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Nonparametric Smoothing of Yield Curves
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Abstract. This paper proposes a new nonparametric approach to the problem of inferring term structure
estimates using coupon bond prices. The nonparametric estimator is defined on the basis of a penalized least
squares criterion. The solution is a natural cubic spline, and the paper presents an iterative procedure for solving
the non-linear first-order conditions. Besides smoothness, there are no a priori restrictions on the yield curve, and
the position of the knots and the optimal smoothness can be determined from data. For these reasons the
smoothing procedure is said to be completely data driven. The paper also demonstrates that smoothing a simple
transformation of the yield curve greatly improves the stability of longer-term yield curve estimates.
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1. Introduction

The use of observed yields on bonds represents problems in financial applications and in
research on the term structure of interest rates. First, small pricing errors resulting from
market imperfections necessitate smoothing. Second, observed yields from coupon bonds
are biased estimators of the underlying zero-coupon bond yields. Finally, even when
zero-coupon bond prices are available, there is a need for interpolation of yields between
adjacent maturities.

All these problems can be solved by assuming a smooth functional specification of the
underlying zero-coupon yield curve. Non-linear least squares software can then be used
for inference on the term structure. The main problem with this approach, however, is the
selection of a proper functional form. For example, in the polynomial model of the yield
curve suggested by Chambers, Carleton and Waldman (1984), the resulting yield curve is
highly unstable in the long term, and while other parametric specifications e.g. (Nelson
and Siegel, 1987) have remedied this problem, the functional form is often too rigid to
capture the shape of actual yield curves.

Cubic regression splines were first used for term structure estimation by McCulloch
(1975), who also suggested a rule of thumb for the position of the knots. McCulloch
(1971) was the first article to use splines of any type on the term structure problem, and
both articles were among the first to use splines on economic problems at all. Other uses
of splines for term structure estimation are found in Vasicek and Fong (1982), and Shea
(1984).

In recent years, nonparametric regression has gained popularity in economic and fi-
nancial applications (Robinson, 1988; Delgado and Robinson, 1992). The standard non-
parametric regression model (Eubank, 1988; Härdle, 1990) is not directly useful for term
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structure estimation, however, except in the special case where data consists of zero-
coupon bonds. The aim of this article is thus to develop a procedure for nonparametric
estimation in the more general case of coupon bond prices.

In section 2 of the article, a natural cubic spline smoothing estimator is derived from a
generalization of the traditional penalized least squares approach to nonparametric regres-
sion. Section 3 presents some details of the solution procedure in a number of special
cases. The cubic spline smoothing procedure is highly dependent on a smoothness pa-
rameter, and section 4 proposes generalized cross validation for estimating the correct
degree of smoothness. An application for Danish government bonds is presented in sec-
tion 5. Finally, some concluding remarks are given in section 6.

2. Spline smoothing of the term structure

The following notation will be used. Let p1,…,pn denote the observed prices of n bonds
from which the term structure is to be inferred. Bonds can either be pure discount bonds
or bonds with intermediate payments. Bond i has fixed payments, ci(tj): j 5 1,…,mi, due
on dates tj, j 5 1,…,mi. The payment, ci(tj), consists of coupon and repayment of prin-
cipal. Furthermore, let m 5 max(m1,…,mn) be the number of dates on which at least one
payment is due, and let t1,…,tm denote the corresponding set of dates. m is bounded below
by max(m1,…,mn), but could be as high as ( mi, since mi is the number of payments of
bond i.

The full set of payments is arranged in an n 3 m matrix, C, with ci(tj) in cell i, j. It
should be clear from the definition that ci(tj) 5 0, if bond i has no payment on date tj.

The term structure can be represented by the yield curve, y(t), of pure discount bonds,
or directly by the discount function, d(t) 5 exp(2ty(t)). These alternative ways of looking
at the term structure are equivalent from an economic point of view. From a statistical
point of view, however, the curvature properties depend very much on the functional form.
In consequence, the procedure presented here is so general as to allow a variety of
different statistical models of the present value function.

In future, let w denote whatever function (d(t), y(t) …) is to be estimated and let the
notation pv 5 pv(w) be used to emphasize the dependency on w. When w is the discount
function, d(t), the present value of bond i is

pvi~w! 5 (
j51

mi

ci~tj!d~tj! [ (
j51

mi

ci~tj!w~tj! (1)

It has been argued that, in the context of regression splines, direct estimation of the
discount function (as proposed by McCulloch (1975)) gives severe problems with the
implied estimates of the yield curve (Vasicek and Fong, 1982; Shea, 1984). All objections
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to these models also apply to the model suggested in this article, and the model given by
(1) will only be used for illustrative purposes.

If, instead, w is the yield curve, y(t), the present value is

pvi~w! 5 (
j51

mi

ci~tj! exp@2tjy~tj!# [ (
j51

mi

ci~tj! exp@2tjw~tj!# (2)

This specification solves most of the problems implied by specification (1). However,
many theories of term structure assume some kind of mean reverting behavior, which
results in yield curves being asymptotically constant as t R ` (Cox, Ingersoll and Ross
(1985) is an important example). Unfortunately, the cubic spline smoothing estimators
considered here are asymptotically linear, though with no guarantee of a zero slope1.
Consider, therefore, estimation of the curve, u(t), related to the yield curve by y(t) 5
u(t)/(1 1 t). Using the smoothing procedure, lim u8(t) 5 y*, say. This gives the desired
asymptotic behavior, lim y(t) 5 y*. In addition the exponential curvature of the discount
function is automatically imposed2.

In this model, the present value of bond i is

pvi~w! 5 (
j51

mi

ci~tj! expF2 tj

1 1 tj

u~tj!G [ (
j51

mi

ci~tj! expF2 tj

1 1 tj

w~tj!G (3)

Any of the three models (1), (2) and (3) can be estimated by using the techniques
presented in this article.

Because of non synchronous trading, credit risks, tax effects, and market imperfections
in general, the no-arbitrage condition, or law of one price, is not fulfilled in a strict sense,
so an error term, ei, is added to catch the pricing errors, i.e. pi 5 pvi 1 ei. The error terms
will be assumed to be independent across the sample. However, the variance, si

2, of ei will
be allowed to vary from bond to bond.

The nonparametric estimator, ŵ, of w is now defined as the solution of a penalized least
squares problem:

ŵ 5 arg min
w

H 1
n (

51

n

wi@pi 2 pvi~w!#2 1 l * @w9~t!#2dtJ (4)

where l is a smoothness parameter which fulfills 0 , l , `. Apart from a constant, the
weights, wi, are assumed to be known. A natural choice of the weight system is to set wi

to be proportional to the inverse of the variance on pi, i.e. V(pi) 5 s2wi
21. This will be

assumed throughout3.
Criterion (4) is a natural generalization of the criterion for nonparametric estimation in

a simple regression model with one explanatory variable (Eubank, 1988). Accordingly, the
interpretation is similar. The first term on the right hand side of (4) is a goodness-of-fit
criterion, while the second term is a function of the speed of change of the first-order
derivative of w. For a linear function, w, * w9(t)2dt 5 0 while * w9(t)2dt . 0 for any
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nonlinear w. Generally speaking, the more nonlinear w is, the larger is the penalty term.
In this sense, the smoothness parameter, l, determines the balance between the two
conflicting goals, goodness of fit and smoothness of the estimated curve. How the choice
of l affects the estimator of w will be discussed in section 4 below.

3. The solution procedure

Let C2[a, b] denote the vector space of functions with 2 continuous derivatives in [a, b],
and assume that a , t1 , … , tm , b. Assuming that w belongs to C2[a, b], it follows
that the solution to (4) is a natural cubic spline with knots at t1,…,tm. This is a conse-
quence of the nature of the penalty term4.

A cubic spline function, w, is any function on [a, b] of the following type:

w~t! 5 (
k50

3

ukt
k 1 (

j51

m

dj~t 2 tj!1
3 (5)

where t1 5 max(0,t). w coincides with a 3-degree polynomial on [tj, tj11) and has at least
2 continuous derivatives in [a, b] (see Eubank (1988), chapter 5). The third order deriva-
tive is a step function that is constant for t in [tj, tj11).

The set of spline functions, S[t1,…,tm], with representation (5) is a vector space of
dimension m 1 4. A natural cubic spline is linear outside [t1, tm]. It can be shown that this
imposes 4 independent restrictions across the parameters, u0,…,u3, d1,…,dm. Thus, the
vector space, NS[t1,…,tm], of natural cubic splines has a dimension m. Two of these
so-called natural restrictions are u2 5 u3 5 0, while the remaining 2 are more compli-
cated5. Because the representation (5) is not used directly for estimation purposes, this
topic will not be discussed further here.

When x1(t),…,xm(t) is a set of independent functions spanning the solution space,
NS[t1,…,tm], w can be expressed as

w~t! 5 (
k51

m

bkxk~t! (6)

where the parameters, bk, i 5 k,…,m, must be determined from the data.
Before proceeding with the solution, a brief explanation is in order of the difference

between using regression splines and smoothing splines. The same mathematical tool,
cubic splines, is used in both regression and smoothing splines. However, from an appli-
cation point of view, there are important differences. One main difference is that regres-
sion splines require determination of the knot positions, while smoothing splines require
an estimate of the smoothness parameter, l (Eubank, 1988, chapter 7). A further differ-
ence is seen in the number of parameters to be determined from data. This number, m,
may very well be much bigger than the number, n, of observations. In one sense, there-
fore, the problem is over-parameterized, and cannot be solved without imposing some
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further restrictions. The purpose of the estimation procedure developed below can there-
fore also be seen as a way of determing which restrictions are necessary. In addition, in
the regression spline approach, the cubic spline solution is imposed, while in the non-
parametric approach, the functional form is the outcome of a proper estimation criterion.

In deriving the solution, some matrix notation will become useful. Let f, b denote m
3 1 vectors: f is the vector of evaluations, w(ti), in the knots, and b is the vector of bi

parameters. The n 3 1 vectors of prices, pi, and present values, pvi, will be denoted p and
pv respectively. In addition, let X 5 {xij} denote a matrix with elements xij 5 xj(ti). X is
non-singular, and maps b into w, i.e. f 5 Xb. Finally, let D be the m 3 m matrix with
elements, {dij}, defined in Lemma 5.1, p. 199 in Eubank (1988). Because xi(t) is a spline
function, it has a representation (5), and D is the m 3 m matrix with the i’th row
consisting of the d’s of the representation (5) for xi(t).

In a second application of Lemma 5.1, Eubank (1988), the penalized least squares
criterion (4) becomes equivalent to

b̂ 5 arg min
b

$ 1
n

~p 2 pv~Xb!!8W~p 2 pv~Xb!! 1 l6b8XDb% (7)

where parentheses around b emphasize the dependency on b. W is the n 3 n matrix with
wi along the diagonal and zeros outside. W is related to the variance by V(p) 5 s2W21.
By both differentiation w.r. to b, and rearranging, the first-order condition for determi-
nation of b becomes

X8B8~f!W~p 2 pv~f!! 2 nlX8Gb 5 0 (8)

where G 5 3!D, f 5 Xb, and

B8 5
]pv
]b

(9)

is an m 3 n matrix of partial derivatives of pvj w.r. to bi
6

There are several ways to establish a cubic spline basis (see Eubank (1988), section
5.3.3 for a detailed discussion). For example, there is a basis that parameterizes in terms
of the values in the knots, and in which X 5 I and b 5 f. This keeps notation more
simple, and this basis will be assumed throughout the remaining part of the article7.

The elements, bij, of B depend on the specification of pv(w). In the case of (1)

bij 5 ci~tj! (10)

Thus, B 5 C does not depend on f. In models (2) and (3), B is defined by

bij 5 2ci~tj!tj exp@2tjfj# (11)

and
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bij 5 2ci~tj!
tj

1 1 tj

expF2 tj

1 1 tj

fjG (12)

It is now obvious that B depends on f.
In the first case, where B does not depend on f (equation (10)), the first-order condition

becomes

B*W~p 2 Bf! 2 nlGf 5 0 (13)

with the solution

f̂ 5 ~lnG 1 B8WB!21B8Wp (14)

Where B does depend on f (equations (11) and (12)), the first-order condition

B~f!8W~p 2 pv~f!! 2 nlGf 5 0 (15)

cannot be solved analytically. A numerical solution can, however, be obtained by the
iterative scheme

f̂k11 5 f̂k 1 @lnG 1 B8~f̂k!WB~f̂k!#21@B8~f̂k!W~p 2 pv~f̂k!! 2 lnGf̂k# (16)

where f̂k denotes the estimate at the k8th stage of the iterative procedure. This is essen-
tially the Newton-Raphson algorithm, with the derivatives replaced by their expectation.
This is, of course, closely related to the Gauss-Newton algorithm for nonlinear least
squares estimation.

The dimension, m, of f can be quite large, and it may seem difficult to solve the
equations. However, several of the matrices in (16) have a band-diagonal structure, which
is exploited in the computer code, and my experiments with the solution procedure show
that, in most cases, the problem is well-behaved. In other words, the algorithm typically
converges within a short time and with few iterations8.

4. Optimal smoothness

An optimal value of l must take both bias and variance into account. Consider the

example of risk, R(l) 5 1 / n E@~pv 2 pv8!8W~pv 2 pv8!#, and predictive risk, P

~l! 5 1 / n E@~p* 2 pv8!8W~p* 2 pv8!#. The risk is the weighted expected squared

distance between the true vector of present values, pv, and the estimate, pv8, while the

predictive risk is the weighted expected squared distance between the estimate, pv8, and a
hypothetical new sample vector, p*. Risk is related to predictive risk by
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P~l! 5 s2 1 R~l! (17)

Predictive risk is a natural criterion for estimation of l, and, when s2 is known, mini-
mizing risk is equivalent to minimizing predictive risk. Unfortunately, s2 is not known,
and minimizing risk requires at least a good estimator of s2. Consequently, alternatives
are needed.

The n 3 n matrix, S#l, which maps the price vector p into smoothed (or predicted)

present values, pv8, will be called the smoother matrix, i.e.

pv8 5 S# lp (18)

For f̂, defined by (14), S#l is

S# l 5 B~lnG 1 B*WB!21B*W (19)

which means that the smoothing procedure is linear in data. However, this result does not
apply to the nonlinear smoothers defined by (16), where S#l depends on f. Nonetheless, in
these cases, S#l will be defined by (19), and an estimate can be obtained from the last

iteration of the estimation procedure. The equality of pv8 and S# lp is then only valid as an
approximation9.

The problems in determination of l can be further illustrated by means of the following
well-known expression for risk:

R~l! 5
1
n

pv8~I 2 S# l!8W~I 2 S# l!pv 1 s2 1
n

tr @S# lS# l# (20)

or

R~l! 5
1
n

b8pv
8~l!Wb pv

8~l! 1
1
n

tr @WV~pv8!# (21)

where bpv
8 5 (S#l 2 I)pv is the bias and V~pv8! 5 s2S# l

* W21S# l is the variance of pv8. Both
the bias and variance components of the risk react in the same direction when l is varied.

In all but trivial and useless cases (pv 5 0 or l 5 0), pv8 is a biased estimator of pv.
However, bias can be asymptotically reduced by letting l tend to zero at a rate faster than
n. At the same time, however, the variance will increase, which will leave us with the
classical problem of balancing bias against variance.

A criterion for the estimation of l which does not require knowledge of s2 is the GCV

criterion. First, consider the mean squared error, MSE(l) 5
1
n

~p 2 pv8!8W~p 2 pv8!, with

expected value
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E~MSE! 5
1
n

pv8~I 2 S# l!8W~I 2 S# l!pv 1 s2 1
n

tr @~I 2 S̄l!~I 2 S# l!# (22)

or

E~MSE! 5
1
n

pv8~I 2 S# l!8W~I 2 S# l!pv 1 s2 1 s2 1
n

tr @S# flS# l# 2 2s2 1
n

tr @S# l#

(23)

In equations (22) and (17), the first three terms equal the risk. Thus, MSE(l) is a (down-

ward) biased estimator of the predictive risk, P(l), with bias, 22s2 1
n

tr @S# l#, and the
GCV statistic, as defined by

GCV~l! 5
MSE~l!

~tr@I 2 S# l#/n!2
(24)

can be seen as a bias-corrected mean squared error. Under the assumptions of the GCV
theorem (Eubank, 1988, theorem 2.1) originally by Craven and Wahba (1979), the GCV
statistic is an approximately unbiased estimator of predictive risk. The GCV theorem, as
stated in Eubank (1988), does not strictly apply here. However, such details will not be
discussed further.

A detailed discussion of GCV and related criteria can be found in textbooks on non-
parametric regression (Härdle, 1990; Hastie and Tibshirani, 1990; Eubank, 1988).

GCV is a convex function of l, and is easily calculated as a by-product of the smooth-
ing procedure. l can therefore be estimated by a golden section search in one dimension
(Press, Teukolsky, Vetterling and Flannery, 1992, chapter 10) for the minimum of the GCV
function. Implicit in this procedure is thus the hope that the minimizer of GCV is also the
minimizer of predictive risk.

The problem of the determination of the smoothness parameter, l, can also be seen as
equivalent to the determination of the number of parameters in a parametric curve-fitting

model. If pv8 was in fact estimated from a parametric model with k parameters, then the
second term in (20) and (21) would be s2k/n. This leads to the definition of k 5 tr
(S# lS#l) as an equivalent number of parameters. In this sense, a nonparametric estimator of

pv8 with, say, an equivalent number of parameters of k 5 4, uses the same degrees of
freedom as a cubic polynomial—or any other parametric curve—with 4 parameters. Thus,
a simple—and in many ways satisfactory—way of determining l is by setting some fixed
value for k and then carrying out a simple search for the corresponding value of l. In all
but very ill-behaved cases, there is a non-increasing relationship between l and k, which
facilitates the search for l.

To sum up, there are (at least) two methods for determination of l. One is a direct
estimation method based on the GCV criterion. The other is based on setting an equivalent
number of parameters, and searching for the corresponding value of l. Both methods are

258 CARSTEN TANGGAARD

Kluwer Journal
@ats-ss5/data11/kluwer/journals/requ/v9n3art2 COMPOSED: 08/28/97 2:04 pm. PG.POS. 8 SESSION: 7



used in the empirical application to the Danish term structure discussed in the next
section.

5. An empirical application

A set of monthly sampled Danish government bond prices will be used for the empirical
example. The period covers 120 days from 1985 through 1994. Danish government bonds
are non-callable, and by excluding low coupon bonds, the effects of taxation can also be
ignored10. Historically, officially listed prices have been very noisy, and a good estimation
procedure must also be able to deal with that problem. However, in later years, and
especially since the introduction of electronic trading on the Copenhagen Stock Exchange
(CSE), the problem has diminished11.

Figure 1 shows two different nonparametric estimates of the yield curve. One (solid line)
is derived by smoothing the function u(t) (equation (3)), while the other (broken line) is
found by direct smoothing of the yield curve, y(t) (equation 2). For both curves, the
smoothness parameter, l, was determined by minimizing the GCV criterion. The differ-
ence between the two smoothed curves is striking, however. Direct smoothing of the yield

Figure 1. Two different nonparametric yield curve estimates
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curve y(t) greatly under-smoothes the data (the equivalent number of parameters is k 5
8.27). In contrast, the yield curve derived from u(t) is much smoother with an equivalent
number of parameters of k 5 4.06.

It is important to remember that under smoothing is a common problem in any appli-
cation of nonparametric regression to small data sets with smoothness determined by the
GCV criterion (see Hastie and Tibshirani (1990), section 3.4), and for this particular
trading day (April 27, 1994) the data set is very small indeed (n 5 16). A closer inspection
reveals that the data are also noisy, and at least one observation can be considered an
outlier. Figure 2 shows the smoothed yield curves after the outlier has been removed. Now
both curves are similar, except for maturities longer than 10 years. However, since the
time to maturity of the longest bond in the sample is 10.62 years, the yield curve beyond
10.62 years is pure extrapolation. Figure 2 thus supports one of the conjectures of section
3, namely that smoothing u(t) has a stabilizing effect on the long end of the yield curve.
Nevertheless, there are still signs of under smoothness when y(t) is smoothed. In this case,
however, removing the outlier has in fact decreased k from 8.27 to 6.26.

For the full period, 1985–94, as well as the subperiod, 1990–94, smoothing u(t) gen-
erally produces a smoother curve. This is further confirmed by the summary of the
distribution of k in tables 1 and 2. In these tables, the smoothness parameter, l, is
determined by GCV. The difference in smoothness between the two curves is even more
manifest in the subperiod 1990–94.

Figure 2. Yield curves when outliers are removed
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Despite the difference in model type and choice of smoothing parameter the two
models can be compared by the GCV criterion12. Table 3 indicates that—judged by
GCV—smoothing u(t) is superior to direct smoothing of y(t).

Table 3. Ranking of nonparametric yield curve models according to GCV and MSE.

1985–94 Smoothness Ranked 1 (GCV) Av. GCV Med. GCV

Smoothing u(t) min GCV 88 5.23 3.55
Smoothing y(t) min GCV 32 5.72 3.84

1985–94 Smoothness Ranked 1 (MSE) Av. MSE Med. MSE

Smoothing u(t) k 5 4 103 3.56 2.43
Smoothing y(t) k 5 4 17 6.59 3.82

1990–94 Smoothness Ranked 1 (GCV) Av. GCV Med. GCV

Smoothing u(t) min GCV 49 7.07 5.12
Smoothing y(t) min GCV 11 7.87 5.85

1990–94 Smoothness Ranked 1 (MSE) Av. MSE Med. MSE

Smoothing u(t) k 5 4 58 4.55 3.41
Smoothing y(t) k 5 4 2 10.16 6.43

The Rank 1 column shows how many times the corresponding model is ranked as number 1 (according to the
criterion in brackets). The other two columns show the average and median values of MSE and GCV (multiplied
by 100).

Table 1. Distribution of equivalent number of parameters for two different nonparametric models in two periods.

Period 1985–1994 k # 3.5 3.5 , k # 5.5 5.5 , k # 7.5 7.5 , k

Smoothing u(t) 17 74 10 19
Smoothing y(t) 4 44 41 31

Period 1990–1994 k # 3.5 3.5 , k # 5.5 5.5 , k # 7.5 7.5 , k

Smoothing u(t) 15 44 1 0
Smoothing y(t) 1 23 20 16

Smoothness parameter, l; estimated by minimum GCV.

Table 2. Summary statistics of k in the full period and in the subperiod, 1990–94.

Period 1985–1994 Average k Median k

Smoothing u(t) 4.95 4.28
Smoothing y(t) 6.13 5.82

Period 1990–1994 Average k Median k

Smoothing u(t) 3.98 3.85
Smoothing y(t) 6.18 5.89

Smoothness parameter, l, estimated by minimum GCV.
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Figure 3. Three yield curves with different smoothness.

Figure 4. Three yield curves with different smoothness.
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Smoothness can also be controlled by finding a l corresponding to some prefixed value
of k (e.g. 4). In this case, MSE is used to compare the two models. As table 3 shows, the
superiority of smoothing u(t) is even more striking in this case.

The next example illustrates the use of GCV for estimating l. The minimum GCV
value of k on the trading day, March 31, 1993 is 3.9, and, as figure 3 shows, there is no
indication of excess or lack of smoothing of the data. Changing the equivalent number of
parameters to 8 and 3 gives only a slight change in the estimated yield curves. On the
trading day, September 28, 1994, however, the situation is different. The minimum GCV
value of k is now 4.1, which seems to give a reasonable degree of smoothness (figure 4).
Changing k to 3 or 8 has a dramatic impact on the smoothness of the yield curve, however.
A further interpretation of the example is shown by figure 5. For the trading day, Sep-
tember 28, 1994, the GCV curve has a well-defined minimum at k 5 4.1. In contrast, the
GCV curve for the trading day March 31, 1993, is almost flat. A flat GCV curve cannot
be used to discriminate between alternative values of l.

The final example consists of a comparison of the nonparametric procedure with three
different parametric models:

• The Cox et al. (1985) model (CIR)
• The Nelson and Siegel (1987) model (NS)
• A regression spline model of the yield curve

Figure 5. GCV as a function of equivalent number of parameters, k(l)
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The NS and CIR models have 4 parameters each, while the regression spline model can
have any number of parameters—one for each knot. Regression spline models of the yield
curve with 4 knots were selected. No restrictions were imposed on the long end of the
term structure. This is because the parametric models only serve as benchmarks against
which the nonparametric model is to be tested, and an unrestricted regression spline
model—even with a comparable number of parameters—presumably performs better than
a restricted model. The placement of the knots were chosen by rule of thumb, as suggested
in McCulloch (1975).

Two cases are considered for the full period and the last subperiod. First, the nonpara-
metric model is estimated with l determined by the minimum GCV criterion, and the
models are compared using the GCV criterion13. In the second case, the smoothness
parameter is determined by setting the value of k to 4. In this case, the competing models
can be compared directly by the MSE. The results are summarized in table 4. The non-
parametric model (NPM) performs very well in comparison with the parametric models.
In the full period, NPM is ranked as number 1 on more than half of the days considered,
while in the last subperiod the NPM performs slightly worse. However, it is still the model

Table 4. Comparison of parametric and nonparametric yield curve models.

1985–94 Smoothness Rank 1 (GCV) Av. GCV Med. GCV

Smoothing u(t) min GCV 64 5.23 3.55
NS 4 parameters 16 5.69 4.07
CIR 4 parameters 3 6.80 4.47
Regression spline 4 parameters 37 5.72 3.96

1985–94 Smoothness Rank 1 (MSE) Av. MSE Med. MSE

Smoothing u(t) k 5 4 77 3.56 2.43
NS 4 parameters 14 3.98 2.83
CIR 4 parameters 2 4.71 3.25
Regression spline 4 parameters 27 4.02 2.77

1990–94 Smoothness Rank 1 (GCV) Av. GCV Med. GCV

Smoothing u(t) min GCV 25 7.06 5.12
NS 4 parameters 12 7.08 4.71
CIR 4 parameters 3 8.67 4.98
Regression spline 4 parameters 20 7.60 4.69

1990–94 Smoothness Rank 1 (MSE) Av. MSE Med. MSE

Smoothing u(t) k 5 4 35 4.55 3.41
NS 4 parameters 10 4.81 3.37
CIR 4 parameters 2 5.81 3.47
Regression spline 4 parameters 13 5.23 3.43

The Rank 1 column shows how many times the corresponding model is ranked as number 1 (according to the
criterion in brackets). The other two columns show the average and median values of MSE and GCV (multiplied
by 100).
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with the highest percentage of number one rankings. On the whole, table 4 confirms the
general assumption of this article: nonparametric cubic spline smoothing out-performs the
parametric models.

Further evidence, of this superiority is presented in figure 6. In contrast with the NPM,
the Nelson and Siegel model is unable to capture the shape of the term structure on the
trading day, September 30, 1992. This becomes especially clear by comparison with the
actual bond yields in the short end14.

6. Conclusion

This article has presented evidence that nonparametric smoothing is a feasible solution to
the problem of inferring the zero-coupon bond yield curve from noisy data on coupon
bonds. The computational problems are surmountable, despite the absence of an analytical
solution. The article has also presented evidence that nonparametric smoothing is prefer-
able to parametric models. Finally, it has documented that smoothing a simple transfor-
mation of the yield curve is less affected by outliers than direct smoothing of the yield
curve.

Figure 6. Comparison of nonparametric and parametric (NS) model.

NONPARAMETRIC SMOOTHING OF YIELD CURVES 265

Kluwer Journal
@ats-ss11/data11/kluwer/journals/requ/v9n3art2 COMPOSED: 09/05/97 10:56 am. PG.POS. 15 SESSION: 10



Acknowledgment

A preliminary version was presented at the IFAC Workshop on Computational Methods in
Economics and Finance, Amsterdam, June 8–10, 1994. Helpful comments and sugges-
tions from Leif Andersen, Tom Engsted, Svend Jakobsen, Jesper Lund, John Huston
McCulloch, and a referee are gratefully acknowledged, as is the financial support from the
Danish Social Science Research Council.

Notes

1. The precise meaning of this statement will become clear from the discussion in section 3.
2. John Huston McCulloch—in private communication—has suggested estimation of the curve, q(t) 5 ty(t).

The first-order derivative of q(t) is the instantaneous forward curve. Moreover, q has the same extrapolative
behavior as the curve, u(t), suggested here. However, using q necessitates a further restriction, q(0) 5 0, in
order for the yield curve to be defined in terms of q. Furthermore, there are no a priori statistical arguments
in favor of q(t) rather than u(t). Finally, standard computer packages for calculation of cubic spline
smoothers do not allow restrictions of the type, q(0) 5 0. This model will not, therefore, be discussed in this
article.

3. In the empirical application to the Danish term structure in section 5 below wi5tmi

21. This specification is
consistent with the one suggested by Chambers et al. (1984). A similar specification is suggested by Vasicek
and Fong (1982). My experience with the model also shows that the resulting yield curve is fairly unaffected
by minor changes in the variance specification.

4. An appendix with further details is available on request. The proof of this result requires some extra
restrictions on w, all of which are fulfilled by the models considered here (equations (1), (2) and (3)).

5. In principle, the interval [a, b] can be chosen freely as long as it contains the knots. In the term structure
fitting problem, a natural choice of a is a 5 0. Because w is linear outside [t1, tm], it can be extrapolated to
infinity by a linear function with slope equal to w8(tm). It is in this sense that the solution to the smoothing
problem is said to be asymptotically linear as t R `.

6. Readers not familiar with the notation of vector-derivatives can consult Magnus and Neudecker (1988).
7. An appendix with further details is available on request.
8. In the application on the Danish term structure discussed in section 5 below, m varies between 47 and 91,

with an average of 61.2. The sample size, n, varies between 14 and 36, with an average of 26.2. The average
computing time was 2.73 minutes on a 66 MHz PC (i486). This time estimate includes the time used for the
search of the optimal smoothness parameter, l.

9. Similar approximations will be used below without further comment.
10. The lower limit for the coupon varies with the general level of interest rates. Details, and a copy of the data

set, is available on request.
11. Electronic trading on the CSE started in the late 1980s. This, and changes in the definition of officially listed

prices, is the reason for the special consideration of the subperiod, 1990–94, below.
12. There is no solid theoretical basis for this statement. However, GCV is very much related to information

criteria (AIC, BIC, etc.), which are often used in model selection (see Eubank (1988), section 2.4).
13. GCV can also be calculated for parametric models.
14. The coupon effect is the reason for not plotting the longer-term bond yields in figure 6. For bonds with time

to maturity of less than 1 year, the coupon effect is either absent or can be ignored.
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