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1 Singularities of rational functions

Consider two functions f and g both defined on a domain D ⊂ C, and analytic on D. Define
h(z) = f(z)

g(z) in all points of D where g 6= 0.
We say that z0 ∈ D is a zero of order k ≥ 0 for f if

f(z0) = f ′(z0) = · · · = f (k−1)(z0) = 0 and f (k)(z0) 6= 0. (1.1)

With the same definition, a point z0 ∈ D is a zero of order m ≥ 0 for g if

g(z0) = g′(z0) = · · · = g(k−1)(z0) = 0 and g(k)(z0) 6= 0. (1.2)

Note that if for example f(z0) 6= 0, then we either say that z0 is not a zero, or that z0 is a zeroth
order zero. In this way, we can classify all points of D.

Now choose an arbitrary point z0 ∈ D, and assume that it is a zero of order k for f . Since f
is analytic in z0, we can expand f in a Taylor series in a small disk around z0:

f(z) =
∑
n≥0

1
n!
df (n)

dzn
(z0) (z − z0)n =

∑
n≥k

1
n!
df (n)

dzn
(z0) (z − z0)n

= (z − z0)k
∑
n≥k

1
n!
df (n)

dzn
(z0) (z − z0)n−k

= (z − z0)k
∑
n≥0

1
(n+ k)!

df (n+k)

dzn+k
(z0) (z − z0)n. (1.3)

Thus we may write:

f̃(z) :=
∑
n≥0

1
(n+ k)!

df (n+k)

dzn+k
(z0) (z − z0)n,

df̃ (n)

dzn
(z0) =

n!
(n+ k)!

df (n+k)

dzn+k
(z0)

f(z) = (z − z0)kf̃(z). (1.4)

Now let us assume that z0 is a zero of order m for g. Reasoning as above, we may write:

g̃(z) :=
∑
n≥0

1
(n+m)!

dg(n+m)

dzn+m
(z0) (z − z0)n,

dg̃(n)

dzn
(z0) =

n!
(n+m)!

dg(n+m)

dzn+m
(z0)

g(z) = (z − z0)mg̃(z). (1.5)

Therefore, the function h can be expressed in a neighborhood of z0 as:

h(z) = (z − z0)k−mh̃(z), h̃(z) :=
f̃(z)
g̃(z)

, h̃(z0) =
f̃(z0)
g̃(z0)

=
m!
k!

df(k)

dzk (z0)
dg(m)

dzm (z0)
6= 0. (1.6)

At this moment we can fully investigate the nature of the point z0. There are two distinct
situations:
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1. If k ≥ m, then z0 is a zero of order k − m for h; indeed, if we differentiate the product
(z − z0)k−mh̃(z) less than k −m times, then all terms we get will contain a positive power
of (z− z0). Then if we put z = z0 they will all be zero. The first time when this is no longer
true, is when we differentiate precisely k − m times, and all derivatives fall on the factor
(z − z0)k−m. In fact, one can prove that

dh(k−m)

dzk−m
(z0) = (k −m)! h̃(z0) 6= 0,

which finishes the proof that z0 is a zero of order k −m for h.

2. If k < m, then z0 is a pole of order m−k for h; indeed, according to the definition, we have:

lim
z→z0

(z − z0)m−kh(z) = h̃(z0) 6= 0.

2 Laurent series for rational functions

Assume that we are in the situation in which k < m, or in other words m− k > 0. Since h̃ is an
analytic function around z0, we can expand it in a Taylor series given by:

h̃(z) =
∑
n≥0

1
n!
dh̃(n)

dzn
(z0) (z − z0)n (2.7)

=
m−k−1∑
n=0

1
n!
dh̃(n)

dzn
(z0) (z − z0)n +

∑
n≥m−k

1
n!
dh̃(n)

dzn
(z0) (z − z0)n

=
m−k−1∑
n=0

1
n!
dh̃(n)

dzn
(z0) (z − z0)n + (z − z0)m−k

∑
n≥0

1
(n+m− k)!

dh̃(n+m−k)

dzn+m−k (z0) (z − z0)n.

Thus:

h(z) =
1

(z − z0)m−k
h̃(z) (2.8)

=
m−k−1∑
n=0

1
n!
dh̃(n)

dzn
(z0)

1
(z − z0)m−k−n

+
∑
n≥0

1
(n+m− k)!

dh̃(n+m−k)

dzn+m−k (z0) (z − z0)n

=
h̃(z0)

(z − z0)m−k
+ · · ·+

1
(m−k−1)!

dh̃(m−k−1)

dzm−k−1 (z0)

z − z0

+
∑
n≥0

1
(n+m− k)!

dh̃(n+m−k)

dzn+m−k (z0) (z − z0)n.

We know that the Laurent series of h around z0 must be of the form:

h(z) =
∑
n≥1

bn
(z − z0)n

+
∑
n≥0

an(z − z0)n. (2.9)

If we compare (2.9) with (2.8) we conclude the following:

bn = 0 if n > m− k,

bm−k = h̃(z0) 6= 0, b1 =
1

(m− k − 1)!
dh̃(m−k−1)

dzm−k−1
(z0), (2.10)

and finally

an =
1

(n+m− k)!
dh̃(n+m−k)

dzn+m−k (z0), n ≥ 0.
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3 Residue calculus

Let us compute the above coefficient b1 when m = k + 1; then (2.10) gives:

b1 = h̃(z0) =
m!
k!

df(k)

dzk (z0)
dg(m)

dzm (z0)
= (k + 1)

df(k)

dzk (z0)
dg(k+1)

dzk+1 (z0)
. (3.11)

But in general it is complicated to write down a formula for b1. In different application it
is easier to repeat the whole algorithm from the beginning than to follow some pre-determined
formulas. Let us solve an exercise.

Exercise 3.1. Consider the function

h(z) =
{sin(z)}2

ez4 − 1
,

defined at all points where ez
4 6= 1. Show that z0 = 0 is a pole of order 2, and compute the residue

b1.

Solution. We have f(z) = {sin(z)}2 and g(z) = ez
4 − 1. Both functions are analytic on the

whole complex plane.
Now let us see what is k. We have f(0) = 0, hence we must investigate f ′(0). We compute:

f ′(z) = 2 sin(z) cos(z) = sin(2z), f ′(0) = 0.

Then we continue with f ′′(z) = 2 cos(2z), hence f ′′(0) = 2 6= 0. Thus k = 2 and we may write

f(z) = z2f̃(z),
df̃ (n)

dzn
(0) =

n!
(n+ 2)!

df (n+2)

dzn+2
(0), n ≥ 0.

Let us find m. Using the formula ew =
∑
n≥0

wn

n! , we have

g(z) =
∑
n≥1

z4n

n!
= z4 +

z8

2
+ . . . .

This means that g(0) = g′(0) = g′′(0) = g(3)(0) = 0 and g(4)(0) = 4! = 24 6= 0. Thus m = 4, and

g(z) = z4g̃(z),
dg̃(n)

dzn
(0) =

n!
(n+ 4)!

dg(n+4)

dzn+4
(0), n ≥ 0.

Now we may write:

h(z) =
1
z2
h̃(z), h̃(z) =

f̃(z)
g̃(z)

.

According to (2.10), we have b1 = h̃′(0). We have:

h̃′(0) =
f̃ ′(0)g̃(0)− f̃(0)g̃′(0)

{g̃(0)}2

in which we can insert g̃(0) = 1
4!
dg(4)

dz4 (0) = 1, g̃′(0) = 1
5!
dg(5)

dz5 (0) = 0, f̃(0) = 1
2!
df(2)

dz2 (0) = 1 and

f̃ ′(0) = 1
3!
df(3)

dz3 (0) = 0. This gives b1 = 0.
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4 Some typical exam exercises

Exercise 4.1. Find all the complex solutions of the equation ez
3

= 1.

Solution. We know that the exponential function is 2πi periodic, thus z3 must be of the form
2πiN with N ∈ Z. There are three possibilities for N :

1. If N = 0, then the only solution is z = 0;
2. For each N > 0, let us solve the equation z3 = 2πiN = 2πNeiπ/2. For each N we find three

solutions:
zk = (2πN)1/3ei(π/6+2πk/3), k ∈ {0, 1, 2}.

3. For each N < 0, let us solve the equation z3 = −2πi|N | = 2π|N |e−iπ/2. This gives other
three solutions:

zk = (2π|N |)1/3ei(−π/6+2πk/3), k ∈ {0, 1, 2}.

Exercise 4.2. Let f(z) = |z|2 + z, where z = x+ iy.
1. Find two real functions u and v such that f(z) = u(x, y) + iv(x, y) for all z.
2. Is f analytic?

Solution.
1. We have z = x− iy and |z|2 = x2 + y2, thus u(x, y) = x+ x2 + y2 and v(x, y) = −y.
2. The function is not analytic, because the Cauchy-Riemann equations are not satisfied. For

example, ∂xu = 1 + 2x is not identically equal with ∂yv = −1.

Exercise 4.3. Let f(z) = z, where z = x+ iy. Let γ be a circle of radius 1, centred at z0 = 1 + i,
and oriented anti-clockwise. Show that the path integral∫

γ

f(z)dz = 2πi.

Is this result in contradiction with Cauchy’s integral theorem?

Solution. We can parameterize the circle as γ : [0, 2π]→ C, γ(t) = z0 + eit. Here γ′(t) = ieit

and z0 =
√

2eiπ/4. Then we have∫
γ

f(z)dz =
∫ 2π

0

f(γ(t))γ′(t)dt = i

∫ 2π

0

√
2eiπ/4 + eiteitdt

= i

∫ 2π

0

(
√

2e−iπ/4eit + 1)dt = 2πi. (4.12)

Thus the integral of f on a closed path is not zero. This is possible because f is not analytic, thus
Cauchy’s theorem is not contradicted.

Exercise 4.4. Find the convergence radius of the power series
∑
n≥0

2n3+1
n+1 zn.

Solution.
Let an = 2n3+1

n+1 . This implies that an+1 = 2(n+1)3+1
n+2 . Then we have:

an
an+1

=
(2n3 + 1)(n+ 2)

(2(n+ 1)3 + 1)(n+ 1)
=

(2 + 1/n3)(1 + 2/n)
(2(1 + 1/n)3 + 1)(1 + 1/n)

, n ≥ 1.

Thus the radius of convergence is:

R = lim
n→∞

an
an+1

= 1.
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Exercise 4.5. Let the function h(z) = sin(zπ)
z4−1 initially defined on all points where z4 6= 1. Show

that h is analytic at z = ±1, and has two first order poles at ±i.

Solution. Let f(z) = sin(zπ) and g(z) = z4 − 1. The possible singularities of h are the
solutions of the equation z4 = 1. These points are given by

ekπi/2, k ∈ {0, 1, 2, 3},

or z1 = 1, z2 = i, z3 = −1, z4 = −i.
1. We show that the Laurent series of h near z1 = 1 has all its b coefficients equal to zero. We

have f(1) = 0, f ′(z) = π cos(zπ) thus f ′(1) = −π 6= 0. Hence 1 is a first order zero for f and we
can write f(z) = (z − 1)f̃(z), with f̃(1) = f ′(1) = −π.

In a similar way, g(1) = 0, g′(z) = 4z3 and g′(1) = 4 6= 0, thus g(z) = (z − 1)g̃(z) with
g̃(1) = g′(1) = 4. It means that h(z) = f̃(z)

g̃(z) , which is analytic around 1.
2. We can redo the same type of argument near z3 = −1. We obtain f(−1) = 0, f ′(−1) =

−π 6= 0, g(−1) = 0 and g′(−1) = −4 6= 0. Since −1 is a first order zero for both f and g, the
function h is analytic near −1.

3. Let us investigate the Laurent series of h near z2 = i. We have f(i) = sin(iπ) 6= 0, thus
f̃(z) = f(z). But g(i) = 0 and g′(i) = −4i 6= 0, which means g(z) = (z − i)g̃(z) with g̃(i) = −4i.
Here we are in the situation k = 0 and m = 1, see (2.8)-(2.10). Thus h(z) = 1

z−i h̃(z) and
b1 = i sin(iπ)/4 6= 0.

4. The treatment of z4 is similar with that of z3.

Exercise 4.6. Compute the integral ∫ ∞
−∞

cos(x)
x2 + 9

dx.

Solution. Let us consider the function h(z) = eiz

z2+9 . We have the equality:∫ ∞
−∞

cos(x)
x2 + 9

dx = Re
(∫ ∞
−∞

h(x)dx
)
.

1. Let us show that he function h has two simple poles: one at z1 = 3i and the other one at
z2 = −3i. We have f(z) = eiz and g(z) = z2 + 9. The only two points where g is zero, are z1 and
z2. The function f has no zeroes. Since g′(z) = 2z, it means that z1 and z2 are first order zeroes.
Near z1 we can write g(z) = (z − 3i)g̃(z) with g̃(z) = z + 3i. It means that near z1 = 3i we can
write:

h(z) =
1

z − 3i
eiz

z + 3i
, Resz=z1(h) = b1 =

e−3

6i
.

In a similar way, near z2 = −3i we have:

h(z) =
1

z + 3i
eiz

z − 3i
, Resz=z2(h) = b1 = −e

3

6i
.

In order to compute the integral of h we close the contour through the upper half plane and
apply the residue theorem: ∫ ∞

−∞
h(x)dx = 2πiResz=z1(h) =

πe−3

3
.

Exercise 4.7. Compute the integral ∫ 2π

0

sin2(θ)
5− 4 cos(θ)

dθ.
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Solution. We reason as in section 16.4, formula 2 on page 718. We have:

cos(θ) =
1
2

(z + 1/z), sin(θ) =
1
2i

(z − 1/z), dθ =
dz

iz
.

Thus the integral can be rewritten as a path integral over the unit circle of the function

h(z) =
− 1

4 (z − 1/z)2

5− 2(z + 1/z)
1
iz

=
(z2 − 1)2

4iz2(2z2 − 5z + 2)
.

We need to identify the eventual singularities of h inside the unit circle. We have f(z) =
(z2 − 1)2 and g(z) = 4iz2(2z2 − 5z + 2). We can factorize 2z2 − 5z + 2 = 2(z − 1/2)(z − 2). Thus
g has two zeroes inside the unit circle: z1 = 0 and z2 = 1/2.

Let us show that z1 = 0 is a pole of order two. Since f(0) = 1 6= 0, we have k = 0. Moreover,
m = 2 because we have g(z) = z2g̃(z) with g̃(z) = 4i(2z2 − 5z + 2) and g̃(0) = 8i 6= 0. Thus

h(z) =
1
z2

h̃(z), h̃(z) =
(z2 − 1)2

4i(2z2 − 5z + 2)
.

Then according to (2.10) we have:

Resz=0h = b1 = h̃′(0) = − 5i
16
.

Now let us treat z2 = 1/2. Again, f(1/2) = 9/16 6= 0, thus k = 0. Moreover, m = 1 because
we have g(z) = (z − 1/2)g̃(z) with g̃(z) = 8iz2(z − 2) and g̃(1/2) = −3i 6= 0. Thus

h(z) =
1

z − 1/2
h̃(z), h̃(z) =

(z2 − 1)2

8iz2(z − 2)
.

Then according to (2.10) we have:

Resz=1/2h = b1 = h̃(1/2) =
3i
16
.

Then according to the residue theorem on page 715 we have:∫
|z|=1

h(z)dz = 2πi(Resz=0h+ Resz=1/2h) =
π

4
.
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