Complex Analysis Notes for ET4-3

Horia Cornean, d. 24/03/20009.

1 Singularities of rational functions
Consider two functions f and g both defined on a domain D C C, and analytic on D. Define
£(2) in all points of D where g # 0.

h(z) =
9(2)
We say that zg € D is a zero of order k > 0 for f if
fz0) = f(z0) == f*V(z)=0 and f®)(z)#£0

(1.1)

With the same definition, a point zy € D is a zero of order m > 0 for g if

g(z0) =g (20) = =g¥* V(z) =0 and ¢"®(z) #0. (1.2)

Note that if for example f(zg) # 0, then we either say that zg is not a zero, or that zy is a zeroth
order zero. In this way, we can classify all points of D.

Now choose an arbitrary point zy € D, and assume that it is a zero of order k for f. Since f

is analytic in zg, we can expand f in a Taylor series in a small disk around zg:

1 df™ 1 dfr™
f(z) = Z o gz" (20) (2 — 20)" = Z ] dfzn (z0) (2 — 20)"
n>0 n>k
1 df™
=(z=2)" ) — ;’;Zn (20) (z = 20)" "
n>k
(n+k)

L ) (5 — o) (13

_ _ k
= (2 — 20) 7§0 (n+k)! dzntk

Thus we may write:
- 1 dfinth) Ldfm nl  dfnth)
J@)= 2 G g (0) (= 20" S o) = o e (o)
n>0
f(2) = (2 = 20)" f (2). (1.4)
Now let us assume that zg is a zero of order m for g. Reasoning as above, we may write:
N 1 dgtrtm . dg™ n!  dg(ntm)
9(z) = 7;) (n+m)! dzntm (20) (2 = 20)", dzn 20) = (n+m)! dzntm (20)
9(2) = (z — 20)"3(2). (1.5)
Therefore, the function A can be expressed in a neighborhood of zy as:
- - )
i, f) f(z0) _ m! G (x0)
B(z) = (2 = 20) (), h(z) = DL R(zg) = 1 TR0 g (q.)
’ 50 T G T R,

At this moment we can fully investigate the nature of the point zy. There are two distinct

situations:



1. If k > m, then zy is a zero of order £ — m for h; indeed, if we differentiate the product
(2 — 20)*~™h(z) less than k — m times, then all terms we get will contain a positive power
of (z — zp). Then if we put z = zg they will all be zero. The first time when this is no longer
true, is when we differentiate precisely & — m times, and all derivatives fall on the factor
(z — zo)k'_m. In fact, one can prove that

(k—m) -
o (z0) = (k= m)! F(z0) #0,

which finishes the proof that z is a zero of order k£ — m for h.

2. If k < m, then zj is a pole of order m — k for h; indeed, according to the definition, we have:

lim (z — 20)™ *h(z) = h(z0) # 0.

Z—Z0

2 Laurent series for rational functions

Assume that we are in the situation in which k < m, or in other words m — k > 0. Since h is an
analytic function around zp, we can expand it in a Taylor series given by:

- 1 dh(™ .
h(z) = Z EW(ZO) (2 — 20) (2.7)
n>0
mE 1 g . 1 dim §
=) 1 g (7o) (2= 20)" + > g (#0) (2= 20)
n=0 n>m—k
m—k—1 > ~
1 dh(™ n ek 1 dh(n+m—Fk) .
= 2 e (o) o) o) e T (0) (2 )"
Thus:
1 -
m—k—1 ~
1 dh( 1 1 dh(ntm—k) .
- nz::o ﬁ dzn (ZO) (Z _ Zo)m—k—n + nz>:0 (Tl +m — k’)' dzntm—k (ZO) (Z - ZO)
~ F(m—k—1)
__Ma) kT deT (%0)
(z — zg)m—F Z— 20
1 dh(Hm=F) B
+ Z (n+m—k)! dzntm=k (20) (2 — 20)".

n>0
We know that the Laurent series of A around zp must be of the form:
bn
h(z) = —_— n(z — 20)". 2.9
&= Lt e ) (29)
If we compare (2.9) with (2.8) we conclude the following;:
b,=0 if n>m-—k,

B 1 dﬁ(mfkfl)
bim—k = h(z0) # 0, by = m— k1) dom k1 (#0), (2.10)

and finally
1 dﬁ(n—&-m—k)

 (n4+m—k)! dyntm—k

(20), m>0.



3 Residue calculus

Let us compute the above coefficient by when m = k + 1; then (2.10) gives:

df(k) df(k)
~ m! 7;“(20) % ( 0)
by = h(z) = — - 0 = (b + 1)L (3.11)
kU () do s (#0)

But in general it is complicated to write down a formula for b;. In different application it
is easier to repeat the whole algorithm from the beginning than to follow some pre-determined
formulas. Let us solve an exercise.

Exercise 3.1. Consider the function

_ {sin(2)}?

et =17

h(z)
defined at all points where e # 1. Show that zg = 0 is a pole of order 2, and compute the residue
by.

Solution. We have f(z) = {sin(z)}? and g(z) = e*" — 1. Both functions are analytic on the
whole complex plane.
Now let us see what is k. We have f(0) = 0, hence we must investigate f'(0). We compute:

f(z) = 2sin(z) cos(z) = sin(22), f(0)=0.
Then we continue with f”(z) = 2co0s(2z), hence f”(0) =2 # 0. Thus k = 2 and we may write

7 dfm n!  dftnt2)

f2)=2f(2), = = T de (0), n>0.

Let us find m. Using the formula e* =3 %7 we have

an 8

z z

This means that g(0) = ¢'(0) = g”(0) = ¢®*(0) = 0 and ¢g¥(0) = 4! = 24 # 0. Thus m = 4, and

_ dg(”) n! dg(n+4)
4

, 0) = 0), n>0.
AN dz" (n+4)! dznte ©0), m

Now we may write:

h(z) = =h(z), h(z) =

According to (2.10), we have by = h/(0). We have:
oy - 4©)3(0) — f(0)7'(0)
=T o

in which we can insert §(0) = 97 (0) = 1, §7(0) = £42(0) = 0, f(0) = £%1(0) = 1 and

F/(0) = £451(0) = 0. This gives by = 0.




4 Some typical exam exercises

Exercise 4.1. Find all the complex solutions of the equation e = 1.

Solution. We know that the exponential function is 274 periodic, thus 22 must be of the form
2miN with N € Z. There are three possibilities for N:
1. If N =0, then the only solution is z = 0;
2. For each N > 0, let us solve the equation 2% = 21iN = 27 Ne'™/2. For each N we find three
solutions:
2 = (2n N3l /6427k/3) ke 10,1, 2},

3. For each N < 0, let us solve the equation 2®> = —27i|N| = 27| N|e~*"/2. This gives other
three solutions: ‘
2y = (2m|N|)1/3eiom/642mk/3) - ) e (0,1, 2}.

Exercise 4.2. Let f(z) = |z|? + %, where z = x + iy.
1. Find two real functions u and v such that f(z) = u(z,y) +iv(z,y) for all z.
2. Is f analytic?

Solution.

1. We have z = o — iy and |2|? = 22 + 32, thus u(z,y) =  + 2% + 32 and v(z,y) = —y.

2. The function is not analytic, because the Cauchy-Riemann equations are not satisfied. For
example, J,u = 1 4 2z is not identically equal with dyv = —1.

Exercise 4.3. Let f(z) = Z, where z = x +1iy. Let v be a circle of radius 1, centred at zg = 1+1,
and oriented anti-clockwise. Show that the path integral

Lf(z)dz P

Is this result in contradiction with Cauchy’s integral theorem?
Solution. We can parameterize the circle as 7 : [0,27] — C, v(t) = 2o + €. Here v/(t) = ie'
and zg = V/2¢!™/4 Then we have

2m

27
/ fE)dz= | fOO) (O)dt =i [ V2ein/tyeitedt
v 0 0
2m

= z/ (V2™ /46t 4 1)dt = 27i. (4.12)
0

Thus the integral of f on a closed path is not zero. This is possible because f is not analytic, thus
Cauchy’s theorem is not contradicted.

Exercise 4.4. Find the convergence radius of the power series ano 22312",
Solution.
Let a,, = 2Zi+11. This implies that a, 1 = % Then we have:
an 20+ 1)(n+2)  (2+1/n%)(1+2/n)

any1 2 +134+1D)(n+1)  2(1+1/n)3+1)(1+1/n)’ n2

Thus the radius of convergence is:

R = lim

n—o0 an+1




Exercise 4.5. Let the function h(z) = % initially defined on all points where z* # 1. Show
that h is analytic at z = +1, and has two first order poles at +i.

Solution. Let f(z) = sin(zm) and g(z) = z* — 1. The possible singularities of h are the
solutions of the equation z* = 1. These points are given by

eb™i/2 ke {0,1,2,3},

orzy =1, 29 =1, 23 = —1, 24 = —i.

1. We show that the Laurent series of h near z; = 1 has all its b coefficients equal to zero. We
have f(1) =0, f'(z) = mcos(zm) thus f'(1) = —7 # 0. Hence 1 is a first order zero for f and we
can write f(z) = (z — 1)f(2), with f(1) = f'(1) = —

In a similar way, g(1) = 0, ¢/(z) = 423 and ¢/(1) = 4 # 0, thus g(z) = (z — 1)g(z) with

g(1) = ¢'(1) = 4. It means that h(z) = gg ; which is analytic around 1.

Km

2. We can redo the same type of argument near z3 = —1. We obtain f(—1) =0, f/(-1) =

—m #0, g(—1) =0 and ¢’(—1) = —4 # 0. Since —1 is a first order zero for both f and g, the
function h is analytic near —1.
3. Let us investigate the Laurent series of h near z; = i. We have f(i) = sin(im) # 0, thus
f(z) = f(2). But g(i) = 0 and ¢'(i) = —4i # 0, which means g(z) = (z — 4)g(z) with §(i) = —4i.
Here we are in the situation ¥ = 0 and m = 1, see (2.8)-(2.10). Thus h(z) = 1_1~(z) and
by =isin(im)/4 # 0.

4. The treatment of z4 is similar with that of zs3.

Exercise 4.6. Compute the integral

°° cos(z)
/_DO o gdx.

Solution. Let us consider the function h(z) = We have the equality:

oi®
2249

/_ Z ;(Q)S_(:C;dx = Re ( /_ O:O h(:r)dx) .

1. Let us show that he function A has two simple poles: one at z; = 3i and the other one at
29 = —3i. We have f(2) = ¢ and g(z) = 22 + 9. The only two points where g is zero, are z; and
z9. The function f has no zeroes. Since ¢'(z) = 2z, it means that z; and zy are first order zeroes.
Near z; we can write g(z) = (2 — 3i)g(z) with §(z) = z + 3i. It means that near z; = 3i we can
write:

1 eiz 6_3
h = - R z=2z h = b = Q-
C)= 5 sya Ressa=bi=7g
In a similar way, near zo = —3i¢ we have:
1 eiz 63
h(z) = ———, Res,—.,(h)=0b .
() =05 s R =bi=—-&

In order to compute the integral of h we close the contour through the upper half plane and
apply the residue theorem:

o0 -3
/ h(z)dx = 2wiRes,—,, (h) = 7T€3 .

— 00

Exercise 4.7. Compute the integral

27 2
/ sin”(0) &0,
o D —4cos(f)



Solution. We reason as in section 16.4, formula 2 on page 718. We have:

1 1 dz
0)=— 1 in(d)=—(z-1 df = —.
cos() = 3z +1/2), sin(0) = 5-(:— 1/2), do =
Thus the integral can be rewritten as a path integral over the unit circle of the function

—3(z—1/2% 1 (22 —1)?

h(z)= —AC "2~ .
&) =5 G T1n 2~ TR0 542

We need to identify the eventual singularities of h inside the unit circle. We have f(z) =
(22 —1)? and g(z) = 4i22(22% — 52 + 2). We can factorize 222 — 52 + 2 = 2(z — 1/2)(z — 2). Thus
g has two zeroes inside the unit circle: z; = 0 and 22 = 1/2.

Let us show that z; = 0 is a pole of order two. Since f(0) = 1 # 0, we have k = 0. Moreover,
m = 2 because we have g(z) = 22§(z) with §(z) = 4i(22? — 52 + 2) and §(0) = 8 # 0. Thus

1 - - (22 —-1)2
h(z) == h h(z) = ——5———.
() 22 (2), h(z) 4i(22%2 — 5z + 2)
Then according to (2.10) we have:
= 51
Res.—g 1 (0) 16

Now let us treat zo = 1/2. Again, f(1/2) = 9/16 # 0, thus k = 0. Moreover, m = 1 because
we have g(2) = (2 — 1/2)g(z) with §(z) = 8i22(z — 2) and §(1/2) = —3i # 0. Thus

1 - ~ (22 —1)2

s he), hG) =

h(z) = B EEE

Then according to (2.10) we have:

= 37
Reszzl/gh = b1 = h(1/2) = TG

Then according to the residue theorem on page 715 we have:

/ h(z)dz = 2mi(Res.—oh + Res,_; 2h) = z
|z]=1

>~



