Complex Analysis Notes for ET4-3

Horia Cornean, d. 24/03/2009.

1 Singularities of rational functions

Consider two functions f and g both defined on a domain $D \subset \mathbb{C}$, and analytic on D. Define $h(z)=\frac{f(z)}{g(z)}$ in all points of D where $g \neq 0$.

We say that $z_{0} \in D$ is a zero of order $k \geq 0$ for f if

$$
\begin{equation*}
f\left(z_{0}\right)=f^{\prime}\left(z_{0}\right)=\cdots=f^{(k-1)}\left(z_{0}\right)=0 \quad \text { and } \quad f^{(k)}\left(z_{0}\right) \neq 0 \tag{1.1}
\end{equation*}
$$

With the same definition, a point $z_{0} \in D$ is a zero of order $m \geq 0$ for g if

$$
\begin{equation*}
g\left(z_{0}\right)=g^{\prime}\left(z_{0}\right)=\cdots=g^{(k-1)}\left(z_{0}\right)=0 \quad \text { and } \quad g^{(k)}\left(z_{0}\right) \neq 0 \tag{1.2}
\end{equation*}
$$

Note that if for example $f\left(z_{0}\right) \neq 0$, then we either say that z_{0} is not a zero, or that z_{0} is a zeroth order zero. In this way, we can classify all points of D.

Now choose an arbitrary point $z_{0} \in D$, and assume that it is a zero of order k for f. Since f is analytic in z_{0}, we can expand f in a Taylor series in a small disk around z_{0} :

$$
\begin{align*}
f(z) & =\sum_{n \geq 0} \frac{1}{n!} \frac{d f^{(n)}}{d z^{n}}\left(z_{0}\right)\left(z-z_{0}\right)^{n}=\sum_{n \geq k} \frac{1}{n!} \frac{d f^{(n)}}{d z^{n}}\left(z_{0}\right)\left(z-z_{0}\right)^{n} \\
& =\left(z-z_{0}\right)^{k} \sum_{n \geq k} \frac{1}{n!} \frac{d f^{(n)}}{d z^{n}}\left(z_{0}\right)\left(z-z_{0}\right)^{n-k} \\
& =\left(z-z_{0}\right)^{k} \sum_{n \geq 0} \frac{1}{(n+k)!} \frac{d f^{(n+k)}}{d z^{n+k}}\left(z_{0}\right)\left(z-z_{0}\right)^{n} . \tag{1.3}
\end{align*}
$$

Thus we may write:

$$
\begin{align*}
& \tilde{f}(z):=\sum_{n \geq 0} \frac{1}{(n+k)!} \frac{d f^{(n+k)}}{d z^{n+k}}\left(z_{0}\right)\left(z-z_{0}\right)^{n}, \quad \frac{d \tilde{f}^{(n)}}{d z^{n}}\left(z_{0}\right)=\frac{n!}{(n+k)!} \frac{d f^{(n+k)}}{d z^{n+k}}\left(z_{0}\right) \\
& f(z)=\left(z-z_{0}\right)^{k} \tilde{f}(z) . \tag{1.4}
\end{align*}
$$

Now let us assume that z_{0} is a zero of order m for g. Reasoning as above, we may write:

$$
\begin{align*}
& \tilde{g}(z):=\sum_{n \geq 0} \frac{1}{(n+m)!} \frac{d g^{(n+m)}}{d z^{n+m}}\left(z_{0}\right)\left(z-z_{0}\right)^{n}, \quad \frac{d \tilde{g}^{(n)}}{d z^{n}}\left(z_{0}\right)=\frac{n!}{(n+m)!} \frac{d g^{(n+m)}}{d z^{n+m}}\left(z_{0}\right) \\
& g(z)=\left(z-z_{0}\right)^{m} \tilde{g}(z) \tag{1.5}
\end{align*}
$$

Therefore, the function h can be expressed in a neighborhood of z_{0} as:

$$
\begin{equation*}
h(z)=\left(z-z_{0}\right)^{k-m} \tilde{h}(z), \quad \tilde{h}(z):=\frac{\tilde{f}(z)}{\tilde{g}(z)}, \quad \tilde{h}\left(z_{0}\right)=\frac{\tilde{f}\left(z_{0}\right)}{\tilde{g}\left(z_{0}\right)}=\frac{m!}{k!} \frac{\frac{d f^{(k)}}{d z^{k}}\left(z_{0}\right)}{\frac{d g(m)}{d z^{m}}\left(z_{0}\right)} \neq 0 \tag{1.6}
\end{equation*}
$$

At this moment we can fully investigate the nature of the point z_{0}. There are two distinct situations:

1. If $k \geq m$, then z_{0} is a zero of order $k-m$ for h; indeed, if we differentiate the product $\left(z-z_{0}\right)^{k-m} \tilde{h}(z)$ less than $k-m$ times, then all terms we get will contain a positive power of $\left(z-z_{0}\right)$. Then if we put $z=z_{0}$ they will all be zero. The first time when this is no longer true, is when we differentiate precisely $k-m$ times, and all derivatives fall on the factor $\left(z-z_{0}\right)^{k-m}$. In fact, one can prove that

$$
\frac{d h^{(k-m)}}{d z^{k-m}}\left(z_{0}\right)=(k-m)!\tilde{h}\left(z_{0}\right) \neq 0
$$

which finishes the proof that z_{0} is a zero of order $k-m$ for h.
2. If $k<m$, then z_{0} is a pole of order $m-k$ for h; indeed, according to the definition, we have:

$$
\lim _{z \rightarrow z_{0}}\left(z-z_{0}\right)^{m-k} h(z)=\tilde{h}\left(z_{0}\right) \neq 0
$$

2 Laurent series for rational functions

Assume that we are in the situation in which $k<m$, or in other words $m-k>0$. Since \tilde{h} is an analytic function around z_{0}, we can expand it in a Taylor series given by:

$$
\begin{align*}
\tilde{h}(z) & =\sum_{n \geq 0} \frac{1}{n!} \frac{d \tilde{h}^{(n)}}{d z^{n}}\left(z_{0}\right)\left(z-z_{0}\right)^{n} \tag{2.7}\\
& =\sum_{n=0}^{m-k-1} \frac{1}{n!} \frac{d \tilde{h}^{(n)}}{d z^{n}}\left(z_{0}\right)\left(z-z_{0}\right)^{n}+\sum_{n \geq m-k} \frac{1}{n!} \frac{d \tilde{h}^{(n)}}{d z^{n}}\left(z_{0}\right)\left(z-z_{0}\right)^{n} \\
& =\sum_{n=0}^{m-k-1} \frac{1}{n!} \frac{d \tilde{h}^{(n)}}{d z^{n}}\left(z_{0}\right)\left(z-z_{0}\right)^{n}+\left(z-z_{0}\right)^{m-k} \sum_{n \geq 0} \frac{1}{(n+m-k)!} \frac{d \tilde{h}^{(n+m-k)}}{d z^{n+m-k}}\left(z_{0}\right)\left(z-z_{0}\right)^{n} .
\end{align*}
$$

Thus:

$$
\begin{align*}
h(z) & =\frac{1}{\left(z-z_{0}\right)^{m-k}} \tilde{h}(z) \tag{2.8}\\
& =\sum_{n=0}^{m-k-1} \frac{1}{n!} \frac{d \tilde{h}^{(n)}}{d z^{n}}\left(z_{0}\right) \frac{1}{\left(z-z_{0}\right)^{m-k-n}}+\sum_{n \geq 0} \frac{1}{(n+m-k)!} \frac{d \tilde{h}^{(n+m-k)}}{d z^{n+m-k}}\left(z_{0}\right)\left(z-z_{0}\right)^{n} \\
& =\frac{\tilde{h}\left(z_{0}\right)}{\left(z-z_{0}\right)^{m-k}}+\cdots+\frac{\frac{1}{(m-k-1)!} \frac{d \tilde{h}^{(m-k-1)}}{d z^{m-k-1}}\left(z_{0}\right)}{z-z_{0}} \\
& +\sum_{n \geq 0} \frac{1}{(n+m-k)!} \frac{d \tilde{h}^{(n+m-k)}}{d z^{n+m-k}}\left(z_{0}\right)\left(z-z_{0}\right)^{n} .
\end{align*}
$$

We know that the Laurent series of h around z_{0} must be of the form:

$$
\begin{equation*}
h(z)=\sum_{n \geq 1} \frac{b_{n}}{\left(z-z_{0}\right)^{n}}+\sum_{n \geq 0} a_{n}\left(z-z_{0}\right)^{n} \tag{2.9}
\end{equation*}
$$

If we compare (2.9) with (2.8) we conclude the following:

$$
\begin{gather*}
b_{n}=0 \quad \text { if } n>m-k, \\
b_{m-k}=\tilde{h}\left(z_{0}\right) \neq 0, \quad b_{1}=\frac{1}{(m-k-1)!} \frac{d \tilde{h}^{(m-k-1)}}{d z^{m-k-1}}\left(z_{0}\right), \tag{2.10}
\end{gather*}
$$

and finally

$$
a_{n}=\frac{1}{(n+m-k)!} \frac{d \tilde{h}^{(n+m-k)}}{d z^{n+m-k}}\left(z_{0}\right), \quad n \geq 0
$$

3 Residue calculus

Let us compute the above coefficient b_{1} when $m=k+1$; then (2.10) gives:

$$
\begin{equation*}
b_{1}=\tilde{h}\left(z_{0}\right)=\frac{m!}{k!} \frac{\frac{d f^{(k)}}{d z^{k}}\left(z_{0}\right)}{\frac{d g^{(m)}}{d z^{m}}\left(z_{0}\right)}=(k+1) \frac{\frac{d f^{(k)}}{d z^{k}}\left(z_{0}\right)}{\frac{d g^{(k+1)}}{d z^{k+1}}\left(z_{0}\right)} . \tag{3.11}
\end{equation*}
$$

But in general it is complicated to write down a formula for b_{1}. In different application it is easier to repeat the whole algorithm from the beginning than to follow some pre-determined formulas. Let us solve an exercise.

Exercise 3.1. Consider the function

$$
h(z)=\frac{\{\sin (z)\}^{2}}{e^{z^{4}}-1}
$$

defined at all points where $e^{z^{4}} \neq 1$. Show that $z_{0}=0$ is a pole of order 2 , and compute the residue b_{1}.

Solution. We have $f(z)=\{\sin (z)\}^{2}$ and $g(z)=e^{z^{4}}-1$. Both functions are analytic on the whole complex plane.

Now let us see what is k. We have $f(0)=0$, hence we must investigate $f^{\prime}(0)$. We compute:

$$
f^{\prime}(z)=2 \sin (z) \cos (z)=\sin (2 z), \quad f^{\prime}(0)=0
$$

Then we continue with $f^{\prime \prime}(z)=2 \cos (2 z)$, hence $f^{\prime \prime}(0)=2 \neq 0$. Thus $k=2$ and we may write

$$
f(z)=z^{2} \tilde{f}(z), \quad \frac{d \tilde{f}^{(n)}}{d z^{n}}(0)=\frac{n!}{(n+2)!} \frac{d f^{(n+2)}}{d z^{n+2}}(0), \quad n \geq 0
$$

Let us find m. Using the formula $e^{w}=\sum_{n \geq 0} \frac{w^{n}}{n!}$, we have

$$
g(z)=\sum_{n \geq 1} \frac{z^{4 n}}{n!}=z^{4}+\frac{z^{8}}{2}+\ldots
$$

This means that $g(0)=g^{\prime}(0)=g^{\prime \prime}(0)=g^{(3)}(0)=0$ and $g^{(4)}(0)=4!=24 \neq 0$. Thus $m=4$, and

$$
g(z)=z^{4} \tilde{g}(z), \quad \frac{d \tilde{g}^{(n)}}{d z^{n}}(0)=\frac{n!}{(n+4)!} \frac{d g^{(n+4)}}{d z^{n+4}}(0), \quad n \geq 0
$$

Now we may write:

$$
h(z)=\frac{1}{z^{2}} \tilde{h}(z), \quad \tilde{h}(z)=\frac{\tilde{f}(z)}{\tilde{g}(z)} .
$$

According to (2.10), we have $b_{1}=\tilde{h}^{\prime}(0)$. We have:

$$
\tilde{h}^{\prime}(0)=\frac{\tilde{f}^{\prime}(0) \tilde{g}(0)-\tilde{f}(0) \tilde{g}^{\prime}(0)}{\{\tilde{g}(0)\}^{2}}
$$

in which we can insert $\tilde{g}(0)=\frac{1}{4!} \frac{d g^{(4)}}{d z^{4}}(0)=1, \tilde{g}^{\prime}(0)=\frac{1}{5!} \frac{d g^{(5)}}{d z^{5}}(0)=0, \tilde{f}(0)=\frac{1}{2!} \frac{d f^{(2)}}{d z^{2}}(0)=1$ and $\tilde{f}^{\prime}(0)=\frac{1}{3!} \frac{d f^{(3)}}{d z^{3}}(0)=0$. This gives $b_{1}=0$.

4 Some typical exam exercises

Exercise 4.1. Find all the complex solutions of the equation $e^{z^{3}}=1$.
Solution. We know that the exponential function is $2 \pi i$ periodic, thus z^{3} must be of the form $2 \pi i N$ with $N \in \mathbb{Z}$. There are three possibilities for N :

1. If $N=0$, then the only solution is $z=0$;
2. For each $N>0$, let us solve the equation $z^{3}=2 \pi i N=2 \pi N e^{i \pi / 2}$. For each N we find three solutions:

$$
z_{k}=(2 \pi N)^{1 / 3} e^{i(\pi / 6+2 \pi k / 3)}, \quad k \in\{0,1,2\} .
$$

3. For each $N<0$, let us solve the equation $z^{3}=-2 \pi i|N|=2 \pi|N| e^{-i \pi / 2}$. This gives other three solutions:

$$
z_{k}=(2 \pi|N|)^{1 / 3} e^{i(-\pi / 6+2 \pi k / 3)}, \quad k \in\{0,1,2\} .
$$

Exercise 4.2. Let $f(z)=|z|^{2}+\bar{z}$, where $z=x+i y$.

1. Find two real functions u and v such that $f(z)=u(x, y)+i v(x, y)$ for all z.
2. Is f analytic?

Solution.

1. We have $\bar{z}=x-i y$ and $|z|^{2}=x^{2}+y^{2}$, thus $u(x, y)=x+x^{2}+y^{2}$ and $v(x, y)=-y$.
2. The function is not analytic, because the Cauchy-Riemann equations are not satisfied. For example, $\partial_{x} u=1+2 x$ is not identically equal with $\partial_{y} v=-1$.

Exercise 4.3. Let $f(z)=\bar{z}$, where $z=x+i y$. Let γ be a circle of radius 1 , centred at $z_{0}=1+i$, and oriented anti-clockwise. Show that the path integral

$$
\int_{\gamma} f(z) d z=2 \pi i
$$

Is this result in contradiction with Cauchy's integral theorem?
Solution. We can parameterize the circle as $\gamma:[0,2 \pi] \rightarrow \mathbb{C}, \gamma(t)=z_{0}+e^{i t}$. Here $\gamma^{\prime}(t)=i e^{i t}$ and $z_{0}=\sqrt{2} e^{i \pi / 4}$. Then we have

$$
\begin{align*}
\int_{\gamma} f(z) d z & =\int_{0}^{2 \pi} f(\gamma(t)) \gamma^{\prime}(t) d t=i \int_{0}^{2 \pi} \overline{\sqrt{2} e^{i \pi / 4}+e^{i t}} e^{i t} d t \\
& =i \int_{0}^{2 \pi}\left(\sqrt{2} e^{-i \pi / 4} e^{i t}+1\right) d t=2 \pi i \tag{4.12}
\end{align*}
$$

Thus the integral of f on a closed path is not zero. This is possible because f is not analytic, thus Cauchy's theorem is not contradicted.

Exercise 4.4. Find the convergence radius of the power series $\sum_{n \geq 0} \frac{2 n^{3}+1}{n+1} z^{n}$.
Solution.
Let $a_{n}=\frac{2 n^{3}+1}{n+1}$. This implies that $a_{n+1}=\frac{2(n+1)^{3}+1}{n+2}$. Then we have:

$$
\frac{a_{n}}{a_{n+1}}=\frac{\left(2 n^{3}+1\right)(n+2)}{\left(2(n+1)^{3}+1\right)(n+1)}=\frac{\left(2+1 / n^{3}\right)(1+2 / n)}{\left(2(1+1 / n)^{3}+1\right)(1+1 / n)}, \quad n \geq 1
$$

Thus the radius of convergence is:

$$
R=\lim _{n \rightarrow \infty} \frac{a_{n}}{a_{n+1}}=1
$$

Exercise 4.5. Let the function $h(z)=\frac{\sin (z \pi)}{z^{4}-1}$ initially defined on all points where $z^{4} \neq 1$. Show that h is analytic at $z= \pm 1$, and has two first order poles at $\pm i$.

Solution. Let $f(z)=\sin (z \pi)$ and $g(z)=z^{4}-1$. The possible singularities of h are the solutions of the equation $z^{4}=1$. These points are given by

$$
e^{k \pi i / 2}, \quad k \in\{0,1,2,3\}
$$

or $z_{1}=1, z_{2}=i, z_{3}=-1, z_{4}=-i$.

1. We show that the Laurent series of h near $z_{1}=1$ has all its b coefficients equal to zero. We have $f(1)=0, f^{\prime}(z)=\pi \cos (z \pi)$ thus $f^{\prime}(1)=-\pi \neq 0$. Hence 1 is a first order zero for f and we can write $f(z)=(z-1) \tilde{f}(z)$, with $\tilde{f}(1)=f^{\prime}(1)=-\pi$.

In a similar way, $g(1)=0, g^{\prime}(z)=4 z^{3}$ and $g^{\prime}(1)=4 \neq 0$, thus $g(z)=(z-1) \tilde{g}(z)$ with $\tilde{g}(1)=g^{\prime}(1)=4$. It means that $h(z)=\frac{\tilde{f}(z)}{\tilde{g}(z)}$, which is analytic around 1 .
2. We can redo the same type of argument near $z_{3}=-1$. We obtain $f(-1)=0, f^{\prime}(-1)=$ $-\pi \neq 0, g(-1)=0$ and $g^{\prime}(-1)=-4 \neq 0$. Since -1 is a first order zero for both f and g, the function h is analytic near -1 .
3. Let us investigate the Laurent series of h near $z_{2}=i$. We have $f(i)=\sin (i \pi) \neq 0$, thus $\tilde{f}(z)=f(z)$. But $g(i)=0$ and $g^{\prime}(i)=-4 i \neq 0$, which means $g(z)=(z-i) \tilde{g}(z)$ with $\tilde{g}(i)=-4 i$. Here we are in the situation $k=0$ and $m=1$, see (2.8)-(2.10). Thus $h(z)=\frac{1}{z-i} \tilde{h}(z)$ and $b_{1}=i \sin (i \pi) / 4 \neq 0$.
4. The treatment of z_{4} is similar with that of z_{3}.

Exercise 4.6. Compute the integral

$$
\int_{-\infty}^{\infty} \frac{\cos (x)}{x^{2}+9} d x
$$

Solution. Let us consider the function $h(z)=\frac{e^{i z}}{z^{2}+9}$. We have the equality:

$$
\int_{-\infty}^{\infty} \frac{\cos (x)}{x^{2}+9} d x=\operatorname{Re}\left(\int_{-\infty}^{\infty} h(x) d x\right)
$$

1. Let us show that he function h has two simple poles: one at $z_{1}=3 i$ and the other one at $z_{2}=-3 i$. We have $f(z)=e^{i z}$ and $g(z)=z^{2}+9$. The only two points where g is zero, are z_{1} and z_{2}. The function f has no zeroes. Since $g^{\prime}(z)=2 z$, it means that z_{1} and z_{2} are first order zeroes. Near z_{1} we can write $g(z)=(z-3 i) \tilde{g}(z)$ with $\tilde{g}(z)=z+3 i$. It means that near $z_{1}=3 i$ we can write:

$$
h(z)=\frac{1}{z-3 i} \frac{e^{i z}}{z+3 i}, \quad \operatorname{Res}_{z=z_{1}}(h)=b_{1}=\frac{e^{-3}}{6 i}
$$

In a similar way, near $z_{2}=-3 i$ we have:

$$
h(z)=\frac{1}{z+3 i} \frac{e^{i z}}{z-3 i}, \quad \operatorname{Res}_{z=z_{2}}(h)=b_{1}=-\frac{e^{3}}{6 i}
$$

In order to compute the integral of h we close the contour through the upper half plane and apply the residue theorem:

$$
\int_{-\infty}^{\infty} h(x) d x=2 \pi i \operatorname{Res}_{z=z_{1}}(h)=\frac{\pi e^{-3}}{3}
$$

Exercise 4.7. Compute the integral

$$
\int_{0}^{2 \pi} \frac{\sin ^{2}(\theta)}{5-4 \cos (\theta)} d \theta
$$

Solution. We reason as in section 16.4, formula 2 on page 718. We have:

$$
\cos (\theta)=\frac{1}{2}(z+1 / z), \quad \sin (\theta)=\frac{1}{2 i}(z-1 / z), \quad d \theta=\frac{d z}{i z} .
$$

Thus the integral can be rewritten as a path integral over the unit circle of the function

$$
h(z)=\frac{-\frac{1}{4}(z-1 / z)^{2}}{5-2(z+1 / z)} \frac{1}{i z}=\frac{\left(z^{2}-1\right)^{2}}{4 i z^{2}\left(2 z^{2}-5 z+2\right)}
$$

We need to identify the eventual singularities of h inside the unit circle. We have $f(z)=$ $\left(z^{2}-1\right)^{2}$ and $g(z)=4 i z^{2}\left(2 z^{2}-5 z+2\right)$. We can factorize $2 z^{2}-5 z+2=2(z-1 / 2)(z-2)$. Thus g has two zeroes inside the unit circle: $z_{1}=0$ and $z_{2}=1 / 2$.

Let us show that $z_{1}=0$ is a pole of order two. Since $f(0)=1 \neq 0$, we have $k=0$. Moreover, $m=2$ because we have $g(z)=z^{2} \tilde{g}(z)$ with $\tilde{g}(z)=4 i\left(2 z^{2}-5 z+2\right)$ and $\tilde{g}(0)=8 i \neq 0$. Thus

$$
h(z)=\frac{1}{z^{2}} \tilde{h}(z), \quad \tilde{h}(z)=\frac{\left(z^{2}-1\right)^{2}}{4 i\left(2 z^{2}-5 z+2\right)}
$$

Then according to (2.10) we have:

$$
\operatorname{Res}_{z=0} h=b_{1}=\tilde{h}^{\prime}(0)=-\frac{5 i}{16}
$$

Now let us treat $z_{2}=1 / 2$. Again, $f(1 / 2)=9 / 16 \neq 0$, thus $k=0$. Moreover, $m=1$ because we have $g(z)=(z-1 / 2) \tilde{g}(z)$ with $\tilde{g}(z)=8 i z^{2}(z-2)$ and $\tilde{g}(1 / 2)=-3 i \neq 0$. Thus

$$
h(z)=\frac{1}{z-1 / 2} \tilde{h}(z), \quad \tilde{h}(z)=\frac{\left(z^{2}-1\right)^{2}}{8 i z^{2}(z-2)} .
$$

Then according to (2.10) we have:

$$
\operatorname{Res}_{z=1 / 2} h=b_{1}=\tilde{h}(1 / 2)=\frac{3 i}{16}
$$

Then according to the residue theorem on page 715 we have:

$$
\int_{|z|=1} h(z) d z=2 \pi i\left(\operatorname{Res}_{z=0} h+\operatorname{Res}_{z=1 / 2} h\right)=\frac{\pi}{4}
$$

