
Theorem 6.3. Consider the initial value problem:

y′(t) = f(t,y(t)), y(t0) = y0. (6.7)

Define δ1 := min{δ0, r0/M, 1/L}. Then there exists a solution y : (t0 − δ1, t0 + δ1) 7→ Br0(y0),
which is unique.

Proof. Take some 0 < δ < δ1 and define the compact interval K := [t0 − δ, t0 + δ] ⊂ R. Then
any continuous function φ : K → Rd is automatically bounded, and since the Euclidean space
Y = Rd is a Banach space, we can conclude from Proposition 6.2 that the space (C(K;Rd), d∞)
of continuous functions defined on the compact K with values in Rd is a complete metric space.

Define
X := {g ∈ C(K;Rd) : g(t) ∈ Br0(y0), ∀t ∈ K}. (6.8)

Lemma 6.4. The metric space (X, d∞) is complete.

Proof. Consider a Cauchy sequence {gn}n≥1 ⊂ X. Because (C(K;Rd), d∞) is complete, we can
find g ∈ C(K;Rd) such that limn→∞ d∞(gn,g) = 0. Thus for every t ∈ K we have

g(t) = lim
n→∞

gn(t), lim
n→∞

‖gn(t)− g(t)‖ = 0.

Since by assumption ‖gn(t)− y0‖ ≤ r0 for all t and n, we have

‖g(t)− y0‖ = lim
n→∞

‖gn(t)− y0‖ ≤ r0, ∀t ∈ K,

which implies that g ∈ X.

Lemma 6.5. Define the map F : X → C(K;Rd)

[F (g)](t) := y0 +

∫ t

t0

f(s,g(s))ds, ∀t ∈ K,

where f obeys (6.5). Then (i) the range of F belongs to X and (ii) F : X → X is a contraction.

Proof.
(i). Since fj are continuous real valued functions, we have that

K 3 s 7→ fj(s,g(s)) ∈ R

are also continuous, thus Riemann integrable. Because g(s) ∈ Br0(y0) for all s ∈ K, we have that
(s,g(s)) ∈ H0. The integral from the definition of F defines a vector u(t) with components

uj(t) :=

∫ t

t0

fj(s,g(s))ds, 1 ≤ j ≤ d.

Denote by t1 := min{t0, t} and t2 := max{t0, t} . Then we have:

||u(t)||2 =

d∑
j=1

u2j (t) =

∫ t

t0

 d∑
j=1

uj(t)fj(s,g(s))

 ds ≤
∫ t2

t1

||u(t)|| ||f(s,g(s))||ds

where in the last inequality we used the Cauchy-Schwarz inequality. Hence we may write:∥∥∥∥∫ t

t0

f(s,g(s))ds

∥∥∥∥ ≤ ∫ t2

t1

||f(s,g(s))||ds.

From (6.6) we have sups∈K ‖f(s,g(s))‖ ≤M , hence:

‖[F (g)](t)− y0‖ = ‖u(t)‖ ≤
∫ t2

t1

||f(s,g(s))||ds ≤Mδ < r0, ∀t ∈ K,
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Let d = m+ n with 1 ≤ m,n < d. A vector x ∈ Rd can be uniquely decomposed as x = [u,w]
with u ∈ Rm and w ∈ Rn. Let U ∈ Rd be an open set and h : U 7→ Rm be a C1(U ;Rm) function.
We denote by:

[Duh([u′,w′])] :=

{
∂hk
∂uj

([u′,w′]) : 1 ≤ j, k ≤ m
}
∈ L(Rm,Rm),

and

[Dwh([u′,w′])] :=

{
∂hk
∂wj

([u′,w′]) : 1 ≤ k ≤ m, 1 ≤ j ≤ n
}
∈ L(Rn,Rm)

the partial Jacobi matrices of h. We also have:

[Dh([u′,w′])] = [Duh([u′,w′]);Dwh([u′,w′])] ∈ L(Rd,Rm).

We can now formulate the implicit function theorem.

Theorem 7.4. Let U ⊂ Rd be an open set and h : U 7→ Rm be a C1(U ;Rm) function. Assume
that there exists a point a = [ua,wa] ∈ U such that h(a) = 0 and the m × m partial Jacobi
matrix [Duh(a)] is invertible. Then there exists an open set E ⊂ Rn containing wa and a map
f : E 7→ Rm which obeys f(wa) = ua and h([f(w),w]) = 0 for all w ∈ E. Moreover, the matrix
[Duh([f(w),w])] is invertible if w ∈ E and all entries of its inverse are continuous on E. Finally,
f is continuously differentiable on E and we have:

[Df(w)] = −[Duh([f(w),w])]−1 [Dwh([f(w),w])] ∈ L(Rn,Rm), ∀w ∈ E. (7.4)

Proof. The point a is an interior point of U , hence there exists r > 0 such that Br(a) ⊂ U . Thus
for every x = [u,w] ∈ Br(a) we have

||x− a||2Rd = ||u− ua||2Rm + ||w −wa||2Rn < r2.

If ε < r/
√

2, let Pn(ε) be the open ball Bε(wa) ⊂ Rn and Qm(ε) be the open ball Bε(ua) ⊂ Rm.
Then one can verify that Qm(ε)× Pn(ε) ⊂ Br(a) ⊂ U .

For every w ∈ Pn(ε), define the map Fw : Qm(ε) 7→ Rm given by

Fw(u) := u− [Duh(a)]−1h([u,w]).

The main idea behind the construction is to show that there exists a constant C > 0 and some
small some enough ε1 < r/

√
2 such that for every ε ≤ ε1 and for every ||w − wa||Rn < ε/(10C)

the following two facts hold true:

1. Fw

(
Qm(ε)

)
⊂ Qm(ε) and

2. Fw : Qm(ε) 7→ Qm(ε) is a contraction.

Then Banach’s Fixed Point Theorem provides us with a unique uw ∈ Qm(ε) such that Fw(uw) =
uw. This would imply that [Duh(a)]−1h([uw,w]) = 0; multiplying with [Duh(a)] on the left
leads to h([uw,w]) = 0. This is how we construct the map f(w) := uw for all w obeying
||w − wa||Rn < ε1/(10C). In the second part of the proof one needs to show that f is also
continuously differentiable when restricted to a ball around wa and obeys (7.4). Technical details
are given below.

Step 1: constructing f(w) as a fixed point.
Let us start with an estimate which will play an important role in what follows. We want to

prove that there exists some 0 < ε1 < r/
√

2 small enough such that for every ε ≤ ε1 and w ∈ Pn(ε)
we have:

||Fw(u)− Fw(u′)||Rm ≤
1

10
||u− u′||Rm , ∀u,u′ ∈ Qm(ε). (7.5)
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Here is the Inverse Function Theorem:

Theorem 8.3. Let O ⊂ Rm be an open set containing u0. Let g ∈ C1(O;Rm) such that
[Dg(u0)] ∈ L(Rm,Rm) is invertible, and g is injective on O. Then there exists an open ball
E ⊂ Rm which contains w0 := g(u0), and a function f : E 7→ O such that the following facts hold
true:

(i). The set V = f(E) equals g−1(E) and is open in Rm;
(ii). g(f(w)) = w on E and f(g(u)) = u on V , hence they are local inverses to each other;
(iii). The function f is a C1(V ) function, [Dg(f(w))] is invertible on E and we have:

[Df(w)] = [Dg(f(w))]−1.

Proof. The set U := O×Rm ⊂ R2m is open. Define h : U 7→ Rm given by h([u,w]) := g(u)−w.
Denote by a := [u0,w0]. Then h ∈ C1(U), h(a) = 0, and [Duh(a)] = [Dg(u0)] is invertible.
Thus the conditions of the Implicit Function Theorem are satisfied and we can find an open ball
E ⊂ Rm containing g(u0) = w0 and a function f ∈ C1(E) such that h([f(w),w]) = 0 on E. In
other words, g(f(w)) = w for every w ∈ E. This equality shows in particular that g(y) ∈ E if y
is of the form f(w) with w ∈ E. In other words, f(E) ⊂ g−1(E).

Now let us show that in fact f(E) = g−1(E). Let x ∈ g−1(E). We have g(x) =: w ∈ E
hence g(f(w)) = w = g(x). Because g is injective on O we must have x = f(w) ∈ f(E), hence
g−1(E) ⊂ f(E) and the equality of the two sets is proved.

Since g is continuous, the set V = f(E) = g−1(E) is open according to Theorem 4.2. This
proves (i), together with the equality g(f(w)) = w on E.

Now let us prove that we also have f(g(u)) = u on V . Take u ∈ V = g−1(E) and put
w = g(u) ∈ E. Since w = g(f(w)), we must have g(u) = g(f(w)). Because g is injective, we
must have u = f(w) = f(g(u), thus (ii) is proved.

Finally, differentiating g(f(w)) = w and using the chain rule we get

[Dg(f(w))][Df(w)] = Im×m

which means that both factors on the left hand side are invertible and (iii) is proved.

9 Brouwer’s fixed point theorem

We say that K ⊂ Rd is convex if for every x,y ∈ K we have that (1 − t)x + ty ∈ K for all
0 ≤ t ≤ 1. A set K is called a convex body if K is convex, compact, and with at least one interior
point.

Theorem 9.1. Let K ⊂ Rd be a convex body. Let f : K 7→ K be a continuous function which
invariates K. Then f has a (not necessarily unique) fixed point, that is a point x ∈ K such that
f(x) = x.

Proof. The first thing we do is to reduce the problem from a general convex body to the unit ball
in Rd. We will show that there exists a bijection ϕ : K 7→ B1(0), which is continuous and with
continuous inverse (a homeomorphism). If this is true, then it is enough to show that the function
ϕ ◦ f ◦ ϕ−1 : B1(0) 7→ B1(0) has a fixed point a ∈ B1(0). In that case, x = ϕ−1(a) ∈ K.

Lemma 9.2. Any convex body in Rd is homeomorphic with the closed unit ball B1(0).

Proof. Let x0 be an interior point of K. There exists r > 0 such that Br(x0) ⊂ K. Define the
continuous map g : K 7→ Rd given by g(x) := (x − x0)r−1. Define K̃ := g(K). It is easy to
see that K̃ is a convex and compact set. Moreover, the function g : K 7→ K̃ is invertible and
g−1(y) = ry + x0. Both g and g−1 are continuous, and for every y ∈ Rd with ||y|| ≤ 1 we have
that ry + x0 ∈ Br(x0) ⊂ K, thus y ∈ K̃. This shows that B1(0) ⊂ K̃, thus K̃ is a convex body
containing the closed unit ball.
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