
Point-Set Topology for
Impossibility Results in
Distributed Computing

Thomas Nowak

Overview
• Introduction

• Safety vs. Liveness

• First Example: Wait-Free Shared Memory

• Message Omission Model

• Execution Trees

• Three Classical Impossibility Results

• Conclusion

Introduction
• goal: explain some arguments in impossibility results

in distributed computing via a topological view on
the execution space (vs. the configuration space)

• in particular, highlight the role of compactness of
execution (sub-)spaces in classical arguments

• only very basic results needed

• surveys arguments by: Alpern/Schneider, Lubitch/
Moran, Moses/Rajsbaum

Introduction
• crash faults in asynchronous and synchronous systems

• communication media considered: shared memory, message
passing, read-modify-write bits

• example problem: impossibility of consensus, i.e.,

• Agreement: all decision values must be the same

• Validity: if all processes start with the same initial value, then
no other value can be decided

• Termination: every non-faulty (non-crashed) process must
eventually decide

Overview
• Introduction

• Safety vs. Liveness

• First Example: Wait-Free Shared Memory

• Message Omission Model

• Execution Trees

• Three Classical Impossibility Results

• Conclusion

Configurations
• “configuration” = snapshot of the system

• all local states of processes + state of
communication medium (maybe + state of
adversary etc.)

• should be carefully defined for every concrete
distributed computing model (not too much, not too
little information)

Transitions and Executions
• “transition” = pair of (successive) configurations

• set of possible transitions = should encode all
allowed configuration changes

• “shift focus from the structure of protocols for a
distributed system to the structure of the set of
possible schedules of a distributed system.” (Saks
and Zaharoglou ’00)

• “execution” = sequence of configurations

A Set of Transitions is Not
Always Enough

C1 C2 C3 C4 …

nolocally OK, globally:

e.g., “Every message that was sent is eventually received.”

Safety and Liveness
• Lamport’s informal definitions:

• Safety = “something (bad) will not happen”

• e.g., “Every message is received after at most 3
steps.”

• Liveness = “something (good) must happen”

• e.g., “Every message that was sent is eventually
received.”

Safety
• “property” = subset of executions

• “safety property” = if it’s violated, some finite prefix
is a witness

• i.e., ∀ executions ∉ property ∃ finite prefix  
∀ extension of prefix are ∉ property

C1 C2 C3 C4 …

gotcha!

Liveness

• “liveness property” = you can never tell its violation
by a finite prefix

• i.e., ∀ finite prefix ∃ extension ∈ property

C1 C2 C3 C4 …

let’s see
I don’t know…

Topology and Executions

• on set of configurations = discrete topology

• on set of executions (sequences of configurations)
= product topology

• is compact if number of configurations is finite
(Tychonoff)

• “model” = subset of executions

Topology and Executions

• Alpern and Schneider (1985) observed:

• safety = closed

• liveness = dense

• proof:

4 Point-Set Topology 4.1 The Topology of Execution Spaces

We endow C with the discrete topology, i.e., every subset of C is defined to be
open. This topology is induced by the metric

dD : C ⇥ C ! R+, dD(C,C 0) =

(

0 if C = C 0

1 else.
(4.1)

The natural topology to endow C! =
Q

n2! C with is the product topology (see
Section A.2.5).

Lemma 4.1. The product topology on C! is induced by the metric

d
�

(Ck), (C 0
k)

�

= 2� inf{j|C
j

6=C0
j

} (4.2)

Proof. We have to show that the sets that are open with respect to the product
topology (Definition A.14) are exactly those sets that are open with respect to the
metric (Example A.3).

Let A ⇢ C! be open with respect to the metric d. The definition of openness with
respect to the metric asserts existence of "(�) > 0 for every � = (Ck) 2 A such that

A =
[

�2A
B"(�)

(�). (4.3)

From this equation we derive that it su�ces to show that B"(�) is open with respect
to the product topology whenever " > 0. In this case, choose the integer K minimal
with the property 2�K 6 ". This choice implies

B"(�) = B
2

�K

(�) = {�0 | � and �0 agree in the first K components}. (4.4)

If ⇡m : C! ! C denotes the projection onto the mth component, then the inverse
image ⇡�1

m

⇥{Cm}⇤ of the open set {Cm} ⇢ C is exactly the set of elements in C!

whose mth component is equal to Cm. Also, by definition, these inverse images are
open with respect to the product topology. We thus conclude on the openness of
B"(�) with respect to the product topology, because the latter set in (4.4) is equal
to

K
\

m=0

⇡�1

m

⇥{Cm}⇤. (4.5)

To prove the converse direction, it su�ces to show that all sets of the form ⇡�1

m [O]
where O is a subset3 of C are open with respect to the metric d. But we may write

⇡�1

m [O] =
[

�2⇡�1
m

[O]

B
2

�m

(�) (4.6)

because both sides are equal to the set of elements in C! whose mth element is in O.
The openness of B

2

�m

(�) with respect to the metric d now concludes the proof. ⌅
3Note that all sets O ⇢ C are open, because we equipped C with the discrete topology (see Exam-

ple A.4(2)).

14

Topology and Executions
• a consequence (proof’s a bit harder without

topology):

• Thm: Every property is intersection of a safety and
a liveness property.

• Proof: Let P be a property. Set S = cl(P) and L = Sc
∪ P. By definition, P = S ∩ L. Also, S is closed by
definition. Finally cl(L) = cl(Sc) ∪ cl(P) ⊇ Sc ∪ S =
Cω, i.e., L is dense.

Overview
• Introduction

• Safety vs. Liveness

• First Example: Wait-Free Shared Memory

• Message Omission Model

• Execution Trees

• Three Classical Impossibility Results

• Conclusion

First Example
• now: wait-free (i.e., t=n-1) w/ SRMW registers

• show: consensus is impossible (by contradiction,
i.e., assume that some algorithm solves it)

• configuration: tuple (s1,…,sn) of local states and
tuple (v1,…,vm) of shared register states

• set of transitions = those allowed by the algorithm
when a single process takes a step

First Example
• Q: is the set of transitions finite?

• A: could be, but we can even do without

• → use a scheduler, i.e., don’t use transitions
(executions) but events (schedules)

Ci Ci+1“process p 
takes a step”

First Example
• in our example (no message deliveries etc.): event

= process number

• wait-free = all but one processes could crash = no
liveness condition

• set of admissible schedules = {1,…,n}ω

• schedules executions decisions {0,1}f Δ

First Example

• if maps f and Δ are continuous…

• the decision space {0,1} is disconnected (with
discrete topology)

• the schedule space {1,…,n}ω is completely
disconnected (balls are clopen)

First Example
• if maps f and Δ are continuous, then the inverse

images of both {0} and {1} are clopen (thus
compact because {1,…,n}ω is)

• contradiction after applying some specifics of
computational model

• Lem: Δ is continuous

• Proof: Δ is locally constant (decision doesn’t
change once taken)

First Example

• f : {1,…,n}ω → E

• Lem: f is continuous

• Proof: Let ε = 2-n > 0, set δ = 2-n. If d(σ1,σ2) < δ, then
the first n events are fixed. By definition of f, also the
first n configurations are fixed, i.e., d(f(σ1),f(σ2)) < ε.

4 Point-Set Topology 4.1 The Topology of Execution Spaces

Lemma 4.4. Let S be the set of admissible executions of some consensus algorithm
A. Define the map � : S ! {0, 1} such that �(E) is the decision value of algorithm
A in execution E. Then � is continuous.

Proof. It su�ces to show that � is locally constant, i.e., for all E 2 S, there exists
some neighborhood N of E (Definition A.6) such that � is constant on N , that is,
�(E0) = �(E) for all E0 2 N .

Let E 2 S be some admissible execution of A. By the termination property of
consensus, there exists some configuration C in E such that some process has already
decided. Let k be an index such that the kth configuration in E is equal to C. We
claim that

N =
�

E0 2 S | E0 coincides with E up to the kth configuration

(4.8)

is the desired neighborhood. It is clear that � is constant on N , because by the
agreement condition of consensus, no other consensus decision value is possible after
a process has decided.

It remains to show that N is indeed a neighborhood of E. Define " = 2�k. With
the metric defined in (4.2), we conclude that N is the set of admissible executions
that have distance to E less than ". Thus N is an "-ball, hence open. ⌅

Let S denote the set of admissible executions. When we fix some initial configura-
tion I, by the semantics of the model, every admissible schedule determines exactly
one admissible execution. This induces a mapping fI : ⌃ ! S, details of which are
depicted in Figure 4.1.

C
0

C
1

C
2

C
3

C
4

· · ·

initial config. C
0

; schedule (j
1

, j
2

, j
3

, j
4

, . . .)

f

j1 j2 j3 j4 j5

Figure 4.1.: Mapping from schedules to executions

If C
0

denotes the set of initial configurations, then I 7! fI is a map with domain
C

0

. Hence f may be viewed5 as a function C
0

⇥ ⌃! S.

Lemma 4.5. If we equip C
0

with the discrete topology, then f : C
0

⇥ ⌃ ! S as
defined above is continuous.

Proof. Let (I,�) be an element of C
0

⇥⌃ and let (Ik,�k)k be a sequence converging
to (I,�). Then Ik ! I and �k ! �. We will show f(Ik,�k)! f(I,�).

5by uncurrying

17

First Example
• inverse images Σ0 = {σ | Δ(f(σ)) = 0} and Σ1 = {σ |
Δ(f(σ)) = 1} are compact

• Lem: In a metric space, there is a minimal distance
between a closed and a compact set.

• if δ = 2-K is a lower bound on the distance between
Σ0 and Σ1, then every execution is univalent after at
most K steps

First Example
• Lem: There are bivalent initial configurations.

• going from bivalent to univalent after at most K
steps implies existence of a fork:

CK

D1

D0

bivalent

0-valent

1-valent

First Example
• Let p be the active process in the transition (CK,D0) and q that

in the transition (CK,D1).

• Case 1: both p and q do read operations 
Pick a third process r and do r,r,r,… ad infinitum. Since p and q
only change their local state, their operations cannot influence
r, so r should decide on both 0 and 1; contradiction.

• Case 2: p reads, q writes 
Choose process r other than p and the written register’s reader.

• Case 3: both write 
Pick r different from the readers of both registers.

First Example
• Proof plan:

1. pick a compact space of schedules

2. show continuity of f

3. show that there is a bivalent initial configuration

4. get existence of a fork

5. show that fork is impossible by arguments specific to
the semantics of the computational model
(indistinguishability)

Overview
• Introduction

• Safety vs. Liveness

• First Example: Wait-Free Shared Memory

• Message Omission Model

• Execution Trees

• Three Classical Impossibility Results

• Conclusion

Message Omission Model
• synchronous message passing

• but in every round up to n-1 messages may be lost

• define schedules not only by process numbers, but
by set of messages lost

• it suffices to consider the events of the form
omits(i,k), i.e., process i omits to send its messages
to processes 1,…,k

Message Omission Model
• Thm: Consensus in the message omission model

with n-1 omissions per round is impossible, even if
the omissions all occur on the same process in
every round.

• Proof: Set of schedules is compact. Function f is
continuous since 1-to-1 correspondence to
transitions. Bivalent initial configuration exists
(silence a process). Fork is impossible since we
can silence the one process that would know the
difference between 0-valent and 1-valent.

Overview
• Introduction

• Safety vs. Liveness

• First Example: Wait-Free Shared Memory

• Message Omission Model

• Execution Trees

• Three Classical Impossibility Results

• Conclusion

Execution (or Schedule)
Trees

C0

C1

C2

C2’

C1‘

C2’’

C2’’’

• Thm: A set of executions (or schedules) is closed in Cω
if and only if every maximal path in its tree is an
execution (schedule) in the set.  
If so, it is compact if and only if its tree is locally finite
(cf. König’s Lemma).

Execution (or Schedule)
Trees

• in our first example: wait-free, i.e., up to t=n-1 crashes

• there, easy to find a tree that guarantees t-fair
schedules (i.e., that at least n-t = 1 processes appear
infinitely often): just let every node have all children 1,
…,n

• likewise, wait-free IIS seems to be convenient to work
with

• Q: how to do enforce t-fair schedules for other values of
parameter t?

Configuration Similarity
• two configurations C and C’ are p-equivalent,

written C~pC’, if the local state of p (message
passing) and the state of the registers that p writes
(+ in shared memory) are the same in both

• analogously Q-equivalent for sets Q of processes
if p-equivalent for all p∈Q

• Lem: If we apply a Q-only schedule to two Q-
equivalent configurations (and we can apply them),
then both decision values must be the same.

Lubitch and Moran’s
Schedule Trees

• Lubitch and Moran (DC’95) defined a family of trees Tn,t for
schedules with n processes at most t crashes

• nodes are labeled with processes 1,…,n

• to determine children of node x, look at the (n-t)-history
leading up to x

1. if not all processes in history are different, then the
children of x are those processes not in the history

2. if all are different, choose the first or second one in the
history

Lubitch and Moran’s
Schedule Trees

• Thm: All schedules in the set described by Tn,t are
(n-t)-fair.

sn-ts2s1 …

• if all sk different: either s1
or s2 or a non-sk process

• if not: choose a non-sk
process

(n-t)-history:

Lubitch and Moran’s
Schedule Trees

• Lem: From any node in Tn,t on, for all sets Q of at least n-t
processes, we can extend the schedule such that only
processes in Q appear.

• Lem: If i and j are applicable to a node x, then both (i,j)
and (j,i) are. Furthermore, for all sets Q of at least n-t
processes:

1. x.(i,j) and x.(j,i) are Q-equivalent

2. if i∉Q, then x.(i,j) and x.j are Q-equivalent

3. if i,j∉Q, then x.i and x.j are Q-equivalent

Overview
• Introduction

• Safety vs. Liveness

• First Example: Wait-Free Shared Memory

• Message Omission Model

• Execution Trees

• Three Classical Impossibility Results

• Conclusion

Consequences of Lubitch and
Moran’s Tree Construction

• two results in shared memory (Loui and Abu-Amara ’87):

• Thm: 1-resilient asynchronous consensus with shared memory
is impossible.

• Thm: 2-resilient asynchronous consensus with read-modify-write
bits is impossible.

• generalization of a result in message passing (Fischer, Lynch,
and Paterson ’85):

• Thm: 1-resilient asynchronous consensus in message passing
with global FIFO on outgoing messages at each process is
impossible.

Overview
• Introduction

• Safety vs. Liveness

• First Example: Wait-Free Shared Memory

• Message Omission Model

• Execution Trees

• Three Classical Impossibility Results

• Conclusion

Conclusion
• you can also look at the topology of executions (vs.

topology of configurations)

• popular strategy for impossibility results: find a safety-
only (closed) submodel (or different model + reduction)
in which impossibility also holds

• in closed models: compactness argument on
executions + model-dependent indistinguishability

• Q: combine topology on configurations and topology
on executions?

Thank You!

