
an introduction

Sergio Rajsbaum
Instituto de Matemáticas

UNAM

From the book coauthored with Maurice Herlihy
and Dmitry Kozlov to be published by Elsevier

Distributed Computing
through Topology

Sequential Computing

• Turing Machine

• model of
choice for
theory of
computation

• provides a
precise
definition of a
"mechanical
procedure"

The Imitation Game
Turing Year 2012

centenary of his birth

http://en.wikipedia.org/wiki/Theory_of_computation

What about
concurrency?

Concurrency is
everywhere

• At a smaller scale, as processor feature
sizes shrink, they become harder to cool,
manufacturers have given up trying to make
processors faster. Instead, they have focused
on making processors more parallel.

Nearly every activity in our society
works as a distributed system made
up of human and sequential
computer processes

Very different from
sequential computing

This revolution requires a fundamental
change in how programs are written. Need

new principles, algorithms, and tools
- The Art of Multiprocessor Programming

Herlihy & Shavit book

Would not seem so
according to traditional views

• single-tape ≃ multi-tape
TM

• interpreted as
sequential computing
and distributed
computing differ in
questions of efficiency,
but not computability.

• The TM wikipedia page
mentions limitations:
unbounded
computation (OS) and
concurrent processes
starting others

Why concurrency is
different ?

Distributed systems are subject to
failures and timing uncertainties,
properties not captured by classical
multi-tape models.

Processes have partial information
about the system state

• Even if each process is more powerful than a
Turing machine

• and abstracting away the communication
network (processes can directly talk to each
other)

Topology

Placing together all
these views yields a
simplicial complex

“Frozen” representation all possible
interleavings and failure scenarios into a single,
static, simplicial complex

Topology

views label vertices
of a simplex

Each simplex is
an interleaving

Topological invariants

• ,

Preserved as computation unfolds

Come from the nature of the faults and
asynchrony in the system

They determine what can be computed, and
the complexity of the solutions

Short History
 Discovered in PODC 1988 when only 1 process may crash
(dimension=1) by Biran, Moran and Zaks, after consensus
FLP impossibility of PODS 1983

Generalized in 1993:
 Three STOC papers by Herlihy, Shavit, Borowski, Gafni,

Saks, Zaharoughlu
 and dual approach by Eric Goubault in 1993!

Distributed Computing through Combinatorial
Topology, Herlihy, Kozlov, Rajsbaum,
Elsevier 2014

What would a theory of
distributed computing be?

Distributed systems...

• Individual sequential processes

• Cooperate to solve some problem

• By message passing, shared memory, or any
other mechanism

Many kinds

• Multicore, various shared-memory systems

• Internet

• Interplanetary internet

• Wireless and mobile

• cloud computing, etc.

... and topology

• ,

Combinatorial topology provides a common
framework that unifies these models.

Many models, appear to have little in common
besides the common concern with complexity,
failures and timing.

Theory of distributed
computing research

• Models of distributed computing systems:
communication, timing, failures, which models are
central?

• Distributed Problems:
one-shot task, long-lived tasks, verification, graph
problems, anonymous,…

• Computability, complexity, decidability
• Topological invariants:

(a) how are related to failures, asynchrony,
communication, and (b) techniques to prove them

• Simulations and reductions

A “universal” distributed
computing model
(a Turing Machine for DC)

Ingredients of a model

• processes

• communication

• failures

Once we have a
“universal” model, how

to study it?

multi-read/multi-writer

single-reader/single-writer message passing

t failures stronger objects failure detectors

Iterated model

multi-read/multi-writer

single-reader/single-writer message passing

t failures stronger objects failure detectors

generic
techniques,
simulations

and
reductions

Iterated shared
memory

(a Turing Machine for DC ?)

n Processes

asynchronous, wait-free

Unbounded
sequence of
read/write

shared arrays

• use each one
once
• in order

write, then read

8

8

8,-,-

8

8,-,-

8

8,-,-

3 4

8

8,-,-

3 4

8,3,4 8,3,4

8

8,-,-

3 4

8,3,4 8,3,4

Asynchrony- solo run

-,2,-
-,4,-
-,1,-

2

4

1

every copy is
new

•arrive in
arbitrary order
•last one sees
all

•arrive in
arbitrary order
•last one sees
all

2

•arrive in
arbitrary order
•last one sees
all

2
-,2,-

•arrive in
arbitrary order
•last one sees
all

2 -,2,33

•arrive in
arbitrary order
•last one sees
all

2
1,2,3

31

•arrive in
arbitrary order
•last one sees
all

2
1,2,3

31

returns 1,2,3

•remaining 2 go
to next
memory

2 31

•remaining 2 go
to next
memory

2 31

2

-,2,-

•3rd one
returns -,2,3

2 31

2
-,2,3

3

•2nd one goes
alone

2 31

2 3

•returns -,2,-

2 31

2 3

2

dd

-,2,-

so in this run,
the views are

-,2,3

1,2,3

-,2,-

another run

•arrive in
arbitrary order

2 31

• all see all

2
1,2,3

31

View graph

indistinguishability
• The most essential

distributed computing
issue is that a process
has only a local
perspective of the world

• Represent with a vertex
labeled with id (green)
and a local state this
perspective

• E.g., its input is 0

• Process does not know
if another process has
input 0 or 1, a graph

0

0 1

??

Indistinguishability
graph for 2
processes

• focus on 2
processes

• there may be
more that
arrive after

2

 sees only itself

2
-,2,-

• green sees both

• but ...

2 -,2,33
-,2,-

2 -,2,33
-,2,-

-,2,3

??

• green sees both

• but, doesn't
know if seen by
the other

see
each other

see
each other

one round graph for 2
processes

solo
solo

iterated runs

round 2:

round 1:

for each run in round 1 there are the same 3 runs in the next round

iterated runs

solo sees
both

solo in both rounds

round 2:

iterated runs

solo sees
both

round 2:
sees both,

then solo in 2nd

iterated runs

round 1:

round 2:

see each other in 1st
round

see each other in both

More rounds

round 1:

round 2:

round 3:

Topological invariant: protocol graph after k rounds

-longer
-but always connected

Wait-free theorem for
2 processes

For any protocol in the iterated model,
its graph after k rounds is

-longer
-but always connected

Iterated approach: theorem
holds in other models

• Via known, generic simulation
• Instead of ad hoc proofs (some known) for each
case

easy iterated proof :
local, iterate

any number of
processes

any number of
processes, any

number of failures

message passing

non-iterated model

implications in terms of

- solvability
- complexity
- computability

Distributed problems
binary consensus

0 0

1 1

0 0

1 1

start with same input
decide same output

Input Graph Output Graph

different inputs,
agree on any

Input/output
relation

Binary consensus is not solvable
due to connectivity

0 0

1 1

0 0

1 1

Input Graph Output Graph

Input/output
relation

Each edge is an initial
configuration of the protocolsubdivided after 1 roundno solution in 1 round decide

decide

no solution in k rounds

corollaries:
consensus impossible in the

iterated model

consensus impossibility
holds in other models

• Via known, generic simulation
• Instead of ad hoc proofs for each case

2 process binary
iterated

any number of
processes

any number of
processes, any

number of failures

message passing

non-iterated model

Decidability
• Given a task for 2 processes, is it solvable in the iterated

model?

• Yes, there is an algorithm to decide: a graph connectivity
problem

• Then extend result to other models , via generic
simulations, instead of ad hoc proofs

Beyond 2 processes

from 1-dimensional graphs to n-dimensional complexes

2-dim simplex
• three local states in

some execution

• 2-dimensional simplex

• e.g. inputs 0,1,2

0

1 2

3-dim simplex
• 4 local states in some

execution

• 3-dim simplex

• e.g. inputs 0,1,2,3

0

1 2

3

complexes

Collection of
simplexes closed

under
containment

consensus task
3 processes

Input Complex

0

0

0
1

1

0

0 0

1

1 1

Output Complex

Iterated model

One initial state

Iterated model

after 1 round all see each other

Iterated model

after 1 round 2 don’t know if
other saw them

Iterated model

after 1 round 1 doesn't know if
2 other saw it

Wait-free theorem for
n processes

For any protocol in the iterated model,
its complex after k rounds is

- a chromatic subdivision of the input
complex

General wait-free iterated
solvability theorem

A task is solvable if and only if the input complex
can be chromatically subdivided and mapped
into the output complex continuously respecting
colors and the task specification

Decidability
• Given a task for 3 processes, is it solvable in the iterated

model?

• No! there are tasks that are solvable if and only if a loop
is contractible in a 2-dimensional complex

• Then extend result to other models, via generic
simulations, instead of ad hoc proofs

Extension to other models

• Via known, generic simulation
• Instead of ad hoc proofs for each case

3 process 2-agreem
iterated

any number of
processes

any number of
processes, 2 or
more failures

message passing

non-iterated model

Conclusions

• In distributed computing there are too
many different issues of interest, no single
model can capture them all

Synchronous protocol
complex evolution

Connected but
not 1-connected

Disconnected

Conclusions

• But the iterated model (with extensions
not discussed here) captures essential
distributed computing aspects

• and topology is the essential feature for
computability and complexity results

END

