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1 Path integrals

1.1 General things about paths

A three dimensional path, or curve, is parametrized by just one real variable. Mathematically, a
path is the range of a function

[a, b] ∋ u 7→ ~r(u) ∈ R
3.

Some important examples:

• A straight line starting at point ~rA := (xA, yA, zA) and ending at point ~rB := (xB , yB , zB):

[0, 1] ∋ u 7→ ~r(u) = (xA(1 − u) + xBu, yA(1 − u) + yBu, zA(1 − u) + zBu); (1.1)

We denote it by LA→B .

• Two composed straight lines, starting at A, going through B, and ending at C:

[0, 2] ∋ u 7→ ~r(u) ∈ R
3, (1.2)

~r(u) =

{

(xA(1 − u) + xBu, yA(1 − u) + yBu, zA(1 − u) + zBu), u ∈ [0, 1)

(xB(2 − u) + xC(u − 1), yB(2 − u) + yC(u − 1), zB(2 − u) + zC(u − 1)), u ∈ [1, 2]

We denote it by LA→B→C .

• A triangle starting at A, end ending at C:

[0, 3] ∋ u 7→ ~r(u) ∈ R
3, (1.3)

~r(u) =











(xA(1 − u) + xBu, yA(1 − u) + yBu, zA(1 − u) + zBu), u ∈ [0, 1)

(xB(2 − u) + xC(u − 1), yB(2 − u) + yC(u − 1), zB(2 − u) + zC(u − 1)), u ∈ [1, 2)

(xC(3 − u) + xA(u − 2), yC(3 − u) + yA(u − 2), zC(3 − u) + zA(u − 2)), u ∈ [2, 3]

We denote it by LA→B→C→A.

• A circle parallel to the xOy plane, with radius R and center at ~rC = (xC , yC , zC):

[0, 2π] ∋ u 7→ ~r(u) = (xC + R cos(u), yC + R sin(u), zC); (1.4)

We denote it by CR(~rC).

It is very important to note that a path is always oriented, it has a starting and an ending
point. LA→B and LB→A go through the same set of points, but have opposite orientation.

Given any path γ, we can construct the oppositely oriented path γ̃ by the formula:

[a, b] ∋ u 7→ γ̃(u) := γ(a + b − u). (1.5)

A path γ : [a, b] → R
3 which has the property that γ(a) = γ(b) is called a closed path.
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1.2 Concatenation of paths

Assume that we have a path γA→B starting at point A and ending at B, and a path γB→C starting
at B and ending at C. More precisely:

γA→B : [a, b] → R
3, γA→B(a) = ~rA, γA→B(b) = ~rA,

and
γB→C : [c, d] → R

3, γB→C(c) = ~rB , γB→C(d) = ~rC .

To concatenate γA→B and γB→C means to define a path γA→C := γA→B ∪γB→C which goes from
A to C in the following way:

γA→C :

[

a + c

2
,
b + d

2

]

∈ R
3, (1.6)

γA→C(u) =







γA→B

(

a + (u − a+c
2 ) 4(b−a)

b+d−a−c

)

, u ∈ [a+c
2 , a+b+c+d

4 )

γB→C

(

c + (u − a+b+c+d
4 ) 4(d−c)

b+d−a−c

)

, u ∈ [a+b+c+d
4 , b+d

2 ]

If a = c and b = d then the formulas are much simpler:

γA→C : [a, b] ∈ R
3, (1.7)

γA→C(u) =

{

γA→B(a + 2(u − a)), u ∈ [a, a+b
2 )

γB→C

(

a + 2(u − a+b
2 )

)

, u ∈ [a+b
2 , b]

1.3 The tangent vector field

Given a smooth path γ : [a, b] → R
3, γ(u) = (x(u), y(u), z(u)), we can compute its derivative at

every point, thus obtaining its tangent vector field:

γ′(u) := (x′(u), y′(u), z′(u)). (1.8)

For example, the tangent field for a straight line LA→B is given by (see (1.1)):

γ′(u) := (xB − xA, yB − yA, zB − zA) = ~rB − ~rA, (1.9)

and is constant. In the case of the circle CR(~rC) we have

γ′(u) := (−R sin(u), R cos(u), 0). (1.10)

1.4 The length of a path

Remember that if we have two vectors ~r1 = (x1, y1, z1) and ~r2 = (x2, y2, z2), their dot product
(scalar product) is defined as

~r1 · ~r2 = 〈~r1, ~r2〉 = x1x2 + y1y2 + z1z2.

The length of a vector is

||~r|| :=
√

~r · ~r =
√

x2 + y2 + z2.

Consider γ : [a, b] → R
3, a smooth path. Its length is defined to be the integral:

L(γ) :=

∫ b

a

||γ′(u)||du. (1.11)
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1.5 Path integral of a vector field

Consider a vector field ~F : R
3 → R

3 given by ~F (~r) = (F1(~r), F2(~r), F3(~r)). Then the path integral

of ~F on the path γ : [a, b] → R
3 is defined to be:

∫

γ

~F · dγ :=

∫ b

a

~F (γ(u)) · γ′(u)du. (1.12)

One can show that the integral does not depend on the way we parametrize the path, as long as
one keeps the same orientation. If γ is a closed path, then the integral is called circulation. Let
us see two concrete examples, for the vector field ~F (~r) = (x − z, z, y + x).

1. First we compute
∫

LA→B

~F · dγ.

• compute γ′(u). In this case it equals ~rA − ~rB ;

• compute the composed function ~F (γ(u)). Here:

~F (γ(u)) = ((xA−zA)(1−u)+(xB−zB)u, zA(1−u)+zBu, (yA+xA)(1−u)+(yB+xB)u);

• compute the dot product ~F (γ(u)) · γ′(u). Here it gives:

(xB − xA)[(xA − zA)(1 − u) + (xB − zB)u] + (yB − yA)[zA(1 − u) + zBu]

+(zB − zA)[(yA + xA)(1 − u) + (yB + xB)u].

• integrate from a to b. Here we have:

1

2
(xB − xA)[(xA − zA) + (xB − zB)] +

1

2
(yB − yA)[zA + zB]

+
1

2
(zB − zA)[(yA + xA) + (yB + xB)].

2. Second, let us compute the circulation of the same vector field on the circle CR(~rC).

• compute γ′(u). In this case it equals (−R sin(u), R cos(u), 0);

• compute the composed function ~F (γ(u)). Here:

~F (γ(u)) = (xC + R cos(u) − zC , zC , xC + yC + R cos(u) + R sin(u));

• compute the dot product ~F (γ(u)) · γ′(u). Here it gives:

−R sin(u)(xC + R cos(u) − zC) + zCR cos(u).

• integrate from 0 to 2π. Here the result is 0.

1.6 Important properties

We mention two important properties, given without proof. The first one says that if we integrate
a vector field on the same path but in the opposite direction, then we get the same numerical
value but with the opposite sign. More precisely (see (1.5)):

∫

γ

~F · dγ = −
∫

γ̃

~F · dγ̃. (1.13)

The second property says that if we integrate a vector field on a concatenated path, then the result
is the sum of integrals on individual paths. In detail (see subsection 1.2):

∫

γA→C

~F · dγA→C =

∫

γA→B

~F · dγA→B +

∫

γB→C

~F · dγB→C . (1.14)
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Finally, let us look at the situation in which our vector field is the gradient of a given scalar
function, that is

~F (~r) = ∇V (~r) = [∂1V (~r), ∂1V (~r), ∂1V (~r)].

Then we can show that the path integral of ~F between two points A and B is independent of the
path linking the two points. Indeed:

∫

γ

~F · dγ =

∫ b

a

∇V (γ(t)) · γ′(t)dt =

∫ b

a

{

d

dt
V (γ(t))

}

dt = V (γ(b)) − V (γ(a))

= V (~rB) − V (~rA). (1.15)

2 Surface integrals

2.1 General things about surfaces

Any surface in the three dimensional space is parametrized by two real variables. Let D ⊂ R
2

denote the domain where these parameters live. Mathematically, a surface is the range of a
function

D ∋ (u, v) 7→ ~r(u, v) = (x(u, v), y(u, v), z(u, v)) ∈ R
3.

Three important examples:

• Fix two vectors ~rA := (xA, yA, zA) and ~rB := (xB , yB , zB). The unique plane which contains
both vectors is parametrized as:

R
2 ∋ (u, v) 7→ ~r(u, v) := ~rAu + ~rBv = (xAu + xBv, yAu + yBv, zAu + zBv). (2.1)

Here D = R
2.

• A sphere with center at ~rS = (xS , yS , zS) and radius R:

[0, π] × [0, 2π] ∋ (θ, φ) 7→ ~r(θ, φ) ∈ R
3, (2.2)

~r(θ, φ) = ~rS + R(sin(θ) cos(φ), sin(θ) sin(φ), cos(θ)).

We denote it by ∂BR(~rS). Here D = [0, π] × [0, 2π].

• The disc contained in the circle CR(~rC) (see (1.4)):

[0, R] × [0, 2π] ∋ (ρ, φ) 7→ ~r(ρ, φ) = (xC + ρ cos(φ), yC + ρ sin(φ), zC); (2.3)

2.2 The infinitesimal surface element

Fix a point in D given by (u0, v0). If we vary (u, v) in a very small square around (u0, v0), then
~r(u, v) will cover a very small piece of our surface. Assume that |u − u0| = δu and |v − v0| = δv

are small. Then this piece of surface can be approximated by a small portion of the tangent plane
touching at ~r(u0, v0). Two vectors contained in this tangent plane are

∂~r

∂u
(u0, v0), and

∂~r

∂v
(u0, v0). (2.4)

The area of this surface element will approximately be:

dσ =

∣

∣

∣

∣

∂~r

∂u
(u0, v0) ×

∂~r

∂v
(u0, v0)

∣

∣

∣

∣

δu δv. (2.5)

We can also speak about orientation of surfaces. The above small surface element can be associated
to the normal vector on the tangent plane, thus we can define a length one vector field

~n(u, v) :=
1

∣

∣

∂~r
∂u

(u0, v0) × ∂~r
∂v

(u0, v0)
∣

∣

∂~r

∂u
(u, v) × ∂~r

∂v
(u, v). (2.6)

If we swap u and v we obtain an opposite orientation. In case of closed surfaces, the normal is
always taken in such a way that the normal vector points ”out of the surface”.
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2.3 Integration formulas

Now assume that f(~r) is a scalar surface density of a certain physical quantity. Then this quantity
is given by the integral:

∫

σ

f(~r)dσ :=

∫

D

f(~r(u, v))

∣

∣

∣

∣

∂~r

∂u
(u, v) × ∂~r

∂v
(u, v)

∣

∣

∣

∣

du dv. (2.7)

If ~F is a vector field, then the flux of ~F through the oriented surface σ is defined to be:

∫

σ

~F (~r) ~dσ :=

∫

D

~F (~r(u, v)) · ~n(u, v)

∣

∣

∣

∣

∂~r

∂u
(u, v) × ∂~r

∂v
(u, v)

∣

∣

∣

∣

du dv

=

∫

D

~F (~r(u, v)) ·
{

∂~r

∂u
(u, v) × ∂~r

∂v
(u, v)

}

du dv. (2.8)

2.4 Two examples

Let us go back to the disk defined in (2.3), and compute its normal vector field and the infinitesimal
surface area. First we compute

∂~r

∂ρ
(ρ, φ) = (cos(φ), sin(φ), 0),

∂~r

∂φ
(ρ, φ) = ρ(− sin(φ), cos(φ), 0).

These two vectors are orthogonal on each other, and moreover (see (2.6)):

~n(ρ, φ) = (0, 0, 1).

The surface element is (see (2.5)):
dσ = ρ dρdφ.

Let us consider a second example, i.e. the sphere in (2.2). In that case:

∂~r

∂θ
(θ, φ) = R(cos(θ) cos(φ), cos(θ) sin(φ),− sin(θ)),

∂~r

∂φ
(θ, φ) = R(− sin(θ) sin(φ), sin(θ) cos(φ), 0).

These two vectors are also orthogonal on each other, and moreover (see (2.6)):

~n(θ, φ) = (sin(θ) cos(φ), sin(θ) sin(φ), cos(θ)) =
~r(θ, φ)

R
.

The surface element is (see (2.5)):

dσ = R2 sin(θ) dθdφ.
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