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1 The physical problem of heat conduction

Heat conduction is the transfer of heat from warm areas to cooler ones, and
effectively occurs by diffusion. The heat flux is therefore

ΦQ ∼ Thot − Tcold

d
κρCP , (1.1)

where ρ is the density of the material, CP is the mass heat capacity, d is the
diffusion distance, and κ is the thermal diffusivity.

Then the thermal conductivity is defined as:

k := κρCP . (1.2)

Noting that Thot−Tcold

d is (minus) the temperature gradient, equation (1.1) be-
comes Fourier’s law:

ΦQ = −k∇T, (1.3)

where
∇T := [∂xT, ∂yT, ∂zT ] (1.4)

is the usual gradient vector, and where we assume that the temperature T is a
function of both time and position:

T = T (x, y, z, ; t).

The time-dependent heat conduction equation is given by

∂tT =
H

CP
+

1
ρCP

∇ · (k∇T ), (1.5)

where H is the heat production per unit mass. In the special case when the
termal conductivity k is a constant, the above equation simplifies to

∂tT =
H

CP
+ κ∆T, (1.6)

where κ is again the termal diffusivity, and ∆ is the Laplace operator acting on
the position variable:

∆T := ∂2
xT + ∂2

yT + ∂2
zT. (1.7)
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A special case is the one in which H is time independent in the interval t ≥ 0.
This models a welding machine which starts pumping heat into the material, at
a constant rate. Thus H is only a function of [x, y, z], and is different from zero
only in the contact region between the machine and material.

One can prove that regardless of the initial conditions for T (x, y, z; t), when
the time t becomes very large, the temperature distribution T (x, y, z; t) con-
verges toward a dynamic equilibrium state. This means that the temperature
gradient in our material reached that particular distribution which dissipates
the heat pumped by the machine without varying in time. Mathematically, this
means that we reached a time independent stationary solution Ts(x, y, z), which
solves a simpler equation:

−∆Ts(x, y, z) =
H(x, y, z)
κCP

. (1.8)

We denote vectors from now on with boldface letters; for example, r ∈ R3 de-
notes the coordinate vector [x, y, z]. Without loss of generality, we can assume
that H is different from zero only in a ball of radius 1 near the origin of coor-
dinates. This models a finite contact region between the welding machine and
material.

In order to solve the above equation, we need only one more thing: the value
of Ts at “infinity”, that is far away from the welding process. This value Te is a
constant given by the problem. Therefore, if we denote by ψ(r) := Ts(r) − Te,
we arrive at the equation we are mainly interested in:

−∆ψ(r) =
H(r)
κCP

, lim
|r|→∞

ψ(r) = 0. (1.9)

This is a second order elliptic partial differential equation called the Poisson
equation. If H = 0, it reduces to Laplace equation.

2 Solving the Poisson equation

It is worth noting that with the boundary condition we imposed on equation
(1.9), it does NOT have a solution in one dimension.

Exercise 2.1. Consider on the real line the equation ψ′′(x) = g(x), where g
is a constant g0 on the interval [−1, 1], and g = 0 outside the interval [−1, 1].
Assume the boundary condition ψ(±∞) = 0. Show that we have a solution if
and only if g0 = 0, and then ψ ≡ 0.

Hint. Assume that there is a solution ψ to our equation. Then outside the
interval [−1, 1] it must solve the equation ψ′′(x) = 0. The most general solution
to this equation is ψ(x) = c1x + c2, where c1 and c2 are constants. Because
ψ(∞) = 0, we must have c1 = 0 otherwise the limit value would be ±∞. Hence
ψ(x) = c2 outside the interval, hence c2 = 0 due to the boundary value at
infinity.
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It means that ψ(−1) = ψ(1) = 0 and ψ′(−1) = ψ′(1) = 0. Then inside the
interval [−1, 1] the solution for ψ would be (we integrate twice starting from −1
to the right)

ψ(x) = ψ(−1) + (x+ 1)ψ′(−1) +
(x+ 1)2

2
g0, x ∈ [−1, 1].

Hence ψ(x) = (x+1)2

2 g0 inside the interval [−1, 1], and in particular ψ(1) = 2g0.
Since ψ(1) = 0, we get g0 = 0.

REMARK: the same conclusion holds even if g is not just a constant on
[−1, 1], but any smooth enough function. In fact, the same negative conclusion
holds in two dimensions, too, but the proof is much more complicated and uses
the Green function techniques which will be developed in the next subsection.

2.1 The auxiliary Helmholtz equation

For any ε 6= 0 we introduce an auxiliary equation

(−∆ + ε2)ψε(r) =
H(r)
κCP

, lim
|r|→∞

ψε(r) = 0, (2.1)

and try to solve for ψε.
The main tool in solving this equation will be the continuous Fourier trans-

form. In what follows, we enumerate a few fundamental properties of it, includ-
ing its definition. We let here the dimension to be arbitrary, n ≥ 1.

Definition 2.2. Take a smooth function f which is zero outside a large ball in
Rn. Then its Fourier transform is defined as the function

(F [f ])(k) :=
1

(2π)n/2

∫
Rn

e−ik·rf(r)dr, k ∈ Rn,

where k · r = k1x1 + k2x2 + ...+ knxn is the usual dot product in Rn.

The inverse Fourier transform is defined in a similar way:

(F−1[g])(r) :=
1

(2π)n/2

∫
Rn

eik·rg(k)dk.

A first fundamental property is that these mappings are inverses for each
other. This means

(F [F−1[g]])(k) = g(k), (F−1[F [f ]])(r) = f(r). (2.2)

Another property is that the Fourier transform changes derivatives in one
variable with multiplication is the other one. This is shown in the following
exercise:
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Exercise 2.3. Show that if ∂jf denotes the partial derivative of f with respect
to the jth variable, we have:

(F [−i∂jf ](k) = kj(F [f ])(k), j ∈ {1, ..., n}. (2.3)

Moreover, prove that
(F [−∆f ](k) = k2(F [f ])(k). (2.4)

Hint. Notice the trivial identity

kje
−ik·r = i∂je

−ik·r,

and use integration by parts. We get

kj(F [f ])(k) =
1

(2π)n/2

∫
Rn

{i∂je
−ik·r}f(r)dr = (F [−i∂jf ])(k),

where we also used that f is zero outside a certain region in Rn. If we apply
this twice, we get:

k2
j (F [f ])(k) = (F [−∂2

j f ])(k),

which immediately leads to (2.4).
The third property is related to the convolution.

Definition 2.4. The convolution of f and g is defined as

(f ∗ g)(r) :=
∫

Rn

f(r− r′)g(r′)dr′.

By a change of variable, we see that the convolution is commutative, i.e.
f ∗ g = g ∗ f .

Exercise 2.5. Show that the Fourier transform sends a convolution into mul-
tiplication:

(F [f ∗ g](k) = (2π)n/2(F [f ])(k)(F [g])(k). (2.5)

Moreover, prove that

F−1[F [f ]F [g]] = (2π)−n/2f ∗ g. (2.6)

Hint. According to the definition, we have

(F [f ∗ g](k) =
1

(2π)n/2

∫
Rn

e−ik·r
(∫

Rn

f(r− r′)g(r′)dr′
)
dr (2.7)

= (2π)n/2 1
(2π)n/2

∫
Rn

dr′
(

1
(2π)n/2

∫
Rn

e−ik·(r−r′)f(r− r′)dr
)
e−ik·r′g(r′)dr′

where we interchanged the order of integrals, and wrote k ·r = k ·(r−r′)+k ·r′.
Now the integral with respect to r will give (after a change of variable) (F [f ])(k),
and finally we perform the integral over r′ and get (2.5). The formula (2.6) is
obtained from (2.5) by applying (2.2).
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We are now in position of solving the modified Poisson equation (2.1). As
long as ε 6= 0, we can work in any dimensions n ≥ 1, not just in three. Take the
Fourier transform in both sides and use (2.4). We get

(F [−∆ψε + ε2ψε])(k) = (k2 + ε2)(F [ψε])(k) =
1

κCP
(F [H])(k),

therefore
(F [ψε])(k) =

1
κCP

1
k2 + ε2

F [H])(k). (2.8)

Now denote by

Gε(r) :=
1

(2π)n/2
(F−1[1/(k2 + ε2)])(r). (2.9)

We see that (2.8) can be rewritten as

(F [ψε])(k) =
1

κCP
(2π)n/2(F [Gε])(k)F [H])(k).

If we apply the inverse Fourier transform in both sides, and use (2.6) in the
right hand side, we get:

ψε(r) =
1

κCP
(Gε ∗H)(r) =

∫
Rn

Gε(r− r′)
H(r′)
κCP

dr′. (2.10)

This is a fundamental formula which gives the inverse of the Helmholtz
operator −∆ + ε2, via its “Green function” Gε. It holds for all dimensions;
troubles arise only when one takes ε to zero.

One can compute Gε from formula (2.9), and obtain the general formula:

Gε(r) =
1
2π

(
ε

2π|r|

)n
2−1

Kn
2−1(ε|r|),

where Kν(z) are the Macdonald functions; for more details, see for example the
webpage

http : //mathworld.wolfram.com/ModifiedBesselFunctionoftheSecondKind.html

It is worth noticing that when n = 1 we have

Gε(r) =
1
2ε
e−ε|r|,

while for n = 3 we have
Gε(r) =

1
4π|r|

e−ε|r|.
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2.2 The solution to the Poisson equation

Assume that n = 3; then according to the previous subsection we have

ψε(r) =
∫

R3

e−ε|r−r′|

4π|r− r′|
H(r′)
κCP

dr′.

Now define

ψ(r) := lim
ε→0

ψε(r) =
∫

R3

1
4π|r− r′|

H(r′)
κCP

dr′. (2.11)

After integration by parts, one easily obtains that

∆ψε(r) =
∫

R3

e−ε|r−r′|

4π|r− r′|
∆H(r′)
κCP

dr′

and

∆ψ(r) =
∫

R3

1
4π|r− r′|

∆H(r′)
κCP

dr′. (2.12)

Hence we also have:
lim
ε→0

∆ψε(r) = ∆ψ(r). (2.13)

Therefore, by taking the limit ε → 0 in (2.1), and using (2.11) and (2.13) we
obtain

−∆ψ(r) =
H(r)
κCP

.

Moreover, since for |r| large, ψ(r) behaves like 1/|r|, we observe that the bound-
ary condition at infinity is also fulfilled, and the Poisson equation (1.9) solved.

REMARK: we see that for n = 1 we cannot repeat this argument, because
Gε diverges when ε→ 0.

2.3 When H is a delta-Dirac distribution

Now assume that the contact area between the welding machine and the mate-
rial becomes smaller and smaller, while the heat rate pumping stays the same.
Mathematically this means that while the integral

h0 :=
∫

R3
H(r′)dr′

remains constant, the region where H is different from zero shrinks to a small
ball around the origin of coordinates. At the limit, for every smooth function f
we have: ∫

R3
f(r′)H(r′)dr′ ≈ h0f(0, 0, 0) ′′ =′′

∫
R3
f(r′)h0δ(r′)dr′.

Therefore, the solution to (1.9) gets close to

ψ(r) ≈ 1
4π|r|

h0

κCP
,
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while the stationary temperature distribution in our welding model becomes

Ts(r) ≈ Te +
1

4π|r|
h0

κCP
.

3 When the welding machine is moving

We now look at the case when H is time dependent. More precisely, we assume
that

H(x, y, z; t) = Hv(x− vt, y, z), (3.1)

which models a translation on the x axis with a constant positive speed v > 0.
Then we are interested in a particular solution to equation (1.6), where T looks
like

T (x, y, z; t) = Ts(x− vt, y, z). (3.2)

Denote by ξ = x− vt.

Exercise 3.1. Show that ∂tT (r; t) = −v(∂ξTs)(ξ, y, z), and ∆T (r; t) = ∆Ts(ξ, y, z).

Hint. Use the chain rule.
Therefore, the heat equation (1.6) becomes

−∆Ts(ξ, y, z)−
v

κ
∂ξTs(ξ, y, z) =

Hv(ξ, y, z)
κCp

. (3.3)

Introduce a new unknown function

us(ξ, y, z) := Ts(ξ, y, z)− Te, (3.4)

where Te is the equilibrium temperature, far from the welding region. The
equation for us that we have to solve becomes

−∆us − i
v

κ
(−i∂ξus) =

Hv(ξ, y, z)
κCp

, lim√
ξ2+y2+z2→∞

us = 0. (3.5)

As in the previous section, we first look at a related equation

(−∆ + ε2)ψε − i
v

κ
(−i∂ξψε) =

Hv(ξ, y, z)
κCp

, lim√
ξ2+y2+z2→∞

ψε = 0. (3.6)

Now take the Fourier transform in both sides, and use (2.3) and (2.4). It
gives {

k2 + ε2 − i
vk1

κ

}
(F [ψε])(k) =

(F [Hv])(k)
κCp

.

We have

k2 − i
vk1

κ
+ ε2 =

(
k1 −

iv

2κ

)2

+ k2
2 + k2

3 +
v2

4κ2
+ ε2.
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Reasoning as we did for (2.10), we can write down the solution as a convo-
lution with a Green function equal to

Gε(ξ, y, z) =
1

(2π)3/2
F−1

[
1(

k1 − iv
2κ

)2
+ k2

2 + k2
3 + v2

4κ2 + ε2

]
(ξ, y, z). (3.7)

One can show that this inverse Fourier transform equals:

Gε(ξ, y, z) =
1

4π
√
ξ2 + y2 + z2

e−
ξv
2κ e−α

√
ξ2+y2+z2

, α :=
√
ε2 + v2/(4κ2).

(3.8)

Define

G0(ξ, y, z) :=
1

4π
√
ξ2 + y2 + z2

e−
ξv
2κ e−

v
2κ

√
ξ2+y2+z2

. (3.9)

At the final end, by taking ε to 0, one can prove that ψε converges to us and
we eventually get:

us(ξ, y, z) =
∫

R3
G0(ξ − x′, y − y′, z − z′)

Hv(x′, y′, z′)
κCp

dx′dy′dz′. (3.10)

Notice again that us behaves like 1/
√
ξ2 + y2 + z2 at large distances.

In case when Hv is again a delta-Dirac distribution centred at the origin, we
have at last for the stationary solution:

T (x, y, z; t) = Te +
1

4π
√

(x− vt)2 + y2 + z2
e−

(x−vt)v
2κ e−

v
2κ

√
(x−vt)2+y2+z2 h0

κCp
.

If v = 0, we recover the result from the previous section.
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