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1 Path integrals

1.1 General things about paths

A three dimensional path, or curve, is parametrized by just one real variable. Mathematically, a
path is the range of a function
[a,b] 2 u — 7(u) € R3.

Some important examples:
e A straight line starting at point ¥4 := (24,y4,24) and ending at point 75 := (xp,yp, 25):
0,1] 3 ur #(u) = (xa(l —u) + zpu,ya(l —u) + ypu, za(1 — u) + zpu); (1.1)
We denote it by La_. 5.

e Two composed straight lines, starting at A, going through B, and ending at C":

0,2] 5 u— 7(u) € R3, (1.2)
’I?( ) _ (:EA(l—u)—l—mBu,yA(l—u)—&—yBu,zA(l—u)—i—zBuL u € [071)
(xp(2—u)+zc(u—1),y8(2 —u) +yc(u—1),25(2 —u) + zc(u—1)), ue]l,2]
We denote it by La_.p_.c.
e A triangle starting at A, end ending at C"
[0,3] 5 u— 7(u) € R, (1.3)
(a1 —u)+2zpu,ya(l —u) +ypu, za(1 —u) + zpu), u e [0,1)
T(u) =4 (rp(2—u) +zc(u—1),yp(2 —u) +yo(u —1),25(2 —u) + z¢(u — 1)), well,2)
(ze(B—u)+za(u—2),yc(3—u)+yalu—2),2¢(3—u)+z2a(u—2)), wel23
We denote it by La_.p_.c—a-
e A circle parallel to the 2Oy plane, with radius R and center at 7o = (z¢,yc, 20):
[0,27] 5 u — 7(u) = (xc + Reos(u), yo + Rsin(u), z¢); (1.4)

We denote it by Cr(7c).

It is very important to note that a path is always oriented, it has a starting and an ending
point. L4_.p and Lp_, 4 go through the same set of points, but have opposite orientation.
Given any path 7y, we can construct the oppositely oriented path 4 by the formula:

[a,b] 2 ur— F(u) :=v(a+b—u). (1.5)

A path v : [a,b] — R3 which has the property that v(a) = ~(b) is called a closed path.



1.2 Concatenation of paths

Assume that we have a path v4_. g starting at point A and ending at B, and a path yp_ ¢ starting
at B and ending at C. More precisely:

—

YA-B - [CL, b] - Rsa ’YA—>B(G’) = FA7 7A—>B(b) =TA,
and ,
Ye—c i [e,d] > R?, yp_c(c) =75, 7yp-c(d)=rc.

To concatenate y4_, g and yp_.c means to define a path y4_.¢ := va_.pU~vyp_¢ which goes from
A to C in the following way:

a+c b+d
YA—C * [ 5 72} € R, (1.6)
atc 4(b—a atc a c
() = Ya—p a4+ (u— ;)b+((i_alc), ue[g, +bz+d)
- - a d—c a
YB—cC \C + (u - +b1—c+d) b-;l-(d—azc) , ue [ +b—£—c+d’ b;*d]
If @ = c and b = d then the formulas are much simpler:
YA—C - [a,b] € RS, (17)
_ 2 — atb
T AR
Yoo (a+2(u— %)), ue [0

1.3 The tangent vector field

Given a smooth path v : [a,b] — R3, y(u) = (x(u),y(u), 2(u)), we can compute its derivative at
every point, thus obtaining its tangent vector field:

Y (u) = (@' (u), ¢ (u), 2 (u)). (1.8)
For example, the tangent field for a straight line L4, p is given by (see (1.1)):
v (u) == (xB — TA,YB — YA, 2B — 24) = TB — Ta, (1.9)
and is constant. In the case of the circle Cr(7c) we have

v (u) := (—Rsin(u), Rcos(u),0). (1.10)

1.4 The length of a path

Remember that if we have two vectors ™ = (21,91, 21) and 7 = (x2, ¥y, 22), their dot product
(scalar product) is defined as

— —

7Ty = (71, 72) = 2102 + Y1y + 21 22.

The length of a vector is

[|F]] := V77 =22+ y? + 22

Consider v : [a,b] — R3, a smooth path. Its length is defined to be the integral:

b
£0) = [ I @lld (L.11)



1.5 Path integral of a vector field

Consider a vector field F : R? — R3 given by F(7) = (F\(7), F5(7), F3()). Then the path integral
of F' on the path 7 : [a,b] — R? is defined to be:

N b =
/F cdry = / F(y(u)) -+ (u)du. (1.12)

One can show that the integral does not depend on the way we parametrize the path, as long as
one keeps the same orientation. If 7 is a closed path, then the integral is called circulation. Let
us see two concrete examples, for the vector field F(7) = (z — 2, 2,y + x).

1. First we compute [, F - d.

e compute v'(u). In this case it equals 7y — 7'p;

e compute the composed function F(v(u)). Here:

—

F(y(u)) = (xa—za)(1—u)+(zp—28)u, 2a(1—u)+zpu, (ya+za)(1—u)+(yp+z5)0);
e compute the dot product F(y(u)) - v/ (u). Here it gives:
(5 —xa)|[(xa — 24)(1 —u) + (x5 — 2B)u] + (yB — ya)[za(1 — u) + zpu]

+(zp — 2a)[(ya + a)(1 —u) + (yB + zB)ul.

e integrate from a to b. Here we have:

S(en — )l — 24) + (o — =) + 5 (un — ya)lza + 22

“!‘%(ZB —2a)[(ya +a) + (yB + 25)].

2. Second, let us compute the circulation of the same vector field on the circle Cr(7¢).

e compute v'(u). In this case it equals (—Rsin(u), R cos(u),0);

e compute the composed function F(y(u)). Here:

—

F(y(u)) = (x¢ + Rcos(u) — z¢, 2o, xc + yo + Rcos(u) + Rsin(u));

e compute the dot product F(y(u)) - 7/ (u). Here it gives:
—Rsin(u)(xc + Rcos(u) — z¢) + zo R cos(u).

e integrate from 0 to 27. Here the result is 0.

1.6 Important properties

We mention two important properties, given without proof. The first one says that if we integrate
a vector field on the same path but in the opposite direction, then we get the same numerical
value but with the opposite sign. More precisely (see (1.5)):

/ﬁ-dfy:—/ﬁ~d7y. (1.13)
bl v

The second property says that if we integrate a vector field on a concatenated path, then the result
is the sum of integrals on individual paths. In detail (see subsection 1.2):

—

/ Fﬂ-d’}/AHC :/ ﬁ : d’YAHB +/ F - d’yBﬁc. (1.14)
YA—C YA-B

YB—C



Finally, let us look at the situation in which our vector field is the gradient of a given scalar
function, that is

F(7) = V() = [V (), 0V (F), 0V (7).

Then we can show that the path integral of F between two points A and B is independent of the
path linking the two points. Indeed:

b b
[Fetr= [ vy = [ {Groe)a=vom -vow)
— V(i) — V(7). (1.15)

2 Surface integrals

2.1 General things about surfaces

Any surface in the three dimensional space is parametrized by two real variables. Let D C R?
denote the domain where these parameters live. Mathematically, a surface is the range of a
function

D 3 (u,v) — #(u,v) = (z(u,v),y(u,v), z(u,v)) € R3.
Three important examples:

e Fix two vectors 74 := (x4,ya,24) and 7 := (B, Y5, 25). The unique plane which contains
both vectors is parametrized as:

R? 3 (u,v) — 7(u,v) := Fau + v = (xAU + TRV, yau + YU, 24U + 2p0). (2.1)
Here D = R?.
e A sphere with center at 7s = (s, ys, zs) and radius R:
[0,7] x [0,27] > (0, ¢) — (0, ¢) € R, (2.2)
70, ¢) = r's + R(sin(0) cos(¢), sin() sin(¢p), cos()).
We denote it by 0Bg(7s). Here D = [0, 7] x [0, 27].
e The disc contained in the circle Cr(7¢) (see (1.4)):
[0, B] x [0,27] 3 (p, ¢) = 7(p, ¢) = (zc + pcos(9), yc + psin(), 20); (2.3)
2.2 The infinitesimal surface element

Fix a point in D given by (ug,vp). If we vary (u,v) in a very small square around (ug,vg), then
7(u,v) will cover a very small piece of our surface. Assume that |u — ug| = du and |v — vg| = dv
are small. Then this piece of surface can be approximated by a small portion of the tangent plane
touching at 7(ug, vg). Two vectors contained in this tangent plane are

or or
%(uo,vo), and %(uo,vo). (2.4)

The area of this surface element will approximately be:
do = %(uo,vo) X %(uo,vo) ou dv. (2.5)

We can also speak about orientation of surfaces. The above small surface element can be associated
to the normal vector on the tangent plane, thus we can define a length one vector field

1 or or
(u,v) x %(u, v). (2.6)

f(u,v) == —= _ o
’ |%(U0,Uo) X %(uo,vo)‘ ou

If we swap u and v we obtain an opposite orientation. In case of closed surfaces, the normal is
always taken in such a way that the normal vector points ”out of the surface”.



2.3 Integration formulas
Now assume that f(7) is a scalar surface density of a certain physical quantity. Then this quantity
is given by the integral:

—

/Uf(F)da ::/Df(r*(u,v))‘gZ(u,v) « %(u,v) du. dv. (2.7)

If F is a vector field, then the flux of F' through the oriented surface o is defined to be:

or or

%(u,v) X %(u,v) du dv

/ FRdo = | Fr(u,v)) - fi(u, v)

D

—

= /Dﬁ(F(u,u)) : {:,;)Z(u,v) X ((;)Z(u,v)} du dv. (2.8)

2.4 Two examples

Let us go back to the disk defined in (2.3), and compute its normal vector field and the infinitesimal
surface area. First we compute

or . or .

%(pa (rb) = (COS(¢)7 Sln(¢)» 0)7 %(P, d)) = p(f Sln(¢)v COS(¢)7 O)

These two vectors are orthogonal on each other, and moreover (see (2.6)):
ii(p, ) = (0,0,1).

The surface element is (see (2.5)):
do = p dpde.

Let us consider a second example, i.e. the sphere in (2.2). In that case:

%(9, ®) = R(cos(0) cos(e), cos(#) sin(¢), — sin(h)), %(9, ®) = R(—sin(#) sin(¢), sin(f) cos(¢), 0).
These two vectors are also orthogonal on each other, and moreover (see (2.6)):
(6, ¢) = (sin(f) cos(¢), sin(#) sin(), cos(f)) = F(efa;b).

The surface element is (see (2.5)):

do = R*sin(0) dodg.



