Point-Set Topology for
Impossibility Results In
Distributed Computing

Thomas Nowak

ENS

Overview

Introduction

Safety vs. Liveness

First Example: Wait-Free Shared Memory
Message Omission Model

Execution Irees

Three Classical Impossibility Results

Conclusion

lNtroauction

goal: explain some arguments in impossibility results
in distributed computing via a topological view on
the execution space (vs. the configuration space)

in particular, highlight the role of compactness of
execution (sub-)spaces in classical arguments

only very basic results needed

surveys arguments by: Alpern/Schneider, Lubitch/
Moran, Moses/Rajsbaum

lNtroauction

* crash faults in asynchronous and synchronous systems

e communication media considered: shared memory, message
passing, read-modity-write bits

* example problem: impossibility of consensus, i.€.,
 Agreement: all decision values must be the same

e Validity: if all processes start with the same initial value, then
no other value can be decided

e Jermination: every non-faulty (non-crashed) process must
eventually decide

Overview

Introduction

Safety vs. Liveness

First Example: Wait-Free Shared Memory
Message Omission Model

Execution Irees

Three Classical Impossibility Results

Conclusion

Configurations

e “configuration” = snapshot of the system

* all local states of processes + state of
communication medium (maybe + state of
adversary etc.)

* should be carefully defined tor every concrete
distributed computing model (not too much, not too
little information)

Transitions and Executions

e “transition” = pair of (successive) configurations

e set of possible transitions = should encode all
allowed configuration changes

e “shift focus from the structure of protocols for a
distributed system to the structure of the set of
possible schedules of a distributed system.” (Saks
and Zaharoglou '00)

e “execution” = sequence of configurations

A Set of Transitions is Not
Always Enough

locally OK, globally:

e.g., kEvery message that was sent is eventually received.”

Safety and Liveness

Lamport’s informal definitions:
Safety = “something (bad) will not happen”

e.g., "Every message is received after at most 3
steps.”

Liveness = “something (good) must happen”

e.g., Every message that was sent is eventually
recelved.”

Safety

* “property” = subset of executions

e “safety property” = if it's violated, some finite prefix
IS a withess

* |.e., Vv executions ¢ property 3 finite prefix
v extension of prefix are ¢ property

\ \902‘(’//7d !

Ca

| Iveness

* “liveness property” = you can never tell its violation
by a finite prefix

* |.e., V finite prefix 3 extension € property

e? @ /et ‘5 See

ﬁ‘! Z don? knoto...

lopology and Executions

e On set of configurations = discrete topology

* 0On set of executions (sequences of configurations)
= product topology

* |s compact if number of configurations is finite
(Tychonoft)

e "model” = subset of executions

lopology and Executions

* Alpern and Schneider (1985) observed:
e safety = closed
* |iveness = dense

o proof: d((Cy), (C})) = 2~ MUIC#C)

lopology and Executions

e a consequence (proof’s a bit harder without
topology):

 Thm: Every property is intersection of a safety and
a liveness property.

* Proof: Let P be a property. Set S = ¢/(P)and L = &¢
u P. By definition, P =S5 n L. Also, Sis closed by

definition. Finally cl(L) = cl(S¢)u cl(P) 2 S¢u S =
Cw i.e., Lis dense.

Overview

Introduction
Safety vs. Liveness

First Example: Wait-Free Shared Memory

Message Omission Model
Execution Trees
Three Classical Impossibility Results

Conclusion

-irst Example

now: wait-free (i.e., t=n-1) w/ SRMW registers

show: consensus is impossible (by contradiction,
.e., assume that some algorithm solves it)

configuration: tuple (s+,...,sn) of local states and
tuple (v1,...,vm) of shared register states

set of transitions = those allowed by the algorithm
when a single process takes a step

-irst Example

e QQ:is the set of transitions finite?
e A:could be, but we can even do without

e — use a scheduler, i.e., don’t use transitions
(executions) but events (schedules)

takes a step”

-irst Example

INn our example (N0 message deliveries etc.): event
= Process numbper

walt-free = all but one processes could crash = no
iveness condition

set of admissible schedules = {1,...,n}w

f . A .
schedules »executions >~ decisions {0,1}

-irst Example

e If maps fand A are continuous...

e the decision space {0,1} is disconnected (with
discrete topology)

* the schedule space {1,...,n}¥ is completely
disconnected (balls are clopen)

-irst Example

if maps fand A are continuous, then the inverse
images of both {0} and {1} are clopen (thus
compact because {1,...,n}vis)

contradiction after applying some specitics of
computational model

Lem: A Is continuous

Proof: A is locally constant (decision doesn't
change once taken)

-irst Example

initial config. Cy; schedule (j1, j2, j3, j4, - - -)

f

J1 J2 J3 J4 J5

e f:{1,...njv—>E

e | em: fis continuous

o Proof:Lete=2">0, set 6 =2". If d(o1,02) < 6, then
the first n events are fixed. By definition of 7, also the
first n configurations are fixed, i.e., d(f(o1),f(02)) < €.

-irst Example

* inverse images 2o = {0 | A(f(c)) = 0} and 27 = {0 |
A(f(o)) = 1} are compact

L em: In a metric space, there is a minimal distance
between a closed and a compact set.

e If 6 =2Kis alower bound on the distance between
20 and 27 then every execution is univalent after at
most K steps

-irst Example

| em: There are bivalent initial configurations.

e going from bivalent to univalent after at most K
steps implies existence of a fork:

°/;gﬂ

bivalent\ha

1-valent

-irst Example

Let p be the active process in the transition (Ck,Dp) and g that
In the transition (Ck,D1).

Case 1: both p and g do read operations

Pick a third process r and do r,r,r,... ad infinitum. Since p and @
only change their local state, their operations cannot influence
r, SO r should decide on both O and 1; contradiction.

Case 2: p reads, g writes
Choose process r other than p and the written register’s reader.

Case 3: both write
Pick r different from the readers of both registers.

-irst Example

* Proof plan:
1. pick a compact space of schedules
2. show continuity of f
3. show that there is a bivalent initial configuration
4. get existence of a fork
5. show that fork is impossible by arguments specific to

the semantics of the computational model
(indistinguishability)

Overview

Introduction
Safety vs. Liveness
First Example: Wait-Free Shared Memory

Message Omission Model

Execution Trees
Three Classical Impossibility Results

Conclusion

Message Omission Model

 synchronous message passing
* put Iin every round up to n-1 messages may be lost

e define schedules not only by process numbers, but
by set of messages lost

* |t suffices to consider the events of the form
omits(i,k), i.e., process | omits to send its messages
to processes 1,...,k

Message Omission Model

e Ih

m: Consensus in the message omission model

with n-1 omissions per round is impossible, even if
the omissions all occur on the same process in
every round.

Proof: Set of schedules is compact. Function fis

continuous since 1-to-1 correspondence to

tra
(Sl
ca

nsitions. Bivalent initial configuration exists
ence a process). Fork is impossible since we
N silence the one process that would know the

dif

‘erence between 0O-valent and 1-valent.

Overview

Introduction

Safety vs. Liveness

First Example: Wait-Free Shared Memory
Message Omission Model

Execution ITrees

Three Classical Impossibility Results

Conclusion

Execution (or Schedule)

Trees

@i@
D
—

« Thm: A set of executions (or schedules) is closed in Cw
if and only If every maximal path in its tree Is an
execution (schedule) in the set.

If so, It Is compact if and only if its tree is locally finite
(cf. Kénig’'s Lemma).

Execution (or Schedule)
Irees

in our first example: wait-free, I.e., up to t=n-1 crashes

there, easy to find a tree that guarantees t-tair

schedules (i.e., that at least n-t = 1 processes appear

infinitely often): just let every node have all children 1,
N

likewise, wait-free IS seems to be convenient to work
WwWith

Q: how to do enforce t-fair schedules for other values of
parameter t?

Configuration Similarity

* two configurations C and C’are p-equivalent,
written C~,C", if the local state of p (message

passing) and the state

of the registers that p writes

(+ In shared memory) are the same in both

» analogously @-equivalent for sets Q) of processes
if p-equivalent for all peQ

o Lem: If we apply a Q-0
equivalent configuratio

nly schedule to two Q-
Ns (and we can apply them),

then both decision values must be the same.

L ubitch and Moran's
Schedule Trees

* Lubitch and Moran (DC'95) defined a family of trees T, for
schedules with n processes at most t crashes

 nodes are labeled with processes 1,...,n

e to determine children of node x, look at the (n-t)-history
leading up to X

1. 1f not all processes in history are different, then the
children of x are those processes not in the history

2. If all are different, choose the first or second one in the
history

Lubitch and Moran's
Schedule Trees

(n-t)-history: o if all sk different: either s

e |If not: choose a non-sk
Drocess

 Thm: All schedules in the set described by 7, are
(n-t)-fair.

L ubitch and Moran's
Schedule Trees

 Lem: From any node in Tyt on, for all sets Q of at least n-t
orocesses, we can extend the schedule such that only

orocesses in Q appear.

 Lem: Ifiand | are applicable to a node x, then both (i,))
and (],i) are. Furthermore, for all sets Q of at least n-t

Processes:
1. x.(i,])) and x.(],i) are Q-equivalent
2. ifigQ, then x.(i,j) and x.j are Q-equivalent

3. if i,jeQ, then x.i and x.j are Q-equivalent

Overview

Introduction

Safety vs. Liveness

First Example: Wait-Free Shared Memory
Message Omission Model

Execution Irees

Three Classical Impossibility Results

Conclusion

Conseqguences of Lubitch and
Moran’s Tree Construction

e two results in shared memory (Loui and Abu-Amara '87):

 Thm: 1-resilient asynchronous consensus with shared memory
IS Impossible.

* Thm: 2-resilient asynchronous consensus with read-modify-write
bits is Impossible.

* generalization of a result in message passing (Fischer, Lynch,
and Paterson '85):

 Thm: 1-resilient asynchronous consensus in message passing
with global FIFO on outgoing messages at each process is
impossible.

Overview

Introduction

Safety vs. Liveness

First Example: Wait-Free Shared Memory
Message Omission Model

Execution Irees

Three Classical Impossibility Results

Conclusion

Conclusion

you can also look at the topology of executions (vs.
topology of configurations)

popular strategy for impossibility results: find a safety-
only (closed) submodel (or different model + reduction)
INn which impossibility also holds

INn closed models: compactness argument on
executions + model-dependent indistinguishabillity

Q: combine topology on configurations and topology
on executions”

T'hank You!

