
Chapter 2

Initial value problems

Our main task in this section will be to prove the basic existence and unique-
ness result for ordinary differential equations. The key ingredient will be the
contraction principle (Banach fixed point theorem), which we will derive
first.

2.1. Fixed point theorems

Let X be a real vector space. A norm on X is a map ‖.‖ : X → [0,∞)
satisfying the following requirements:

(i) ‖0‖ = 0, ‖x‖ > 0 for x ∈ X\{0}.
(ii) ‖λx‖ = |λ| ‖x‖ for λ ∈ R and x ∈ X.

(iii) ‖x + y‖ ≤ ‖x‖ + ‖y‖ for x, y ∈ X (triangle inequality).

The pair (X, ‖.‖) is called a normed vector space. Given a normed
vector space X, we have the concept of convergence and of a Cauchy se-
quence in this space. The normed vector space is called complete if every
Cauchy sequence converges. A complete normed vector space is called a
Banach space.

Clearly R
n (or C

n) is a Banach space. We will be mainly interested in the
following example: Let I be a compact interval and consider the continuous
functions C(I) on this interval. They form a vector space if all operations
are defined pointwise. Moreover, C(I) becomes a normed space if we define

‖x‖ = sup
t∈I

|x(t)|. (2.1)
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I leave it as an exercise to check the three requirements from above. Now
what about convergence in this space? A sequence of functions xn(t) con-
verges to x if and only if

lim
n→∞ ‖x − xn‖ = lim

n→∞ sup
t∈I

|xn(t) − x(t)| = 0. (2.2)

That is, in the language of real analysis, xn converges uniformly to x. Now
let us look at the case where xn is only a Cauchy sequence. Then xn(t) is
clearly a Cauchy sequence of real numbers for any fixed t ∈ I. In particular,
by completeness of R, there is a limit x(t) for each t. Thus we get a limiting
function x(t). Moreover, letting m → ∞ in

|xn(t) − xm(t)| ≤ ε ∀n,m > Nε, t ∈ I (2.3)

we see
|xn(t) − x(t)| ≤ ε ∀n > Nε, t ∈ I, (2.4)

that is, xn(t) converges uniformly to x(t). However, up to this point we
don’t know whether x(t) is in our vector space C(I) or not, that is, whether
it is continuous or not. Fortunately, there is a well-known result from real
analysis which tells us that the uniform limit of continuous functions is
again continuous. Hence x(t) ∈ C(I) and thus every Cauchy sequence in
C(I) converges. Or, in other words, C(I) is a Banach space.

You will certainly ask how all these considerations should help us with
our investigation of differential equations? Well, you will see in the next
section that it will allow us to give an easy and transparent proof of our
basic existence and uniqueness theorem based on the following result.

A fixed point of a mapping K : C ⊆ X → C is an element x ∈ C such
that K(x) = x. Moreover, K is called a contraction if there is a contraction
constant θ ∈ [0, 1) such that

‖K(x) − K(y)‖ ≤ θ‖x − y‖, x, y ∈ C. (2.5)

We also recall the notation Kn(x) = K(Kn−1(x)), K0(x) = x.

Theorem 2.1 (Contraction principle). Let C be a (nonempty) closed subset
of a Banach space X and let K : C → C be a contraction, then K has a
unique fixed point x ∈ C such that

‖Kn(x) − x‖ ≤ θn

1 − θ
‖K(x) − x‖, x ∈ C. (2.6)

Proof. If x = K(x) and x̃ = K(x̃), then ‖x−x̃‖ = ‖K(x)−K(x̃)‖ ≤ θ‖x−x̃‖
shows that there can be at most one fixed point.

Concerning existence, fix x0 ∈ C and consider the sequence xn = Kn(x0).
We have

‖xn+1 − xn‖ ≤ θ‖xn − xn−1‖ ≤ · · · ≤ θn‖x1 − x0‖ (2.7)
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and hence by the triangle inequality (for n > m)

‖xn − xm‖ ≤
n∑

j=m+1

‖xj − xj−1‖ ≤ θm
n−m−1∑

j=0

θj‖x1 − x0‖

≤ θm

1 − θ
‖x1 − x0‖. (2.8)

Thus xn is Cauchy and tends to a limit x. Moreover,

‖K(x) − x‖ = lim
n→∞ ‖xn+1 − xn‖ = 0 (2.9)

shows that x is a fixed point and the estimate (2.6) follows after taking the
limit n → ∞ in (2.8). �

Question: Why is closedness of C important?

Problem 2.1. Show that the space C(I, Rn) together with the sup norm
(2.1) is a Banach space.

Problem 2.2. Derive Newton’s method for finding the zeros of a function
f(x),

xn+1 = xn − f(xn)
f ′(xn)

,

from the contraction principle. What is the advantage/disadvantage of using

xn+1 = xn − θ
f(xn)
f ′(xn)

, θ > 0,

instead?

2.2. The basic existence and uniqueness result

Now we want to use the preparations of the previous section to show exis-
tence and uniqueness of solutions for the following initial value problem
(IVP)

ẋ = f(t, x), x(t0) = x0. (2.10)

We suppose f ∈ C(U, Rn), where U is an open subset of R
n+1, and (t0, x0) ∈

U .
First of all note that integrating both sides with respect to t shows that

(2.10) is equivalent to the following integral equation

x(t) = x0 +
∫ t

t0

f(s, x(s)) ds. (2.11)

At first sight this does not seem to help much. However, note that x0(t) = x0

is an approximating solution at least for small t. Plugging x0(t) into our
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integral equation we get another approximating solution

x1(t) = x0 +
∫ t

t0

f(s, x0(s)) ds. (2.12)

Iterating this procedure we get a sequence of approximating solutions

xn(t) = Kn(x0)(t), K(x)(t) = x0 +
∫ t

t0

f(s, x(s)) ds. (2.13)

Now this observation begs us to apply the contraction principle from the
previous section to the fixed point equation x = K(x), which is precisely
our integral equation (2.11).

We will set t0 = 0 for notational simplicity and consider only the case t ≥
0 to avoid excessive numbers of absolute values in the following estimates.

First of all we will need a Banach space. The obvious choice is X = C(I),
where I = [0, T ] is some suitable interval containing t0 = 0. Furthermore,
we need a closed subset C ⊆ X such that K : C → C. We will try a closed
ball of radius δ around x0, where δ > 0 has to be determined.

Choose V = [0, T ] × Bδ(x0), where Bδ(x0) = {x ∈ R
n| |x − x0| ≤ δ}.

Then

|K(x)(t) − x0| ≤
∫ t

0
|f(s, x(s))|ds ≤ t max

(t,x)∈V
|f(t, x)| (2.14)

(here the maximum exists by continuity of f and compactness of V ) when-
ever the graph of x lays within V , that is, {(t, x(t))|t ∈ [0, T ]} ⊂ V . Hence,
for t ≤ T0, where

T0 = min(T,
δ

M
), M = max

(t,x)∈V
|f(t, x)|, (2.15)

we have T0 M ≤ δ and the graph of K(x) is again in V .
So if we choose X = C([0, T0]) as our Banach space, with norm ‖x‖ =

max0≤t≤T0 |x(t)|, and C = {x ∈ X | ‖x − x0‖ ≤ δ} as our closed set, then
K : C → C and it remains to show that K is a contraction.

To show this, we need to estimate

|K(x)(t) − K(y)(t)| ≤
∫ t

t0

|f(s, x(s)) − f(s, y(s))|ds. (2.16)

Clearly, since f is continuous, we know that |f(s, x(s))− f(s, y(s))| is small
if |x(s)− y(s)| is. However, this is not good enough to estimate the integral
above. For this we need the following stronger condition. Suppose f is
locally Lipschitz continuous in the second argument. That is, for every
compact set V ⊂ U the following number

L = sup
(t,x)�=(t,y)∈V

|f(t, x) − f(t, y)|
|x − y| (2.17)
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(which depends on V ) is finite. Then,∫ t

0
|f(s, x(s)) − f(s, y(s))|ds ≤ L

∫ t

0
|x(s) − y(s)|ds

≤ L t sup
0≤s≤t

|x(s) − y(s)| (2.18)

provided the graphs of both x(t) and y(t) lie in V . In other words,

‖K(x) − K(y)‖ ≤ L T0‖x − y‖, x ∈ C. (2.19)

Moreover, choosing T0 < L−1 we see that K is a contraction and existence
of a unique solution follows from the contraction principle:

Theorem 2.2 (Picard-Lindelöf). Suppose f ∈ C(U, Rn), where U is an
open subset of R

n+1, and (t0, x0) ∈ U . If f is locally Lipschitz continuous
in the second argument, then there exists a unique local solution x(t) of the
IVP (2.10).

The procedure to find the solution is called Picard iteration. Unfor-
tunately, it is not suitable for actually finding the solution since computing
the integrals in each iteration step will not be possible in general. Even for
numerical computations it is of no great help, since evaluating the integrals
is too time consuming. However, at least we know that there is a unique
solution to the initial value problem.

In many cases, f will be even differentiable. In particular, note that f ∈
C1(U, Rn) implies that f is locally Lipschitz continuous (see the problems
below).

Lemma 2.3. Suppose f ∈ Ck(U, Rn), k ≥ 1, where U is an open subset of
R

n+1, and (t0, x0) ∈ U . Then the local solution x of the IVP (2.10) is Ck+1.

Proof. Let k = 1. Then x(t) ∈ C1 by the above theorem. Moreover,
using ẋ(t) = f(t, x(t)) ∈ C1 we infer x(t) ∈ C2. The rest follows from
induction. �
Problem 2.3. Show that f ∈ C1(R) is locally Lipschitz continuous. In fact,
show that

|f(y) − f(x)| ≤ sup
ε∈[0,1]

|f ′(x + ε(y − x))||x − y|.

Generalize this result to f ∈ C1(Rm, Rn).

Problem 2.4. Are the following functions Lipschitz continuous at 0? If
yes, find a Lipschitz constant for some interval containing 0.

(i) f(x) = 1
1−x2 .

(ii) f(x) = |x|1/2.
(iii) f(x) = x2 sin( 1

x).
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Problem 2.5. Apply the Picard iteration to the first-order linear equation

ẋ = x, x(0) = 1.

Problem 2.6. Investigate uniqueness of the differential equation

ẋ =
{ −t

√|x|, x ≥ 0
t
√|x|, x ≤ 0

.

2.3. Some extensions

In this section we want to derive some further extensions of the Picard-
Lindelöf theorem. They are of a more technical nature and can be skipped
on first reading.

As a preparation we need a slight generalization of the contraction prin-
ciple. In fact, looking at its proof, observe that we can replace θn by any
other summable sequence θn (Problem 2.8).

Theorem 2.4 (Weissinger). Let C be a (nonempty) closed subset of a Ba-
nach space X. Suppose K : C → C satisfies

‖Kn(x) − Kn(y)‖ ≤ θn‖x − y‖, x, y ∈ C, (2.20)

with
∑∞

n=1 θn < ∞. Then K has a unique fixed point x such that

‖Kn(x) − x‖ ≤
⎛
⎝ ∞∑

j=n

θj

⎞
⎠ ‖K(x) − x‖, x ∈ C. (2.21)

Our first objective is to give some concrete values for the existence time
T0. Using Weissinger’s theorem instead of the contraction principle, we can
avoid the restriction T0 < L−1:

Theorem 2.5 (Picard-Lindelöf). Suppose f ∈ C(U, Rn), where U is an open
subset of R

n+1, and f is locally Lipschitz continuous in the second argument.
Choose (t0, x0) ∈ U and δ > 0, T > t0 such that [t0, T ] × Bδ(x0) ⊂ U . Set

M(t) =
∫ t

t0

sup
x∈Bδ(x0)

|f(s, x)|ds, (2.22)

L(t) = sup
x �=y∈Bδ(x0)

|f(t, x) − f(t, y)|
|x − y| . (2.23)

Note that M(t) is nondecreasing and define T0 via

M(T0) = δ. (2.24)

Then the unique local solution x(t) of the IVP (2.10) is given by

x = lim
n→∞Kn(x0) ∈ C1([t0, T0], Bδ(x0)) (2.25)


