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These notes are not completely rigorous, and we often use stronger conditions
than necessary in order to simplify the presentation.

1 The one dimensional case

Let f, f0 ∈ C2(R3) be two real functions, locally bounded in the C2 norm. The
control variables are generically denoted by u : [0,∞) 7→ [−1, 1], where u is a
piecewise continuous function.

For a given u and T > 0, let us consider the initial value problem:

x′(t) = f(x(t), u(t), t), 0 < t < T,

x(0) = 0. (1.1)

There exists a unique solution x, continuous on [0, T ], and also continuously differ-
entiable except at the discontinuities of u.

1.1 Fixed T

We want to maximize the following integral:

I(u) :=
∫ T

0

f0(x(t), u(t), t)dt, (1.2)

by choosing a piecewise continuous “optimal” function u∗ : [0, T ] 7→ [−1, 1]. We will
provide sufficient conditions for the existence of such u∗’s. Clearly, u∗ generates an
optimal state function x∗ which solves:

x∗′(t) = f(x∗(t), u∗(t), t), 0 < t < T,

x∗(0) = 0. (1.3)

1.1.1 A regularization procedure

We allow here the image of u to be the whole real axis, and also modify the functional
to be optimized.

If M > 0 is a large integer, consider the function gM : [−1, 1] → [0, 1/(2M)],
given by gM (v) := 1

2M (1−v2M2
). It is strictly concave, symmetric, has a maximum

1/(2M) at v = 0, gM (∓1) = 0, g′M (∓1± 0) = ±M , and g′′M (∓1± 0) = −M(2M2 −
1) =: −CM < 0. Moreover, g′M converges pointwise to 0 on (−1, 1).

Define the function GM : R→ R such that:

GM (v) (1.4)

= [−CM (v + 1)2/2 +M(v + 1)]θ(−v − 1)− [CM (v − 1)2/2 +M(v − 1)]θ(v − 1)

+ gM (v)θ(1− v2).

GM belongs to C2(R), is strictly concave and G′M is a bijection. Inside the interval
[−1, 1] GM is bounded by 1/M , while outside the interval [−1− 1/

√
M, 1 + 1/

√
M ]

is as negative as −
√
M .
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We consider the maximizing problem for:

IM (u) :=
∫ T

0

[f0(x(t), u(t), t) +GM (u(t))]dt, (1.5)

where now u : [0, T ] 7→ R, and u is piecewise continuous.

1.1.2 Approximation with a discrete model

Let N > 1 be an integer, and define:

∆t := T/N, tk = k∆t, 0 ≤ k ≤ N. (1.6)

Denote by uM a piecewise continuous control function, and by xM its corresponding
state.

Consider the discrete dynamical system:

y(tk+1) := y(tk) + (∆t)f(y(tk), uM (tk), tk), 0 ≤ k ≤ N − 1, (1.7)
y(t0) = 0. (1.8)

Lemma 1.1. Denote by ek := |xM (tk)− y(tk)|. Then

lim
N→∞

max
0≤k≤N

ek = 0.

Proof. We can write

xM (tk+1)− y(tk+1) = xM (tk)− y(tk)

+
∫ tk+1

tk

{f(xM (t), uM (t), t)− f(y(tk), uM (tk), tk)}dt, 0 ≤ k ≤ N − 1. (1.9)

Using the mean value theorem for f we can find three positive constants C1, C2, C3

such that for every tk ≤ t ≤ tk+1 we have:

|f(xM (t), uM (t), t)− f(y(tk), uM (tk), tk)| (1.10)
≤ C1ek + C2 sup

tk≤t≤tk+1

|uM (t)− uM (tk)|+ C3∆t.

Using this in (1.9) we can write:

ek+1 ≤ αek + βk, 0 ≤ k ≤ N − 1, (1.11)

α := 1 + C1∆t, βk := C2∆t sup
tk≤t≤tk+1

|uM (t)− uM (tk)|+ C3(∆t)2.

By induction we derive the inequality:

ej ≤ αje0 +
j−1∑
k=0

αkβj−k−1, 1 ≤ j ≤ N. (1.12)

Note that e0 = 0. Then since

αj = ej ln(1+C1∆t) ≤ ejC1∆t ≤ eC1T , j ≤ N,

there exists C4 > 0 such that

ej ≤ C4

N−1∑
k=0

βk (1.13)

≤ C4C3T
2/N + C4C2T

1
N

N−1∑
k=0

sup
tk≤t≤tk+1

|uM (t)− uM (tk)|, 1 ≤ j ≤ N.

Now the lemma is concluded since uM is piecewise uniformly continuous.
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1.1.3 A finite dimensional optimization problem

Using the previous lemma, we have that for any piecewise continuous control func-
tion uM :

IM (uM ) =
∫ T

0

{f0(xM (t), uM (t), t) +GM (uM (t))}dt

= lim
N→∞

N−1∑
k=0

{f0(xM (tk), uM (tk), tk) +GM (uM (tk))}∆t

= lim
N→∞

N−1∑
k=0

{f0(y(tk), uM (tk), tk) +GM (uM (tk))}∆t. (1.14)

Now for a fixed N , define FM : RN × RN → R given by

FM (a1, . . . , aN , b0, . . . bN−1) =
N−1∑
k=0

{f0(ak, bk, tk) +GM (bk)}∆t. (1.15)

(Note that a0 = t0 = 0, while FM does not depend on aN ). We will maximize F
subject to the restrictions

φk(a,b) := ak+1 − ak − f(ak, bk, tk)∆t, 0 ≤ k ≤ N − 1, a0 = 0. (1.16)

We form the Lagrangian:

FM (a,b)−
N−1∑
k=0

pkφk(a,b) (1.17)

where the pk’s are Legendre multipliers. Differentiating with respect to aN we
obtain pN−1 = 0. Differentiating with respect to ak, 1 ≤ k ≤ N − 1 we obtain:

(∂1f0)(ak, bk, tk)∆t− pk−1 + pk + pk(∂1f)(ak, bk, tk)∆t = 0.

Introduce the Hamilton function:

H(a, b, p, t) := f0(a, b, t) + pf(a, b, t). (1.18)

Now we see that the above extremum conditions for p’s can be written as:

pk = pk−1 − (∂1H)(ak, bk, pk, tk)∆t, 1 ≤ k ≤ N − 1, (1.19)
pN−1 = 0.

From now on we make the following assumption:

Assumption 1.2. H is smooth and jointly concave in the first two variables a and
b.

We see from (1.17) that an optimal bk must solve the equation ∂2H(ak, b, pk, tk)+
G′M (b) = 0, which has a unique solution due to the fact that GM is strictly con-
cave. Moreover, this solution can be expressed as a smooth function of its variables
b̃K(ak, pk, tk).

In conclusion, under the restrictions in (1.16), if the function FM has a global
maximum then it must be attained in some pair of vectors a and b which obey the
following relations:

0 = ∂2H(ak, b̃k, pk, tk) +G′M (b̃k), 0 ≤ k ≤ N − 1, (1.20)

pk = pk−1 − (∂1H)(ak, b̃k, pk, tk)∆t, 1 ≤ k ≤ N − 1, pN−1 = 0,

ak+1 = ak + f(ak, b̃k, tk)∆t, 0 ≤ k ≤ N − 1, a0 = 0.

It is not obvious how to solve such a system of equations. If we assume that p0

is known, then we can uniquely solve the system by iteration. Then p0 might be
determined by imposing the condition pN−1(p0) = 0.

3



1.1.4 A Mangasarian type sufficiency condition

We will prove here that under Assumption 1.2, any solution to (1.20) provides a
global maximum point for FM . Let us assume that a∗,b∗,p is a solution of (1.20).
Then we have:

FM (a,b)− FM (a∗,b∗) (1.21)

=
N−1∑
k=0

{H(ak, bk, pk, tk)−H(a∗k, b
∗
k, pk, tk) +GM (bk)−GM (b∗k)}∆t

−
N−1∑
k=0

pk{f(ak, bk, tk)− f(a∗k, b
∗
k, tk)}∆t.

Using the concavity of H and GM , and (1.20), we can write:

H(ak, bk, pk, tk)−H(a∗k, b
∗
k, pk, tk) +GM (bk)−GM (b∗k)

≤ (ak − a∗k)∂1H(a∗k, b
∗
k, pk, tk) + (bk − b∗k)[∂2H(a∗k, b

∗
k, pk, tk) +G′M (b∗k)]

= −(ak − a∗k)(pk − pk−1), 1 ≤ k ≤ N − 1. (1.22)

Note that the above inequality is also formally true for k = 0, since a0 = a∗0 = 0.
Now using (1.16), (1.22), and pN−1 = 0 in (1.21) we obtain:

FM (a,b)− FM (a∗,b∗) (1.23)

≤ −
N−1∑
k=1

{(ak − a∗k)(pk − pk−1)}∆t

−
N−2∑
k=1

pk{[ak+1 − a∗k+1]− [ak − a∗k]}∆t = 0.

Thus we have shown that FM attains its global maximum at any solution of (1.20),
provided that such solutions exist.

1.1.5 Back to the continuum

Now let us assume that the following system of equations:

0 = ∂2H(x, u, p, t) +G′M (u), (1.24)
p′ = −(∂1H)(x, u, p, t), p(T ) = 0,
x′ = f(x, u, t), x(0) = 0,

has a solution x∗M , u∗M and p∗M . (The idea is to choose p(0) = p0 as a parameter,
solve the system, and then find a compatible p0 from the condition p(T ; p0) = 0.)

If the continuous solution exists and if ∂p0p(T, p0) 6= 0, then if N is sufficiently
large, the system in (1.20) will admit a solution which will ”converge” to the con-
tinuous one in the same manner as described in Lemma 1.1. We do not prove this
statement.

Now if we go back to (1.14), we see that we can write the inequality:

IM (uM ) ≤ lim
N→∞

N−1∑
k=0

{f(a∗k, b
∗
k, tk) +GM (b∗k)}∆t = IM (u∗M ). (1.25)
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1.1.6 Lifting the regularization

Going back to (1.4), we see that the function G′M is almost constant equal to zero
on any interval of the form [−1 + ε, 1− ε] if M is large enough. On the other side,
G′M varies very sharply near ±1.

We have the following result:

Lemma 1.3. Fix x, p, t and assume that H(x, ·, p, t) restricted to [−1, 1] uniquely
attains its maximum at v ∈ [−1, 1]. Then the unique solution b̃M of the equation

∂2H(x, b̃M , p, t) +G′M (b̃M ) = 0

fulfils:
lim

M→∞
b̃M = v. (1.26)

Proof. If v ∈ (−1, 1), it means that ∂2H(x, v, p, t) = 0, ∂2
2H(x, v, p, t) < 0 and then

we can use the implicit function theorem if M is large enough.
If v = 1, it means that ∂2H(x, 1, p, t) ≥ 0. Because −G′M grows from almost

zero to M on a very narrow interval near 1, then b̃M must be near 1. The same
argument goes for v = −1.

While b̃M is a smooth function of a, p, t, the maximum point v can vary sharply
between the two extreme values −1 and +1. This is exactly what happens in the
bang-bang controls.

Assumption 1.4. Define the function v(x, p, t) as the largest maximum point of
H(x, ·, p, t) on [−1, 1]. Assume that the system

p′ = −(∂1H)(x, v(x, p, t), p, t), p(T ) = 0,
x′ = f(x, v(x, p, t), t), x(0) = 0, (1.27)

has a unique continuous, piecewise C1 solution x∗(t) and p∗(t). Also assume that
the function u∗(t) := v(x∗(t), p∗(t), t) is piecewise continuous.

Then one can prove that the solution (x∗M , p∗M , u∗M ) of (1.24) converges uniformly
to (x∗, p∗, u∗) on compacts avoiding discontinuities. Moreover, u∗M (t) ∈ (−1, 1) for
all 0 ≤ t ≤ T if M is large enough.

Going back to (1.2), choose an arbitrary control function u. Using (1.5) we
obtain:

I(u) ≤ lim sup
M→∞

IM (u) ≤ lim sup
M→∞

IM (u∗M ) = lim sup
M→∞

I(u∗M ) = I(u∗).

1.2 Variable T , fixed end-point

Here we assume that f and f0 do not depend on time. The state function starts
again from x0 = 0, and we want to get to a fixed x1 > 0 such that a certain
functional is maximized. For a given control function u : [0,∞) → [−1, 1], denote
by T (u) > 0 the first time when x(t) = x1. Then we want to maximize:

I(u) =
∫ T (u)

0

f0(x(t), u(t))dt. (1.28)

The minimal arrival time problem is covered by the case f0(x, u) = −1.
We introduce again the regularized functional IM , and we discretize the prob-

lem. One important difference is that we must allow the different times tk to be
independent variables, although we still impose that they are a strictly increasing
sequence and t0 = 0.
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For a given u which generates a state x which will touch x1 at T (u), the dis-
cretization procedure from (1.6) and (1.7) will generate an approximate discrete
solution which might not fulfil the endpoint condition: y(tN ) = x1. The remedy is
the following: we discretize exactly as before up to N − 1, and then we choose tN
such that

x1 = y(tN−1) + (tN − tN−1)f0(y(tN−1), uM (tN−1)).

Thus (1.14) can be written again, and we are left to a finite discretization prob-
lem, which we will describe next. For a fixed N , define FM : RN ×RN → RN → R
given by

FM (a1, . . . , aN , b0, . . . bN−1, t1, . . . , tN ) =
N−1∑
k=0

{f0(ak, bk) +GM (bk)}(tk+1 − tk).

(1.29)

(Again a0 = t0 = 0, FM does not depend on aN ). We will maximize F subject to
the restrictions

φk(a,b, t) := ak+1 − ak − f(ak, bk)(tk+1 − tk), 0 ≤ k ≤ N − 1. (1.30)

Note that we do not impose the tk’s to be increasing. We form the Lagrangian:

FM (a,b, t)−
N−1∑
k=0

pkφk(a,b, t)− λ(aN − x1). (1.31)

The necessary equations obeyed by a local extremum of this function are:

0 = ∂2H(ak, b̃k, pk) +G′M (b̃k), 0 ≤ k ≤ N − 1, (1.32)

pk = pk−1 − (∂1H)(ak, b̃k, pk)(tk+1 − tk), 1 ≤ k ≤ N − 1,
pN−1 = λ,

ak+1 = ak + f(ak, b̃k)(tk+1 − tk), 0 ≤ k ≤ N − 1,

H(ak, b̃k, pk) +GM (b̃k) = H(aN−1, b̃N−1, pN−1) +GM (b̃N−1) = 0, (1.33)
aN = x1, a0 = 0.

One major difference compared to the fixed T case is the appearance of N conser-
vation equations (1.33). Here we have N extra unknowns, the different times.

It is far from obvious how the general solution might look like, especially that
we have not imposed monotonicity on t’s. But if we are only searching for strictly
increasing times, and if for instance we assume that f > 0 (which indicates that
the a’s can get closer to x1 after each step), then we can get rid of the times and
simplify the system:

0 = ∂2H(ak, b̃k, pk) +G′M (b̃k), 0 ≤ k ≤ N − 1, (1.34)

pk = pk−1 − (∂1H)(ak, b̃k, pk)
ak+1 − ak

f(ak, b̃k)
, 1 ≤ k ≤ N − 1,

pN−1 = λ,

H(ak, b̃k, pk) +GM (b̃k) = H(aN−1, b̃N−1, pN−1) +GM (b̃N−1) = 0, (1.35)
aN = x1, a0 = 0.

This system can be solved in a recursive way. From (1.34) and (1.35) we obtain
aN−1 and b̃N−1 as functions of λ. Then we have pN−2 from the iteration, and we
start again by finding aN−2 and b̃N−2. Finally, we determine λ from the condition
a0 = 0. The time differences are then obtained as ak+1−ak

f(ak,b̃k)
and we are done.
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1.2.1 The continuum case

Now let us assume that the following system of equations:

0 = ∂2H(x, u, p) +G′M (u), (1.36)
p′ = −(∂1H)(x, u, p), p(T ) = λ,

x′ = f(x, u, t), x(0) = 0, x(T ) = x1,

0 = H(x, u, p) +GM (u),

has a solution with x′(T ) 6= 0 where T is the first time when x(T ) = x1. Then the
discrete problem will also have a solution which will ”converge” to the continuous
one when N →∞. We do not give details.
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