Differential Geometry. Activity 6.

Lisbeth Fajstrup

Department of Mathematics Aalborg University

Aalborg 2016

Lisbeth Fajstrup (AAU)

Surface patch. Atlas for a regular surface

Definition

Let $S \subset \mathbf{R}^3$.

- A surface patch for S is a map $\sigma: U \to \mathbb{R}^3$ on an open set $U \subset \mathbb{R}^2$ so that there exists an open set $V \subseteq \mathbf{R}^3$ with $\sigma(U) = S \cap V$ and such that
 - **1** σ is smooth:
 - **2** σ is regular, i.e.,
- σ is smooth; σ is regular, i.e., $D_q σ : \mathbf{R}^2 → \mathbf{R}^3$ has (maximal) rank 2 for all q ∈ U; involve S
 - 3 The restriction $\sigma: U \to S \cap V$ is a homeomorphism, i.e., it has a continuous inverse map.
- An atlas for S is a collection of surface patches for S such that every point $p \in S$ is contained in the image of at least one patch in that collection.
- If S has an atlas, it is called a regular surface.

$$\begin{split} \underline{Eksemplic}: & Graten for an glot funktion: \\ & f: N \to IR \quad N \subset IR^2, aben \\ & S_{1} = \langle (u_{1}v_{1}f(u_{1}v)) | (u_{1}v) \in M^{2}_{2} \\ & S_{2} = \langle (u_{1}f(u_{1}v_{1}),v) | (u_{1}v) \in M^{2}_{2} \\ & floder. \\ & S_{3} = \langle (f(u_{1}v),u_{1}v) | (u_{1}v) \in M^{2}_{2} \\ & Atlos: et kort \\ & \sigma: N \to R^{3} \quad \sigma(u_{1}v) = (u_{1}f(u_{1}v),v) etc. \\ & Hvorfor er \quad \sigma^{-1} kontimiert? \\ & \cdot \pi(x_{1}y_{1}z) = (x_{1}z) er \quad Kontimiert (eudds timeser) \\ & \cdot \sigma^{-1} = \pi_{1}S_{2} \end{split}$$

Level surfaces

Question. When is the set of solutions of an equation f(x, y, z) = c a regular surface?

Theorem

Let $S \subset \mathbb{R}^3$ have the property: For every $\mathbf{p} = (x_0, y_0, z_0) \in S$ there is an open subset $p \in W \subseteq \mathbb{R}^3$, a smooth function $f : W \to \mathbb{R}$, $c \in \mathbb{R}$, such that

■ $S \cap W = \{(x, y, z) \in W | f(x, y, z) = c\};$

②
$$\nabla f(x, y, z) \neq 0$$
 for all $(x, y, z) \in S \cap W$.

Then S is a regular surface.

Proof.

Apply the Implicit Function Theorem to produce a graph patch in a neighbourhood of p.

Korollar/Specialtilfælde Lad F: W→R, W⊆R3, Fglat. Lad S={(x,y,z)eW|flx,y,z)=a} Hvis VF(p)≠Q for alle peS, Så er Son regulærflæde.