Fra Horia Corneaus Noter til analysekursene.

Theorem 6.3. Consider the initial value problem:

$$\mathbf{y}'(t) = \mathbf{f}(t, \mathbf{y}(t)), \quad \mathbf{y}(t_0) = \mathbf{y}_0. \tag{6.7}$$

Define $\delta_1 := \min\{\delta_0, r_0/M, 1/L\}$. Then there exists a solution $\mathbf{y} : (t_0 - \delta_1, t_0 + \delta_1) \mapsto \overline{B_{r_0}(\mathbf{y}_0)}$, which is unique.

Proof. Take some $0 < \delta < \delta_1$ and define the compact interval $K := [t_0 - \delta, t_0 + \delta] \subset \mathbb{R}$. Then any continuous function $\phi : K \to \mathbb{R}^d$ is automatically bounded, and since the Euclidean space $Y = \mathbb{R}^d$ is a Banach space, we can conclude from Proposition 6.2 that the space $(C(K; \mathbb{R}^d), d_{\infty})$ of continuous functions defined on the compact K with values in \mathbb{R}^d is a complete metric space.

Define

$$X := \{ \mathbf{g} \in C(K; \mathbb{R}^d) : \quad \mathbf{g}(t) \in \overline{B_{r_0}(\mathbf{y}_0)}, \ \forall t \in K \}.$$

$$(6.8)$$

Lemma 6.4. The metric space (X, d_{∞}) is complete.

Proof. Consider a Cauchy sequence $\{\mathbf{g}_n\}_{n\geq 1}\subset X$. Because $(C(K;\mathbb{R}^d),d_\infty)$ is complete, we can find $\mathbf{g}\in C(K;\mathbb{R}^d)$ such that $\lim_{n\to\infty}d_\infty(\mathbf{g}_n,\mathbf{g})=0$. Thus for every $t\in K$ we have

$$\mathbf{g}(t) = \lim_{n \to \infty} \mathbf{g}_n(t), \quad \lim_{n \to \infty} \|\mathbf{g}_n(t) - \mathbf{g}(t)\| = 0.$$

Since by assumption $\|\mathbf{g}_n(t) - \mathbf{y}_0\| \le r_0$ for all t and n, we have

$$\|\mathbf{g}(t) - \mathbf{y}_0\| = \lim_{n \to \infty} \|\mathbf{g}_n(t) - \mathbf{y}_0\| \le r_0, \quad \forall t \in K,$$

which implies that $\mathbf{g} \in X$.

Lemma 6.5. Define the map $F: X \to C(K; \mathbb{R}^d)$

$$[F(\mathbf{g})](t) := \mathbf{y}_0 + \int_{t_0}^t \mathbf{f}(s, \mathbf{g}(s)) ds, \quad \forall t \in K,$$

where f obeys (6.5). Then (i) the range of F belongs to X and (ii) $F: X \to X$ is a contraction. Proof.

(i). Since f_j are continuous real valued functions, we have that

$$K \ni s \mapsto f_i(s, \mathbf{g}(s)) \in \mathbb{R}$$

are also continuous, thus Riemann integrable. Because $\mathbf{g}(s) \in B_{r_0}(\mathbf{y}_0)$ for all $s \in K$, we have that $(s, \mathbf{g}(s)) \in H_0$. The integral from the definition of F defines a vector $\mathbf{u}(t)$ with components

$$u_j(t) := \int_{t_0}^t f_j(s, \mathbf{g}(s)) ds, \quad 1 \le j \le d.$$

Denote by $t_1 := \min\{t_0, t\}$ and $t_2 := \max\{t_0, t\}$. Then we have:

$$||\mathbf{u}(t)||^2 = \sum_{j=1}^d u_j^2(t) = \int_{t_0}^t \left(\sum_{j=1}^d u_j(t) f_j(s, \mathbf{g}(s)) \right) ds \le \int_{t_1}^{t_2} ||\mathbf{u}(t)|| \, ||\mathbf{f}(s, \mathbf{g}(s))|| ds$$

where in the last inequality we used the Cauchy-Schwarz inequality. Hence we may write:

$$\left\| \int_{t_0}^t \mathbf{f}(s, \mathbf{g}(s)) ds \right\| \le \int_{t_1}^{t_2} ||\mathbf{f}(s, \mathbf{g}(s))|| ds.$$

From (6.6) we have $\sup_{s \in K} ||\mathbf{f}(s, \mathbf{g}(s))|| \le M$, hence:

$$||[F(\mathbf{g})](t) - \mathbf{y}_0|| = ||\mathbf{u}(t)|| \le \int_{t_1}^{t_2} ||\mathbf{f}(s, \mathbf{g}(s))|| ds \le M\delta < r_0, \quad \forall t \in K,$$

Implicit funktions særningen.

we can now formulate the implicit function theorem.

Theorem 7.4. Let $U \subset \mathbb{R}^d$ be an open set and $\mathbf{h} : U \mapsto \mathbb{R}^m$ be a $C^1(U; \mathbb{R}^m)$ function. Assume that there exists a point $\mathbf{a} = [\mathbf{u_a}, \mathbf{w_a}] \in U$ such that $\mathbf{h}(\mathbf{a}) = 0$ and the $m \times m$ partial Jacobi matrix $[D_{\mathbf{u}}\mathbf{h}(\mathbf{a})]$ is invertible. Then there exists an open set $E \subset \mathbb{R}^n$ containing $\mathbf{w_a}$ and a map $\mathbf{f} : E \mapsto \mathbb{R}^m$ which obeys $\mathbf{f}(\mathbf{w_a}) = \mathbf{u_a}$ and $\mathbf{h}([\mathbf{f}(\mathbf{w}), \mathbf{w}]) = 0$ for all $\mathbf{w} \in E$. Moreover, the matrix $[D_{\mathbf{u}}\mathbf{h}([\mathbf{f}(\mathbf{w}), \mathbf{w}])]$ is invertible if $\mathbf{w} \in E$ and all entries of its inverse are continuous on E. Finally, \mathbf{f} is continuously differentiable on E and we have:

$$[D\mathbf{f}(\mathbf{w})] = -[D_{\mathbf{u}}\mathbf{h}([\mathbf{f}(\mathbf{w}), \mathbf{w}])]^{-1} [D_{\mathbf{w}}\mathbf{h}([\mathbf{f}(\mathbf{w}), \mathbf{w}])] \in \mathcal{L}(\mathbb{R}^n, \mathbb{R}^m), \quad \forall \mathbf{w} \in E.$$
 (7.4)

Moreover, by possibly shrinking E, we obtain: There is VCN open st. $\alpha \in V$ and if $x \in V$ satisfies h(x) = 0, then there is a $w_x \in E$ s.t. $X = (f(w_x), w_x)$ (i.e. $h'(0) \cap E = \{(f(w), w) \mid w \in E\}$

Furthermore: If his Coo, so is f.

Here is the Inverse Function Theorem:

Theorem 8.3. Let $\mathcal{O} \subset \mathbb{R}^m$ be an open set containing \mathbf{u}_0 . Let $\mathbf{g} \in C^1(\mathcal{O}; \mathbb{R}^m)$ such that $[D\mathbf{g}(\mathbf{u}_0)] \in \mathcal{L}(\mathbb{R}^m, \mathbb{R}^m)$ is invertible, and \mathbf{g} is injective on \mathcal{O} . Then there exists an open ball $E \subset \mathbb{R}^m$ which contains $\mathbf{w}_0 := \mathbf{g}(\mathbf{u}_0)$, and a function $\mathbf{f} : E \mapsto \mathcal{O}$ such that the following facts hold true:

- (i). The set $V = \mathbf{f}(E)$ equals $\mathbf{g}^{-1}(E)$ and is open in \mathbb{R}^m ;
- (ii). $\mathbf{g}(\mathbf{f}(\mathbf{w})) = \mathbf{w}$ on E and $\mathbf{f}(\mathbf{g}(\mathbf{u})) = \mathbf{u}$ on V, hence they are local inverses to each other;
- (iii). The function \mathbf{f} is a $C^1(V)$ function, $[D\mathbf{g}(\mathbf{f}(\mathbf{w}))]$ is invertible on E and we have:

 $[D\mathbf{f}(\mathbf{w})] = [D\mathbf{g}(\mathbf{f}(\mathbf{w}))]^{-1}.$

Furthermore: If g is Co, then g' is Co

9 Brouwer's fixed point theorem

We say that $K \subset \mathbb{R}^d$ is convex if for every $\mathbf{x}, \mathbf{y} \in K$ we have that $(1-t)\mathbf{x} + t\mathbf{y} \in K$ for all $0 \le t \le 1$. A set K is called a convex body if K is convex, compact, and with at least one interior point.

Theorem 9.1. Let $K \subset \mathbb{R}^d$ be a convex body. Let $\mathbf{f} : K \mapsto K$ be a continuous function which invariates K. Then \mathbf{f} has a (not necessarily unique) fixed point, that is a point $\mathbf{x} \in K$ such that $\mathbf{f}(\mathbf{x}) = \mathbf{x}$.

Proof. The first thing we do is to reduce the problem from a general convex body to the unit ball in \mathbb{R}^d . We will show that there exists a bijection $\varphi: K \mapsto \overline{B_1(0)}$, which is continuous and with continuous inverse (a homeomorphism). If this is true, then it is enough to show that the function $\varphi \circ \mathbf{f} \circ \varphi^{-1} : \overline{B_1(0)} \mapsto \overline{B_1(0)}$ has a fixed point $\mathbf{a} \in \overline{B_1(0)}$. In that case, $\mathbf{x} = \varphi^{-1}(\mathbf{a}) \in K$.

Lemma 9.2. Any convex body in \mathbb{R}^d is homeomorphic with the closed unit ball $\overline{B_1(0)}$.

Proof. Let \mathbf{x}_0 be an interior point of K. There exists r > 0 such that $\overline{B_r(\mathbf{x}_0)} \subset K$. Define the continuous map $g: K \mapsto \mathbb{R}^d$ given by $g(\mathbf{x}) := (\mathbf{x} - \mathbf{x}_0)r^{-1}$. Define $\tilde{K} := g(K)$. It is easy to see that \tilde{K} is a convex and compact set. Moreover, the function $g: K \mapsto \tilde{K}$ is invertible and $g^{-1}(\mathbf{y}) = r\mathbf{y} + \mathbf{x}_0$. Both g and g^{-1} are continuous, and for every $\mathbf{y} \in \mathbb{R}^d$ with $||\mathbf{y}|| \le 1$ we have that $r\mathbf{y} + \mathbf{x}_0 \in \overline{B_r(\mathbf{x}_0)} \subset K$, thus $\mathbf{y} \in \tilde{K}$. This shows that $\overline{B_1(0)} \subset \tilde{K}$, thus \tilde{K} is a convex body containing the closed unit ball.