(x)− fp(x)||+ ||fp − fn||∞. (7.2)

If we choose n, p > NC(ε/2), then we have ||fp − fn||∞ < ε/2 and

||f(x)− fn(x)|| ≤ ||f(x)− fp(x)||+ ε/2, n, p > NC(ε/2).

But the above left hand side does not depend on p, thus if we take p→∞ on the right hand side,
we get:

||f(x)− fn(x)|| ≤ ε/2 < ε, n > NC(ε/2). (7.3)

Note that this inequality holds true for every x. This means that ε/2 is an upper bound for the
set {||f(x)− fn(x)|| : x ∈ H}, hence (7.1) holds true with N1(ε) = NC(ε/2).

Third, we must prove that f is a continuous function on H. Fix some point a ∈ H. Choose
ε > 0. Since limn→∞ fn(a) = f(a), we can find N2(ε, a) > 0 such that ||fn(a) − f(a)|| < ε/3
whenever n > N2. We define n1 := max{N1(ε/3) + 1, NC(ε/3) + 1, N2 + 1}. Because fn1

is
continuous at a, we can find δ(ε, a) > 0 so that for every x ∈ H with d(x, a) < δ we have
||fn1(x)− fn1(a)|| < ε/3. Thus

||f(x)− f(a)|| ≤ ||f(x)− fn1
(x)||+ ||fn1

(x)− fn1
(a)||+ ||fn1

(a)− f(a)||
< ε/3 + ε/3 + ε/3 = ε, (7.4)

We used (7.1) in order to replace the first and the third term with ε/3, and continuity of fn1
at a

for the second term. Since a is arbitrary, we can conclude that f is continuous on H, thus belongs
to C(H;Y ). Therefore we can rewrite (7.1) as:

||f − fn||∞ < ε whenever n > N1(ε), (7.5)

and the proof is over.

Remark 7.3. The ”ordinary” convergence in the functional space (C(H;Y ), || · ||∞) (given in
(7.5)) is nothing but the uniform convergence of a sequence of functions defined on the set H (see
(7.1)). One can find more details in Wade, exercise 10.6.6 in Chapter 10.6 (page 376).

8 Compactness in (C(H;Rn), || · ||∞)
In this section we assume that H is a compact set in (X, d). This extra-condition automatically
implies that ||f ||∞ <∞ for all continuous functions, because for every continuous map f we have
that H 3 x→ ||f(x)|| ∈ R+ is a continuous real valued function, defined on a compact set. Then
Theorem 10.63 in Wade says that we can find xM ∈ H such that supx∈H ||f(x)|| = ||f(xM )|| <∞.

We here are interested in finding some sufficient conditions for a subset of (C(H;Rn), || · ||∞),
n ≥ 1, in order to be compact. (We know that in the Euclidian space (Rn, || · ||) a set is compact
if and only if it is bounded and closed; this is the Heine-Borel theorem. These conditions are not
sufficient here.)

22



Definition 8.1. We say that f : H → Y is uniformly continuous if for every ε > 0, we can
find δ(f, ε) > 0 such that for all points x, y ∈ H which fulfill d(x, y) ≤ δ(f, ε) we have that
||f(x)− f(y)|| ≤ ε.

Theorem 9.32 in Wade (Heine’s theorem) shows that if H is compact, then f : H → Rn is
continuous if and only if it is uniformly continuous.

Definition 8.2. A family of functions K ⊂ C(H;Rn) is called equibounded if there exists a
constant MK <∞ such that

sup
x∈H
||f(x)|| = ||f ||∞ ≤MK , ∀f ∈ K. (8.1)

Definition 8.3. A family of functions K ⊂ C(H;Rn) is called uniformly equicontinuous if for
every ε > 0 there exists δ(ε) > 0, such that for every f ∈ K and for every pair of points x, y ∈ H
which obey d(x, y) ≤ δ(ε), one has that ||f(x)− f(y)|| ≤ ε. In other words, (see Definition 8.1)

inf
f∈K

δ(f, ε) = δK(ε) > 0. (8.2)

Definition 8.4. A subset Z of a metric space (M,d) is called dense in M if every point x ∈M is
the limit of a sequence {xn}n≥1 ⊆ Z. A set Z is called countable if there exists a map j : Z → N
which is injective. A metric space is called separable if it contains a countable dense subset.

Theorem 8.5. (Arzela-Ascoli). Let (X, d) be a metric space, and let H be a compact subset
of X. Assume that Z ⊂ H is countable and dense in H (i.e. (H, d) is separable). Denote by
K ⊂ C(H;Rn) the family of all functions which are equibounded by some MK and uniformly
equicontinuous with some δK (ækvibegrænset og uniformt ækvikontinuert). Then K is sequentially
compact (følgekompakt) and thus compact. The closure in C(H;Rn) of any subset of K is also
compact.

Proof. We will show that given an arbitrary sequence of functions {fn}n≥1 ⊂ K, one can always
find a subsequence which converges to a ”point” in K (note that a point in K means a function
defined on H; we denote this ”point” with f). This would prove that K is sequentially compact.

Because the dense set Z is countable, we can represent it in the following way:

Z = {z1, z2, z3, ...}.

The sequence {fn(z1)}n≥1 ⊂ Rn is bounded because we have ||fn(z1)|| ≤ MK for every n, see
(8.1). The Bolzano-Weierstrass theorem allows us to find a subsequence {fn1

(z1)}n1≥1 ⊂ Rn,
which converges to a point in Rn; we call this point with f(z1).

Now consider the sequence {fn1
(z2)}n1≥1 ⊂ Rn. This sequence is also bounded, thus we can

find a second subsequence
{fn2(z2)}n2≥1 ⊆ {fn1(z2)}n1≥1,

which converges to a point in Rn; we call this point with f(z2). Note that the subsequence of
functions {fn2}n2≥1 ⊆ {fn1}n1≥1 converges pointwise in both z1 and z2.

We can continue this procedure and obtain a subsequence of functions {fnp}np≥1 where

{fnp}np≥1 ⊆ {fnp−1
}np−1≥1 ⊆ ... ⊆ {fn}n≥1

and {fnp}np≥1 converges pointwise in all the points {z1, ..., zp} towards the limits {f(z1), ..., f(zp)}.
More precisely, for every ε > 0, there exists N(p, ε) > 1 such that

||fnp(zk)− f(zk)|| < ε, whenever np > N(p, ε), k ∈ {1, ..., p}. (8.3)

Introduce the notation Np := N(p, 1/p) + 1. Then we have the important estimate:

||fNp(zk)− f(zk)|| < 1/p, whenever k ∈ {1, ..., p}. (8.4)
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This means that we have constructed a ”diagonal subsequence” {fNp}p≥1 having the property
that {fNp(zk)}p≥1 ⊂ Rn is convergent for every fixed k, and we denote the limits with:

lim
p→∞

fNp(zk) = f(zk), k fixed. (8.5)

This is the same thing as to say that the sequence {fNp}p≥1 converges pointwise on Z:

lim
p→∞

fNp(z) = f(z), ∀z ∈ Z. (8.6)

In the next lemma we will show that the sequence {fNp}p≥1 is a Cauchy sequence in C(H;Rn).
Let us now assume that this holds true, and let us prove the Arzela-Ascoli theorem.

If this sequence is Cauchy, then according to Proposition 7.2 it will have a limit in C(H;Rn),
which we denote by F . But then F is continuous on H and equal to f(z) for every z ∈ Z. The
only thing remained to prove is that F ∈ K, i.e. to verify that F verifies (8.1) and (8.2).

First, (8.1) follows from:

||F (x)|| = lim
p→∞

||fNp(x)||, ||fNp(x)|| ≤MK , x ∈ H,

and (8.2) from:

||F (x)− F (y)|| = lim
p→∞

||fNp(x)− fNp(y)||,

||fNp(x)− fNp(y)|| ≤ ε whenever d(x, y) ≤ δ(ε). (8.7)

Thus F ∈ K, and the theorem is proved. Hence the only remaining technical ingredient is the
following lemma:

Lemma 8.6. For every ε′ > 0, there exists NC(ε′) > 0 such that for every p, q > NC(ε′) we have

sup
x∈H
||fNp(x)− fNq (x)|| = ||fNp − fNq ||∞ < ε′.

Proof. Choose 0 < ε < ε′. Consider δK(ε/3) as defined in (8.2).
Let us now show that

{BδK(ε/3)/2(zj) : zj ∈ Z}
is an open covering of H. First, because Z is dense in H, then for every point x ∈ H there
exists a sequence {xm}m≥1 ⊂ Z such that xm → x. Second, we may find xM ∈ Z such that
BδK(ε/3)/3(x) ⊂ BδK(ε/3)/2(xM ) provided d(x, xM ) < δK(ε/3)/6 (exercise). We can write:

H ⊂
⋃
x∈H

BδK(ε/3)/3(x) ⊂
∞⋃
k=1

BδK(ε/3)/2(zk).

Because H is compact, we can extract a finite open subcovering:

H ⊆
m(ε)⋃
l=1

BδK(ε/3)/2(zkl). (8.8)

Fix an arbitrary point x ∈ H. We can find some l ∈ {1, ...,m(ε)} such that x ∈ BδK(ε/3)/2(zkl).
We can write:

||fNp(x)− fNq (x)|| (8.9)

≤ ||fNp(x)− fNp(zkl)||+ ||fNp(zkl)− fNq (zkl)||+ ||fNq (zkl)− fNq (x)||.

Because K is uniformly equicontinuous, and because d(x, zkl) < δK(ε/3), then the first and third
term in the right hand side of (8.9) are less than ε/3 (see Definition 8.3), uniformly in p and q.
Thus

||fNp(x)− fNq (x)|| ≤ 2ε/3 + ||fNp(zkl)− fNq (zkl)||, ∀p, q ≥ 1. (8.10)
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Note the very important thing that there only are a finite number of points of the type zkl , i.e.
m(ε) of them. Hence (8.5) implies that the m(ε) sequences {fNr (zkl)}r≥1 ⊂ Rn are all Cauchy at
the same time; we can thus find a large enough index N1(ε/3) such that if p, q > N1(ε/3) then

||fNp(zkl)− fNq (zkl)|| < ε/3, 1 ≤ l ≤ m(ε).

Use this in (8.10) and obtain:

||fNp(x)− fNq (x)|| < ε, whenever p, q ≥ NC(ε′) := N1(ε/3). (8.11)

Because NC(ε′) is independent of x, we can write

sup
x∈H
||fNp(x)− fNq (x)|| ≤ ε < ε′, p, q ≥ NC(ε′)

and the lemma is proved, and so is the theorem.

9 Hausdorff’s Maximality Theorem and Zorn’s lemma

A set S is partially ordered if there exists an order relation ≤ which is reflexive (x ≤ x for all x),
antisymmetric (if x ≤ y and y ≤ x then x = y) and transitive (x ≤ y and y ≤ z implies x ≤ z). If
x ≤ y and x 6= y, then we write x < y or y > x.

A chain in S is a subset C which is totally ordered, i.e. whose any two elements are comparable:
For every x, y ∈ C either x ≤ y or y ≤ x. A chain C has un upper bound if there exists y ∈ S such
that x ≤ y for all x ∈ C.

An element m ∈ S is called maximal if there is no other x ∈ S such that m < x. This does
not mean that m is the largest element, which would be an element M ∈ S such that x ≤ M for
every x ∈ S.

9.1 Collection of sets ordered by set inclusion

Let F be any collection of sets, F being partially ordered by set inclusion. A rope Φ in F is a
subcollection of sets such that for every A,B ∈ Φ, we either have A ⊂ B or B ⊂ A. The hat of
such a rope is by definition the union of all its elements: Φ̂ = ∪A∈ΦA.

Lemma 9.1. Consider a nonempty partially ordered set (S,≤). Define Fs to be the set of chains
of S, ordered by set inclusion. Then Fs is not empty, and the hat of any rope of Fs is an element
of Fs (i.e. it is a chain in S).

Proof. Fs is not empty because for every x ∈ S, the set {x} is a chain, thus in fact S can be
identified with a subset of Fs. Now let us prove that the hat of any rope of Fs is a chain in S.
Consider such a rope Φ. Take any two points x, y in Φ̂. The point x must belong to some chain
C1, while y belongs to some C2. Moreover, both C1 and C2 belong to Φ. From the definition of
a rope it follows that either C1 ⊂ C2 or C2 ⊂ C1. But in that case x and y belong to the same
chain, hence they must be comparable.

We now define the ’succesion function’. For every chain A ∈ Fs, we consider the set A∗ ⊂ S \A
which consist of elements x with the property that A ∪ {x} is also a chain, hence A ∪ {x} ∈ Fs.
Assume that A∗ is not empty. Using the axiom of choice, given A∗ we can choose a representative
x∗ ∈ A∗. Then we define the ’succesion operation’ gs : Fs → Fs given either by gs(A) = A if A∗

is empty, or by gs(A) = A ∪ {x∗} if A∗ is not empty. A chain for which A∗ is empty is called
maximal. We see that gs(A) contains at most one extra-element compared with A. We are now
able to formulate the Hausdorff maximality theorem:

Theorem 9.2. Let (S,≤) be a nonempty partially ordered set. Then there exists a maximal chain
Am, i.e. gs(Am) = Am.
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9.2 Proof of Theorem 9.2

We formulate and prove a more general result, given as a proposition:

Proposition 9.3. Let F be a nonempty collection of subsets of an arbitrary set S. Suppose that
F is partially ordered by set inclusion, and for every rope Φ ∈ F we have that Φ̂ ∈ F. Suppose
g : F→ F is a function such that A ⊂ g(A) and g(A)\A contains at most one element of S. Then
there exists an element Am of F such that g(Am) = Am.

Proof. We see that the only condition on F is to contain the hats of all its ropes; if S is a partially
ordered set and F = Fs, then this fact was proved in Lemma 9.1. Thus Proposition 9.3 proves the
theorem at once.

Fix a set A0 ∈ F. A subcollection of sets T ∈ F is called a tower if the following three conditions
are fulfilled:
P1: A0 ⊂ A if A ∈ T ;
P2: If a rope Φ is included in T , then Φ̂ ∈ T ;
P3: If A ∈ T , then g(A) ∈ T .

Let us first prove that there exist nonempty towers. Consider Tmax := {A ∈ F : A0 ⊂ A}.
Then clearly P1 is satisfied. If Φ is a rope in Tmax then A0 ⊂ B for all B ∈ Φ, thus A0 ∈ Φ̂ and
Φ̂ ∈ Tmax, satisfying P2. Finally, if A ∈ Tmax then A0 ⊂ A ⊂ g(A) ∈ Tmax and P3 holds.

Let us define Tmin to be the intersection of all possible towers; it is easy to see that Tmin
is a tower, nonempty since it contains A0. It is important to note that if we can prove that a
subcollection T ′ of Tmin is a tower, then T ′ = Tmin.

Now let us assume that we can prove that Tmin is also a rope. Being included in itself (a tower),
P2 implies that T̂min ∈ Tmin. Then P3 says that g(T̂min) ∈ Tmin, thus necessarily g(T̂min) ⊂ T̂min.
In this case, Am = T̂min, and the proposition would be proved.

Hence the only thing we miss is to show that Tmin is a rope, i.e. for every A,B ∈ Tmin we
either have A ⊂ B or B ⊂ A. Consider the subcollection Γ ⊂ Tmin given by

Γ := {A ∈ Tmin : ∀B ∈ Tmin, either A ⊂ B or B ⊂ A}.
In other words, Γ is the largest totally ordered subset of Tmin. The strategy is to show that Γ

is a tower, thus it will equal Tmin and hence Tmin would be totally ordered, thus a rope.
Let us verify P1 for Γ. Since A0 is a subset of all elements of Tmin, it will be included in all

elements of Γ. It also shows that A0 ∈ Γ.
Let us verify P2 for Γ. Consider a rope Φ ⊂ Γ. Fix an arbitrary B ∈ Tmin. If for all A ∈ Φ

we have that A ⊂ B, it follows that Φ̂ ⊂ B. If there exists some A ∈ Φ such that B ⊂ A, then
B ⊂ Φ̂. Thus Φ̂ ∈ Γ.

Let us verify P3 for Γ. This is more complicated than for the previous two properties. It boils
down to showing that for every A ∈ Γ we have g(A) ∈ Γ. In other words, we need to show that for
every B ∈ Tmin we either have g(A) ⊂ B or B ⊂ g(A). Since A ∈ Γ, the set A can be compared
with B. If B ⊂ A, then clearly B ⊂ g(A). But if A ⊂ B, we cannot automatically conclude that
g(A) ⊂ B. For this we need the next lemma:

Lemma 9.4. Fix A ∈ Γ and define TA to be the set of those B ∈ Tmin for which either B ⊂ A or
g(A) ⊂ B. Then TA is a tower and TA = Tmin. Thus for every B ∈ Tmin for which A ⊂ B, we
have g(A) ⊂ B.

Proof. The property P1 is easily verified. Now consider a rope Φ ⊂ TA. If for every D ∈ Φ we
have that D ⊂ A, then Φ̂ ⊂ A. If there exists some D ∈ Φ such that g(A) ⊂ D, then g(A) ⊂ Φ̂.
It follows that Φ̂ ∈ TA and P2 is verified. We need to verify P3. Take B ∈ TA and let us show
that either g(B) ⊂ A or g(A) ⊂ g(B). Since B ∈ TA then either g(A) ⊂ B ⊂ g(B), or B ⊂ A; if
B = A then again g(A) ⊂ g(B). Assume that B is a proper subset of A. Because A ∈ Γ it can be
compared with g(B). If g(B) ⊂ A we are done. The other possibility is A ⊂ g(B). If g(B) = A
we are done, thus assume that A is a proper subset of g(B); but this is impossible, because in this
case g(B) \B would contain at least two elements. Thus g(B) ∈ TA and P3 is satisfied. Thus TA
is a tower and equals Tmin.
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We can now finish the verification of P3 for Γ. Remember that we had A ∈ Γ and B an
arbitrary element of Tmin. The goal is to show that either B ⊂ g(A) or g(A) ⊂ B. Since A ∈ Γ,
then either B ⊂ A (and then we are done since B ⊂ g(A)), or A ⊂ B. Then Lemma 9.4 implies
that g(A) ⊂ B and P3 is verified. It follows that Γ is a tower, thus it equals Tmin. The proof of
the proposition is over.

9.3 Zorn’s Lemma

Theorem 9.5. Let S be a partially ordered set in which every chain has an upper bound. Then
S has at least one maximal element.

Proof. Assume that S is a partially ordered set, where every chain has an upper bound. According
to the Hausdorff maximality theorem, there exists a maximal chain Cmax ⊆ S. The hypothesis
implies that Cmax has an upper bound x ∈ S, and Cmax ∪{x} is another chain in S. But Cmax is
maximal, therefore x ∈ Cmax and x must be this chain’s largest element. Finally, x is a maximal
element in S, because if there exists some x < y we can consider Cmax∪{y} which would contradict
the maximality of Cmax. The proof of the theorem is over.

10 The Hahn-Banach Theorem

Let (V, || · ||v) be a complex normed vector space. We say that u : V 7→ R is a real bounded linear
functional if u is continuous, u(x + y) = u(x) + u(y) for all x, y ∈ V , u(αx) = αu(x) for every
α ∈ R and x ∈ V .

Lemma 10.1. Let f : V 7→ C be a bounded complex linear functional. Then u(y) := Re(f(y))
defines a real bounded linear functional. Conversely, if v is a real bounded linear functional, then
φ(y) := v(y) − iv(iy) defines a bounded complex linear functional. In both cases, the norms are
preserved.

Proof. Given f , let us consider u(y) = Re(f(y)) for all y ∈ V . Clearly, u is linear and real
homogeneous. Since f(ix) = if(x) we must have f(ix) = u(ix) + iIm(f(ix)) = if(x) = iu(x) −
Im(f(x)), which implies that Im(f(x)) = −u(ix) for all x. Thus we must have f(x) = u(x)−iu(ix).
Moreover, |u(x)| ≤ |f(x)| ≤ ||f || for all x of norm one, thus ||u|| ≤ ||f ||. For a given x of norm one
we can write f(x) = eiarg(f(x))|f(x)|, or |f(x)| = f(e−iarg(f(x))x) = u(e−iarg(f(x))x) ≤ ||u||. Thus
||u|| = ||f ||.

Now given v, let us consider φ(y) = v(y)− iv(iy). CLearly, φ is linear and real homogeneous.
We only need to check that φ(ix) = iφ(x). Indeed, using the definition, we have φ(ix) = v(ix)−
iv(−x) = iv(x) + v(ix) = iφ(x).

Theorem 10.2. (Hahn-Banach) Let M ⊂ V be a linear subspace and f : M 7→ C be a bounded
complex linear functional. Then there exists a bounded complex linear functional F : V 7→ C such
that F (x) = f(x) if x ∈M and ||F || = ||f ||.

Proof. From the above lemma we see that it is enough to extend the real linear functional u(x) =
Re(f(x)) from M to V , i.e. to find U : V 7→ R a real linear functional such that U(x) = u(x) if
x ∈ M and ||U || = ||u||, and at the end to define F (x) = U(x)− iU(ix). If f = 0 on M then we
can choose F = 0. Otherwise, we may assume without loss of generality that ||f || = ||u|| = 1.

Let x̃ be a vector not belonging to M . We can form the set

M̃ := {x+ (λ+ iµ)x̃ : x ∈M and λ, µ ∈ R}.
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Clearly, M̃ is a complex subspace of V . When we extend u from M to M̃ we do it in two steps:
First we keep µ = 0 and extend u to M̃0 := {x + λx̃ : x ∈ M and λ ∈ R}, and then to
M̃ = {x + (ix̃)µ : x ∈ M̃0 and µ ∈ R}. In both cases it boils down to choosing some real values
for ũ(x̃) and ũ(ix̃), choices which have to preserve linearity, real homogeneity and the unit norm
of u.

For y = x + λx̃ ∈ M̃0 we define ũ(y) := u(x) + λA, where A ∈ R is to be chosen later. First,
linearity and real homogeneity are satisfied for any A. Second, we need to insure that if λ 6= 0 we
still have |ũ(x+ λx̃)| ≤ ||x+ λx̃||v, or equivalently |ũ(x′ + x̃)| ≤ ||x′ + x̃||v, for all x′ ∈M . This is
the same as:

−||x′ + x̃||v ≤ ũ(x′ + x̃) = u(x′) +A ≤ ||x′ + x̃||v, ∀x′ ∈M,

or:
−||x′ + x̃||v − u(x′) ≤ A ≤ ||x′ + x̃||v − u(x′), ∀x′ ∈M.

A sufficient condition for the existence of such a number A is to have:

−||x′ + x̃||v − u(x′) ≤ ||x+ x̃||v − u(x), ∀x, x′ ∈M.

But this is the same as

u(x)− u(x′) {= u(x− x′) ≤ ||x− x′||v = ||x+ x̃− (x′ + x̃)||v} ≤ ||x+ x̃||v + ||x′ + x̃||v

and we are done.
In a completely similar way we can extend ũ from M̃0 to M̃ , where the role of M is played by

M̃0, x̃ is replaced by ix̃ and λ by µ. Then we define f̃(x) = ũ(x)− iũ(ix) for every x ∈ M̃ , which
is a linear, norm preserving extension of f from M to M̃ .

Now let us define the set S whose elements are pairs of the form (M ′, f ′) where M ′ is a complex
linear subspace of V containing M , while f ′ is a norm preserving linear extension of f . We can
introduce an order relation ≤ on S, where (M1, f1) ≤ (M2, f2) means that M ⊂ M1 ⊂ M2,
while f2 extends f1 and both are extensions of f . Hausdorff’s maximality theorem 9.2 implies the
existence of a maximal chain Am. The set of subspaces M ′ for which (M ′, f ′) ∈ Am is totally

ordered with respect to set inclusion. Define M̂ := ∪(M ′,f ′)∈AmM
′, which is a linear subspace of

V due to the total ordering of M ′’s. Define F : M̂ 7→ C such that F (x) = f ′(x) if x ∈ M ′ ⊂ M̂ ;
this is well-defined because if also x ∈M ′′, then either M ′ ⊂M ′′ or M ′′ ⊂M ′, and f ′(x) = f ′′(x)
because they coincide on the smaller set.

Thus M̂ is a complex subspace of V , M ⊂ M̂ , and F is a linear, norm preserving extension of
f to M̂ . But now we claim that M̂ must be equal to V ; otherwise, we could find another extension
of F by enlarging M̂ in the same way as we did in the beginning of this proof. But this would
contradict the maximality of Am. The proof is over.

11 The completion of a normed space

Lemma 11.1. Let (V, || · ||) be a normed space, and denote by V ∗ the linear space of all maps
f : V 7→ C which are linear and continuous (i.e. linear functionals). Then V ∗ can be organized as
a Banach space.

Proof. The following three statements are equivalent: (a) A linear map is Lipschitz continuous on
V , (b) A linear map is continuous at x = 0, and (c) A linear map is bounded. Clearly, (a) implies
(b). Assuming that (b) holds, then for every ε0 > 0 there exists δ0 > 0 such that |f(x)| < ε0 if
||x|| < δ0. In order words, if y 6= 0:

|f(y)| = 2||y||
δ0

∣∣∣∣f ( δ0
2||y||

y

)∣∣∣∣ ≤ 2ε0
δ0
||y||,

which implies (c). Finally, (c) implies (a) by using the linearity.

28



For every f ∈ V ∗ we set ||f ||∗ := inf{C ≥ 0 : |f(x)| ≤ C||x||, ∀x ∈ V } = sup||x||=1 |f(x)|,
which defines a norm on V ∗. Let us prove that (V ∗, || · ||∗) is a Banach space, i.e. every Cauchy
sequence is convergent. Let {fn}n≥0 ⊂ V ∗ be such a Cauchy sequence. For a given x ∈ V ,
the sequence of complex numbers {fn(x)}n≥0 ⊂ C is Cauchy, thus has a limit which we denote
with f(x). Using the linearity of each fn one can prove that f is linear. Moreover, because
{fn}n≥0 ⊂ V ∗ is Cauchy, there exists some C ≥ 0 such that ||fn||∗ ≤ C for all n ≥ 0, and for
every x with ||x|| = 1 we have:

|f(x)| = lim
n→∞

|fn(x)| ≤ lim sup
n→∞

||fn||∗ ≤ C.

Thus f is bounded, too. Finally, fix some x ∈ V with ||x|| = 1. We have:

|f(x)− fq(x)| ≤ |f(x)− fp(x)|+ |fp(x)− fq(x)| ≤ |f(x)− fp(x)|+ ||fp − fq||∗

which leads to:

|f(x)− fq(x)| ≤ lim sup
p→∞

{|f(x)− fp(x)|+ ||fp − fq||∗} = lim sup
p→∞

||fp − fq||∗,

or ||f −fq||∗ ≤ lim supp→∞ ||fp−fq||∗ for all q ≥ 0. But because the sequence is Cauchy, the right
hand side can be made smaller than any ε if q is large enough, and the proof is over.

Theorem 11.2. Let (A, || · ||a) be a normed space. Then there exists a Banach space B with a
norm || · ||b and a linear mapping I : A→ B such that

||I(x)||b = ||x||a, ∀x ∈ A,

and I(A) is dense in B with respect to || · ||b. We call (B, || · ||b) the completion of (A, || · ||a).

Proof. Given A we can construct A∗ as in the previous lemma. Then we repeat this construction
one more time, where now V is the normed space (A∗, || · ||∗). In this way we obtain V ∗ = A∗∗ as
the Banach space containing all linear and bounded maps g : A∗ 7→ C. Let us prove that A can
be identified with a proper subspace of A∗∗.

For every any x in A we define the map gx : A∗ 7→ C given by gx(f) = f(x) for every element
f ∈ A∗. Then we have

gαx+βy(f) = f(αx+ βy) = αf(x) + βf(y) = αgx(f) + βgy(f), ∀x, y ∈ A, ∀α, β ∈ C,

which shows that gαx+βy = αgx + βgy. Clearly, if x = 0 then g0 = 0. The only thing remaining
to be proved is that ||gx||∗∗ = ||x||a for every x 6= 0.

First, for every f ∈ A∗ we have |gx(f)| = |f(x)| ≤ ||f ||∗||x||a, which means that ||gx||∗∗ ≤ ||x||a.
Second, denote by M = {λx : λ ∈ C} the one dimensional linear subspace of A generated by x.

For every y ∈M there exists a unique λy ∈ C such that y = λyx. Define fM (y) = λy||x||2a. Clearly,
fM is linear and ||fM ||∗ = ||x||a. The Hahn-Banach theorem provides us with a norm preserving
linear extension F defined on the whole A. Then we have gx(F ) = F (x) = ||x||2a = ||x||a||F ||∗,
which shows that ||x||a ≤ sup||f ||∗=1 |gx(f)| = ||gx||∗∗.

In this way we have identified an injection map I : A 7→ A∗∗ where I(x) = gx, I(A) is a linear
subspace of A∗∗ and ||I(x)||∗∗ = ||x||a. Now the Banach space B we are looking for is nothing but
the closure I(A) in (A∗∗, || · ||∗∗).

12 Baire’s Category Theorem

Denote the open ball of radius ε and centred at x by Bε(x) := {y ∈ B : ||y − x|| < ε}. The
complementary in B of a set S ⊆ B is denoted by Sc.
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Theorem 12.1. Consider a Banach space B, and a sequence of closed sets {Sn}n≥1 such that

B =
⋃
n≥1

Sn. (12.12)

Then there exists at least one set Sn with non-empty interior.

Proof. Assume the contrary, that is each Sn has an empty interior. One can re-state this in a
more formal way: for every x ∈ Sn, and for every ε > 0, we have:

Bε(x) ∩ Scn 6= ∅, ∀ε > 0. (12.13)

We can assume that all sets Sn are non-empty. We also have that Scn 6= ∅, since otherwise Sn = B
which would have a non-empty interior.

Let therefore x1 be a point of Sc1. Because S1 is closed, we have that Sc1 is open, therefore
there exists ε1 > 0 such that

Bε1(x1) ⊂ Sc1. (12.14)

Starting from x1 and ε1, we will inductively define two sequences {xn}n≥1 ⊂ B and {εn}n≥1 ⊂ R+,
having several properties. First, we need:

εn+1 <
εn
3
, n ≥ 1. (12.15)

Second, we need that:
Bεn(xn) ⊂ Scn, n ≥ 1, (12.16)

and third:
||xn+1 − xn|| <

εn
3
, n ≥ 1. (12.17)

Let us investigate the consequences of having such sequences, and we will later on prove their
existence. First, (12.15) leads us to the estimate:

εj <
εj−1

3
< ... <

εn
3j−n

, ∀ j > n ≥ 1. (12.18)

In particular, εn < ε1/3
n−1 → 0 when n→∞.

Second, we can prove that {xn}n≥1 is a Cauchy sequence, because for every p ≥ 1 we can write

||xn+p − xn|| = ||
n+p−1∑
j=n

[xj+1 − xj ]|| ≤
n+p−1∑
j=n

||xj+1 − xj ||

<

n+p−1∑
j=n

εj/3 <

∞∑
j=n

εj/3

<
εn
3

∑
k≥0

3−k =
εn
2
→ 0, n→∞. (12.19)

In the first line we used the triangle inequality, in the second line we used (12.17), and in the third
line (12.18).

Because B is a Banach space, {xn}n≥1 is convergent and has a limit x ∈ B. But then we have
(use the triangle inequality)

||x− xn|| ≤ ||x− xn+p||+ ||xn+p − xn|| < ||x− xn+p||+
εn
2
, ∀ p ≥ 1.

Since limp→∞ ||x− xn+p|| = 0, taking p to infinity in the above estimate gives us ||x− xn|| < εn,
or x ∈ Bεn(xn), or x ∈ Scn (see (12.16)), or x 6∈ Sn for all n. But this contradicts (12.12).

Therefore the only remaining thing is the construction of our sequences. Let us first construct
x2 and ε2.
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(i). If x1 ∈ Sc2, then put x2 = x1. Then since Sc2 is open, we can find ε′ > 0 such that
Bε′(x1) ⊂ Sc2. Now choose ε2 to be the minimum between ε′ and ε1/4. Clearly, (12.15) and
(12.17) hold true for n = 1 (we here have ||x1 − x2|| = 0), while (12.16) holds true for n = 1, 2.

(ii). If x1 6∈ Sc2, then of course x1 ∈ S2. From (12.13) we have that for every ε′ > 0 we can find
y(ε′) ∈ Bε′(x1) ∩ Sc2, that is ||y(ε′)− x1|| < ε′. Define x2 := y(ε1/4) ∈ Sc2. Because Sc2 is open, we
can find ε′′ > 0 such that Bε′′(x2) ⊂ Sc2. Finally define ε2 as the minimum between ε′′ and ε1/4.
Then we have ε2 < ε1/3, ||x2 − x1|| < ε′ < ε1/3, and Bε2(x2) ⊂ Sc2.

The induction step from xn and εn to xn+1 and εn+1 is identical to the one from 1 to 2. The
theorem is proved.

13 The Open Mapping Theorem

Definition 13.1. Assume that (X1, || · ||1) and (X2, || · ||2) are normed spaces. We say that the
map F : X1 7→ X2 is open if for any open set U ⊂ X1, the image F (U) ⊂ X2 is also open.

Lemma 13.2. Let F : X1 7→ X2 be a linear, bounded map between two normed spaces. Then for
all r > 0 we have:

F (Br(01)) ⊂ F (Br(01)).

Proof. Let x ∈ Br(01). There exists {xn}n≥1 ⊂ Br(01) such that ||xn − x|| → 0 when n → ∞.
Since F is bounded (thus continuous), we conclude that F (x) is the limit of yn := F (xn) ∈
F (Br(01)), hence F (x) ∈ F (Br(01)).

Lemma 13.3. Assume that F : X1 7→ X2 is a linear map between two normed spaces. If there
exists d > 0 such that Bd(02) ⊂ F (B1(01)), then F is open.

Proof. Using the homogeneity of F , we can show that Bd(02) ⊂ F (B1(01)) implies that for every
c > 0 we have:

Bcd(02) ⊂ F (Bc(01)), c > 0. (13.20)

Indeed, if y ∈ Bcd(02) then c−1y ∈ Bd(02). There exists x ∈ B1(01) such that c−1y = F (x), or
y = cF (x) = F (cx). But cx ∈ Bc(01), thus y ∈ F (Bc(01)).

Now let U be open in X1. We have to prove that V := F (U) is open in X2. Choose an
arbitrary y0 ∈ V . Then there exists x0 ∈ U such that F (x0) = y0 ∈ V .

If M and N are two subsets of the same vector space X, then we denote:

M +N := {x+ y ∈ X : ∀[x ∈M, y ∈ N ]}.

With this notation and using the linearity of F we can easily prove that for every ε > 0 we have:

y0 + F (Bε(01)) = F (x0 +Bε(01)) = F (Bε(x0)).

Because U is open, if ε is smaller than some ε0 we have Bε(x0) ⊂ U and

y0 + F (Bε(01)) = F (Bε(x0)) ⊂ F (U), ∀ε < ε0.

Coupling this with (13.20) where we replace c by ε we have:

Bεd(y0) = y0 +Bεd(02) ⊂ y0 + F (Bε(01)) ⊂ F (U) = V, ∀ε < ε0,

which shows that y0 is an interior point of V .
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Theorem 13.4. Let X1 and X2 be two Banach spaces, and let F : X1 7→ X2 be a surjective,
bounded linear map. Then F is open.

Proof. According to Lemma 13.3, it is enough to prove that 02 is an interior point of the set
F (B1(01)), which is the image through F of the unit open ball in X1.

Let us consider the closed sets Sn := F (Bn(01)), for n ≥ 1. From Lemma 13.2 we see that
F (Bn(01)) ⊂ Sn for all n. Clearly:

F (X1) =
⋃
n≥1

F (Bn(01)) ⊂
⋃
n≥1

Sn.

Because F is surjective, we have F (X1) = X2. It means that X2 is a Banach space covered by a
countable set of closed sets. Baire’s Category Theorem 12.1 implies that there exists some N ≥ 1
such that SN has a non-empty interior. Thus we can find some y0 ∈ SN and ε0 > 0 such that
Bε0(y0) ⊂ SN . Hence:

Bε0(y0) = y0 +Bε0(02) ⊂ F (BN (01)). (13.21)

Since F is surjective, there exists x0 ∈ X1 such that y0 = F (x0). The linearity of F gives:

F (BN (01)) = y0 + F (−x0 +BN (01)) = y0 + F (BN (−x0)) ⊂ y0 + F (BN+||x0||1(01)),

and after taking the closure and coupling it with (13.21) we obtain:

y0 +Bε0(02) ⊂ y0 + F (BN+||x0||1(01)),

which implies:
Bε0(02) ⊂ F (BN+||x0||1(01)). (13.22)

Define r := ε0(N + ||x0||1)−1. Let c > 0 be a fixed constant. Choose any y ∈ Bcr(02), i.e. we have
||y||2 < cr. Then (N + ||x0||1)c−1y ∈ Bε0(02) and (13.22) implies that there exists a sequence of
points xn ∈ BN+||x0||1(01) such that

(N + ||x0||1)c−1y = lim
n→∞

F (xn), y = lim
n→∞

F ((N + ||x0||1)−1cxn).

But x̃n := (N + ||x0||1)−1cxn ∈ Bc(01), thus we have that y = limn→∞ F (x̃n) ∈ F (Bc(01)). To
conclude, what we proved until now is the existence of a positive number r > 0 such that the
following inclusion holds true:

Brc(02) ⊂ F (Bc(01)), ∀c > 0. (13.23)

We will now show that
Br(02) ⊂ F (B2(01)), (13.24)

which according to (13.20) is equivalent with Br/2(02) ⊂ F (B1(01)), thus we can take d = r/2 in
Lemma 13.3 and conclude that F is open. Now let us prove (13.24). Choose any y ∈ Br(02).

Using (13.23) with c = 1 it follows that y is an adherent point of F (B1(01)), thus there exists
x1 ∈ B1(01) such that ||y − F (x1)||2 < r/2.

The vector y1 = y − F (x1) ∈ Br2−1(02) is an adherent point of the set F (B2−1(01)). Using
(13.23) with c = 1/2 it follows that there exists x2 ∈ B2−1(01) such that

||y1 − F (x2)||2 = ||y − F (x1 + x2)||2 <
r

22
.

By induction, for every n ≥ 1 we can construct the points xn ∈ B2−n+1(01) such that

||y − F (x1 + x2 + · · ·+ xn)||2 <
r

2n
, ||xn||1 < 2−n+1, ∀n ≥ 1.

But then x =
∑
n≥1 xn converges absolutely inX1 (remember thatX1 is a Banach space), ||x||1 < 2

and y = F (x). The proof is over.
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Corollary 13.5. Let F : X1 7→ X2 an invertible, bounded linear map between two Banach spaces.
Then the inverse map F−1 : X2 7→ X1 is also linear and bounded.

Proof. The linearity of F−1 is implied by the equality:

F (F−1(λx+ µy)) = λx+ µy = λF (F−1(x)) + µF (F−1(y)) = F (λF−1(x) + µF−1(y))

and from the injectivity of F .
Since F is surjective, the open mapping theorem implies the existence of δ > 0 such that

Bδ(02) ⊂ F (B1(01)). The invertibility of F implies F−1(Bδ(02)) ⊂ B1(01). Now for any y ∈ X2

with ||y||2 = 1 we have:
2−1δF−1(y) = F−1(2−1δy) ∈ B1(01),

i.e. ||F−1(y)||1 ≤ 2δ−1 if ||y||2 = 1. This implies that F−1 is bounded.

14 The Closed Graph Theorem

Let H be a Hilbert space with its inner product denoted by 〈x, y〉. We denote by H′ = H⊕H the
linear space containing ordered pairs [x, y] with x, y ∈ H, and

〈[x, y], [u,w]〉′ := 〈x, u〉+ 〈y, w〉, ||[x, y]||′ :=
√
||x||2 + ||y||2.

It is easy to see that H′ is complete, thus a Hilbert space. Indeed, if zn = [xn, yn] is a Cauchy
sequence in H′, then since

max{||xp − xq||, ||yp − yq||} ≤ ||zp − zq||′, ∀p, q ≥ 1

it follows that both xn and yn are Cauchy in H and converge to x and y respectively. Finally we
use

||zn − [x, y]||′ ≤ ||xn − x||+ ||yn − y||.

Let A : H 7→ H be a linear operator (not necessarily bounded). We define the graph of A to
be a linear subspace GA ⊂ H⊕H such that

GA := {[x,Ax] ∈ H ⊕H, ∀x ∈ H}.

Theorem 14.1. The linear map A : H 7→ H is bounded if and only if GA is closed in H′.

Proof. 1. Let us first assume that A is bounded. We will prove that every adherent point of GA
belongs to GA. Indeed, assume that zn = [xn, Axn] converges to some point [x, y] ∈ H′. Then xn
must converge to x and Axn to y. Since A is bounded (thus continuous), we have that Ax = y
and we are done.

2. For the second implication, assume that GA is closed in H′. We will prove that A is
bounded. The linear space X1 := (GA, || · ||′) is a Banach space because GA is closed. Denoting
by X2 := (H, || · ||), define the linear map F : X1 7→ X2 given by F ([x,Ax]) := x. Clearly, F is
invertible with F−1(y) = [y,Ay], and F is bounded:

||F ([x,Ax])|| = ||x|| ≤ ||[x,Ax]||′, ∀x ∈ H.

The Corollary 13.5 implies that F−1 is bounded, that is there exists a constant C > 0 such
that:

||Ay|| ≤
√
||y||2 + ||Ay||2 = ||F−1(y)||′ ≤ C||y||, ∀y ∈ H,

i.e. A is bounded.

The following corrolary is known as the Hellinger-Toeplitz theorem:
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Corollary 14.2. Let H be a Hilbert space and let A : H 7→ H be any linear and symmetric
operator, i.e. it obeys 〈Ax, y〉 = 〈x,Ay〉 for every x, y ∈ H. Then A is bounded.

Proof. We only need to show that the graph GA is closed. The fact that GA contains all its
adherent points can be characterized like this: if {xn}n≥1 ⊂ H converges to some x ∈ H and in
the same time {Axn}n≥1 converges to some y ∈ H, then Ax = y. Let us prove that this indeed
happens when A is also symmetric.

Assume that xn → x and Axn → y. We need to prove that Ax = y. From the equality
〈Axn, z〉 = 〈xn, Az〉 which holds for an arbitrary z ∈ H and from the continuity of the inner
product, we obtain that 〈y, z〉 = 〈x,Az〉 = 〈Ax, z〉. This means that Ax− y belongs to H⊥, thus
Ax = y and we are done.

15 The spectral theorem for compact and selfadjoint oper-
ators

Let H be a separable Hilbert space, and let T = T ∗ ∈ B(H) be a selfadjoint, compact opera-
tor. This means that given any bounded sequence {xn}n≥1, one can always find a convergent
subsequence for {Txn}n≥1. We assume that the dimension of H is infinite.

Theorem 15.1. There exists an orthonormal basis in H denoted by {ψj}j≥1, and a sequence of
real numbers {λj}j≥1 converging to 0 and satisfying ||T || = |λ1| ≥ |λ2| ≥ . . . , such that for every
f ∈ H we have:

Tf =
∑
j≥1

λjψj〈f, ψj〉. (15.25)

15.1 Proof of Theorem 15.1

Lemma 15.2. Let z ∈ C. We have null(T − z) = {range(T − z)}⊥, and H = null(T − z) ⊕
{range(T − z)}.

Proof. Let us prove the first equality. We know that T is symmetric, hence 〈(T − z)f, g〉 =
〈f, (T − z)g〉 for all vectors f, g ∈ H. If f ∈ null(T − z), then 0 = 〈f, (T − z)g〉 for all g, thus
f ∈ {range(T−z)}⊥. If f ∈ {range(T−z)}⊥, then 〈(T−z)f, g〉 = 0 for all g ∈ H, thus (T−z)f = 0
and f ∈ null(T − z).

Let us prove the second equality. We know that for any linear subspace M we have {M⊥}⊥ =
M . Thus:

H = null(T − z)⊕ {null(T − z)}⊥ = null(T − z)⊕ range(T − z). (15.26)

Lemma 15.3. Let z = x + iy. Then ||(T − z)f || ≥ |y| ||f || for every f ∈ H. In particular, if
y 6= 0, then null(T − z) = {0} and T − z is injective.

Proof. It is an easy consequence of the fact that 〈Tf, f〉 is real and:

||f || ||(T − z)f || ≥ |〈(T − z)f, f〉| =
∣∣〈(T − x)f, f〉 − iy||f ||2

∣∣ ≥ |y| ||f ||2.

Lemma 15.4. Assume that for a given z, there exists δ > 0 such that

||(T − z)f || ≥ δ||f ||, ∀f ∈ H. (15.27)

Then T − z is both injective and surjective, thus z ∈ ρ(T ).
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Proof. Clearly, T − z is injective. Our goal is to prove that range(T − z) = H.
Let us write z = x+ iy. If y 6= 0, then (15.27) is a consequence of Lemma 15.3. Thus we also

have that
||(T − z)f || ≥ δ||f ||, ∀f ∈ H. (15.28)

When y = 0, (15.28) coincides with (15.27).
In both cases, (15.28) implies that T − z is injective, thus null(T − z) = {0}. Using (15.26)

with z replaced by z we obtain that the range of T − z is dense in H:

range(T − z) = H. (15.29)

The only remaining thing in the proof is to show that range(T − z) is a closed set, which
together with (15.29) would show the surjectivity of T − z.

Let us do that. Assume that {yn}n≥1 ⊂ range(T − z) converges to y∞ ∈ H. We have to show
that y∞ ∈ range(T − z). There exists {xn}n≥1 ⊂ H such that yn = (T − z)xn. Using (15.27) we
can write:

||xn+k − xn|| ≤
1

δ
||(T − z)(xn+k − xn)|| = 1

δ
||yn+k − yn||, ∀n, k ≥ 1. (15.30)

Since {yn}n≥1 is Cauchy, (15.30) implies the same thing for {xn}n≥1. Thus there exists x∞ ∈ H
such that limn→∞ xn = x∞. Using this in the equality Txn = zxn+yn together with the continuity
of T , we obtain Tx∞ = zx∞ + y∞ and:

y∞ = (T − z)x∞ ∈ range(T − z).

Remark 1. The previous lemma shows that if T is a selfadjoint operator and if

||(T − z)x|| ≥ δ > 0, ∀||x|| = 1, (15.31)

then z ∈ ρ(T ). Thus if λ ∈ σ(T ) we must have

inf
||x||=1

||(T − λ)x|| = 0,

or more precisely, there exists a sequence {xn}n≥1 with ||xn|| = 1 such that

lim
n→∞

(T − z)xn = 0. (15.32)

Remark 2. Lemma 15.3 and Lemma 15.4 prove that σ(T ) ⊂ R. Moreover, if |z| > ||T || we can
write

(T − z)−1 = −
∑
n≥0

1

zn+1
Tn, (15.33)

thus σ(T ) ⊂ [−||T ||, ||T ||].

Let us now characterize the structure and nature of the spectrum of T .

Lemma 15.5. If λ ∈ σ(T ) and λ 6= 0, then there exists at least one eigenvector f 6= 0 such that
Tf = λf .

Proof. Because λ ∈ σ(T ), we have the bounded sequence {xn}n≥1 from (15.32). Since T is
compact, we can find a subsequence {xnk}k≥1 such that {Txnk}k≥1 is convergent to some y∞. We
can write:

xnk =
1

λ
Txnk −

1

λ
(T − λ)xnk ,
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and since the r.h.s. converges to 1
λy∞ we conclude that limk→∞ xnk = 1

λy∞. The continuity of T
implies that limk→∞ Txnk = 1

λTy∞. Hence:

0 = lim
k→∞

(Txnk − λxnk) =
1

λ
Ty∞ − y∞.

Moreover, ||xnk || = 1 implies that ||y∞|| = 1, thus we can choose our eigenvector to be f = y∞.

Lemma 15.6. If λ1 6= λ2 belong to the spectrum, and if f1 and f2 are two corresponding eigen-
vectors, then 〈f1, f2〉 = 0.

Proof. Use the symmetry of T and write 0 = 〈Tf1, f2〉 − 〈f1, T f2〉 = (λ1 − λ2)〈f1, f2〉.

Lemma 15.7. The spectrum of T cannot have other accumulation points outside 0. In other
words, σ(T ) \ {0} is a discrete set consisting from isolated points.

Proof. Assume that λ 6= 0 is an accumulation point of σ(T ). It means that we can find a sequence
of points {λn}n≥1 ⊂ σ(T ), all distinct and not zero, such that

lim
n→∞

λn = λ.

From Lemma 15.5 we obtain at least an eigenvector xn, ||xn|| = 1, such that Txn = λnxn, or
xn = 1

λn
Txn. Since T is compact, there exists a subsequence xnk such that Txnk converges to

some y. Thus

lim
k→∞

xnk = lim
k→∞

1

λnk
Txnk =

1

λ
y.

Thus we have just constructed a convergent subsequence of {xn}n≥1. But since each xn
corresponds to a different λn, Lemma 15.6 tells us that ||xj − xk|| =

√
2 if j 6= k, therefore this

sequence cannot have Cauchy subsequences. We arrived to a contradiction.

Lemma 15.8. Assume that λ ∈ σ(T ) \ {0}. Then the dimension of null(T − λ) is finite.

Proof. Assume the contrary, i.e. the existence of infinitely many linearly independent vectors in
null(T − λ). Up to a Gramm-Schmidt procedure, we can consider them to be orthogonal and
normalized to one. If {xn}n≥1 is such a list, then again ||xj − xk|| =

√
2, thus it cannot have

any convergent subsequences. But since xn = 1
λTxn, the compactness of T would generate a

convergent subsequence for {xn}n≥1, and we arrive to a contradiction.

Until now we know that the spectrum of T is contained in the interval [−||T ||, ||T ||], it consists
from isolated points outside 0, and the nullspace associated to each of its nonzero points is finite
dimensional. Thus the nonzero spectrum is only composed from eigenvalues with finite geometric
multiplicity, and they can only accumulate at 0.

Lemma 15.9. At least one of the numbers ±||T || is an eigenvalue for T .

Proof. Without loss of generality, we may assume that ||T || > 0. From the definition of the
norm, we have ||T || = sup||x||=1 ||Tx||. Thus there exists a sequence {xn}n≥1, ||xn|| = 1 such
that limn→∞ ||Txn|| = ||T ||. Since T is compact, we can find a subsequence xnk such that
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limk→∞ Txnk = y, thus ||y|| = ||T ||. In order to simplify notation, denote ||T || by λ. Then we
have:

lim
k→∞

||(T 2 − λ2)xnk ||2 = lim
k→∞

〈(T 2 − λ2)xnk , (T
2 − λ2)xnk〉

= lim
k→∞

{〈T 2xnk , T
2xnk〉 − 2λ2〈T 2xnk , xnk〉+ λ4||xnk ||2} = 〈Ty, Ty〉 − 2λ2〈y, y〉+ λ4

= 〈Ty, Ty〉 − λ4 ≥ 0. (15.34)

Thus we get ||Ty|| ≥ λ2. Moreover:

0 ≤ ||(T − λ)(T + λ)y||2 = ||(T 2 − λ2)y||2 = 〈(T 2 − λ2)y, (T 2 − λ2)y〉
= 〈T 2y, T 2y〉 − 2λ2〈T 2y, y〉+ λ4||y||2 = 〈T 2y, T 2y〉 − 2λ2〈Ty, Ty〉+ λ4||y||2

≤ ||T 2y||2 − λ6 ≤ 0. (15.35)

In the last line above we used (15.34). Thus (15.35) implies (T − λ)(T + λ)y = 0. Now if
(T+λ)y = 0, it means that −λ is an eigenvalue. If f = (T+λ)y 6= 0, then necessarily (T−λ)f = 0
which means that λ is an eigenvalue.

The previous result together with Lemma 15.8 imply the existence of a finite number of eigen-
vectors of T which span the subspace Mλ := null(T − λ) where λ is one of the values ||T || or

−||T ||. Denote by {ψj(λ)}dim(Mλ)
j=1 an orthonormal basis of Mλ, consisting of eigenvectors of T .

Denote by Pλ the orthogonal projection associated to null(T − λ):

Pλf :=

dim(Mλ)∑
j=1

〈f, ψj(λ)〉ψj(λ). (15.36)

By direct computation, one can show that P ∗λ = Pλ = P 2
λ .

By convention, if λ is not in the spectrum of T , then Mλ = {0} and Pλ = 0. Denote by

M1 := M+||T || ⊕M−||T ||. (15.37)

Lemma 15.10. The subspace M1 is a finite dimensional, closed linear subspace, which is left
invariant by T (that is TM1 ⊂M1). The same is true for M⊥1 .

Proof. Every f ∈ M1 can be written as a finite linear combination of the type f =
∑
j〈f, ψj〉ψj .

Since all ψj ’s are eigenvectors of T , then Tf ∈M1.
Now let us prove that M⊥1 is invariant under T . Let g ∈M⊥1 . Then for every f ∈M1 we have:

〈Tg, f〉 = 〈g, Tf〉 = 0,

since Tf ∈M1. Hence Tg ∈M⊥1 .

Now consider the decomposition H = M1 ⊕M⊥1 . The previous invariance result allows us to
write our operator T as a direct sum T = (||T ||P+||T || − ||T ||P−||T ||)⊕ T1, where T1 is simply the

restriction of T to M⊥1 . The next technical result is the following:

Lemma 15.11. The restriction T1 is also compact and selfadjoint. Moreover, ||T1|| < ||T ||.

Proof. The fact that T is compact and selfadjoint follows from

T1 = T (1− P+||T || − P−||T ||) = (1− P+||T || − P−||T ||)T.

Now let us prove that ||T1|| < ||T ||. Clearly, ||T1|| ≤ ||T ||, so we only need to prove that the
two norms cannot be equal. Assume that they are equal. Then applying Lemma 15.9 to T1, it
would provide an eigenvector φ ∈M⊥1 , ||φ|| = 1, for T1. But φ would also be an eigenvector for T
corresponding to ||T || or −||T ||, thus φ ∈M1, contradicting φ 6= 0.
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Remark 3. We have the inclusion null(T ) ⊂ M⊥1 ; indeed, let f ∈ null(T ) and let ψj one
eigenvector of T from M1 corresponding to the eigenvalue λ 6= 0. Then

0 =
1

λ
〈Tf, ψj〉 =

1

λ
〈f, Tψj〉 = 〈f, ψj〉.

Thus f is orthogonal to any linear combination of ψj ’s, thus f ∈M⊥1 .

Now the proof of Theorem 15.1 is almost over. IfM⊥1 = null(T ), then we haveH = M1⊕null(T )
and T = (||T ||P+||T || − ||T ||P−||T ||)⊕ 0.

Otherwise, define M2 as the subspace of M⊥1 corresponding to null(T1 +||T1||)⊕null(T1−||T1||)
and decompose H = M1 ⊕ (M2 ⊕M⊥2 ). Here T1 decomposes as

T1 = (||T1||P+||T1|| − ||T1||P−||T1||)⊕ T2.

By induction, we obtain the decomposition

H = M1 ⊕M2 · · · ⊕ (Mn ⊕M⊥n )

and
T = ⊕n−1

j=0 (||Tj ||P+||Tj || − ||Tj ||P−||Tj ||)⊕ Tn,

where Tn is the restriction of Tn−1 to M⊥n . By convention, T0 = T . Reasoning as in the proof of
Remark 3, we get that null(T ) ⊆ M⊥n . If they are equal, then we stop. Otherwise, we continue
the reduction procedure.

Now assume that we never get null(T ) = M⊥n . It follows that Tn 6= 0, and also limn→∞ ||Tn|| =
0 because Lemma 15.7 forbids the accumulation of eigenvalues outside 0.

Lemma 15.12. We have ⊕j≥0Mj = range(T ).

Proof. Fix f ∈ H. The vector
∑n−1
j=0 (||Tj ||P+||Tj ||f − ||Tj ||P−||Tj ||f) can be seen as an element

of ⊕j≥0Mj , where all components with an index larger than n + 1 are zero. We know that

Tnf = Tf −
∑n−1
j=0 (||Tj ||P+||Tj ||f − ||Tj ||P−||Tj ||f), and ||Tnf || → 0 when n grows. Thus we can

approximate Tf arbitrarily well with elements of ⊕j≥0Mj .

Corollary 15.13. We have the decomposition H = {⊕j≥0Mj} ⊕ null(T ).

Proof. Put z = 0 in (15.26) and use Lemma 15.12.

We can now conclude the proof of Theorem 15.1. The orthonormal basis consists from the
eigenvectors of T corresponding to non-zero eigenvalues, put together with an arbitrary basis in
null(T ). The numbers λj ’s are either the nonzero eigenvalues of T or zero. The operator T has a
finite rank if a finite number of λj ’s are nonzero.

16 The singular value decomposition of a compact operator

Theorem 16.1. Let H be a separable Hilbert space, and let A be a compact operator. Then
there exist two orthonormal basis of H, {ej}j≥1 and {fj}j≥1, and a nonincreasing sequence of
non-negative numbers sj ≥ 0 accumulating at zero such that for every f ∈ H we have:

Af =
∑
j≥1

sj〈f, ej〉fj .
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Proof. Let T := A∗A. We see that T is compact, selfadjoint and non-negative. Moreover,
null(A) = null(T ); indeed, if x ∈ null(A) then Tx = A∗(Ax) = 0, thus x ∈ null(T ). If x ∈ null(T ),
then 0 = 〈x, Tx〉 = ||Ax||2 thus Ax = 0 and x ∈ null(A).

According to Theorem 15.1, there exists an orthonormal basis {ej}j≥1 consisting of eigenvectors
of T , and let λj be their corresponding (non-zero) eigenvalues. We have

Af =
∑
j≥1

〈f, ej〉Aej (16.38)

In the above sum, only those ej ’s appear which are not spanning the null space of T . Denote by
fj := 1

||Aej ||Aej , if Aej 6= 0. Clearly, from (16.38) it follows that the fj ’s span the closure of the

range of A. Now let us prove that the fj ’s are orthogonal on each other. If j 6= k we have

〈fj , fk〉 =
1

||Aej || ||Aek||
〈ej , T ek〉 = 0.

We can extend the fj basis in an arbitrary way to range(A)⊥. Finally, let us denote by

sj := ||Aej || =
√
〈ej , A∗Aej〉 =

√
λj . From (16.38) and the definition of fj ’s and sj ’s, the

theorem is proved.
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