Differential Geometry. Activity 9.

Lisbeth Fajstrup

Department of Mathematics Aalborg University

Aalborg 2016

Lisbeth Fajstrup (AAU)

Surface patch. Atlas for a regular surface

Definition

Let $S \subset \mathbf{R}^3$.

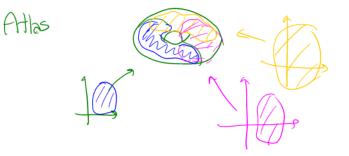
A surface patch for S is a map σ : U → R³ on an open set U ⊆ R² so that there exists an open set V ⊆ R³ with σ(U) = S ∩ V and such that

1
$$\sigma$$
 is smooth;

2) σ is regular, i.e.,

 $D_q \sigma : \mathbf{R}^2
ightarrow \mathbf{R}^3$ has (maximal) rank 2 for all $q \in U$;

- Solution o : U → S ∩ V is a homeomorphism, i.e., it has a continuous inverse map.
- An atlas for S is a collection of surface patches for S such that every point p ∈ S is contained in the image of at least one patch in that collection.
- If S has an atlas, it is called a regular surface.



Level surfaces

Question. When is the set of solutions of an equation f(x, y, z) = c a regular surface?

Theorem

Let $S \subset \mathbf{R}^3$ have the property:

For every $\mathbf{p} = (x_0, y_0, z_0) \in S$ there is an open subset $p \in W \subseteq \mathbf{R}^3$, a smooth function $f : W \to \mathbf{R}$, $c \in \mathbf{R}$, such that

$$S \cap W = \{ (x, y, z) \in W | f(x, y, z) = c \};$$

2
$$\nabla f(x, y, z) \neq \mathbf{0}$$
 for all $(x, y, z) \in S \cap W$.

Then S is a regular surface.

Proof.

Apply the Implicit Function Theorem to produce a graph patch in a neighbourhood of p.

Parametrizations and reparametrizations

Theorem

Given a patch $\sigma: U \to S \subset \mathbf{R}^3$ for the smooth surface S and a point $p \in U$.

Composition with projection There exists an open subset $U' \subset U$ containing p and a projection $\pi : \mathbb{R}^3 \to \mathbb{R}^2$ to one of the coordinate planes such that the composition $\pi \circ \sigma : U' \to V' = (\pi \circ \sigma)(U')$ is a diffeomorphism. Local smooth "inverse" With U' as above, the restriction $\sigma|_{U'}$ has a smooth "inverse", i.e., there exists a smooth map $F : V \to U', \ \sigma(U') \subset V \subset \mathbb{R}^3, V$ open, such that $(F \circ \sigma)(u, v) = (u, v).$

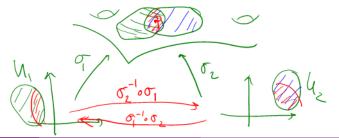
Theorem

Local graph patch With U' and V' as above, there exists a smooth reparametrization diffeomorphism $\Phi : V' \to U'$ such that $(\sigma \circ \Phi)(u, v) = (u, v, f(u, v))$ with $f : V' \subset \mathbb{R}^3$ smooth (up to order).

Smooth maps to S A map $G: W \to S$, $W \subset \mathbb{R}^m$ is smooth at $r \in W$ if and only if $\sigma^{-1} \circ G$ is smooth at r for a patch σ around G(r)on S

Transition functions

Given two regular coordinate patches $\sigma_i : U_i \to V_i \cap S$. They define a transition function $\sigma_2^{-1} \circ \sigma_1 : \sigma_1^{-1}(V_1 \cap V_2) \to \sigma_2^{-1}(V_1 \cap V_2)$ – a diffeomorphism between plane open sets. **Interpretation:** Change of coordinates is smooth (both ways)!



Smooth maps between surfaces

Given smooth surfaces S_1 and S_2 and $p \in S_1$.

Definition

A map $f: S_1 \to S_2$ is called smooth at p, if there are surface patches $\sigma_i: U_i \to S_i$ and $q \in U_1$ such that $\sigma_1(q) = p$ and $f(\sigma_1(U_1)) \subset \sigma_2(U_2)$ and such that the composite map

$$g = \sigma_2^{-1} \circ f \circ \sigma_1 : U_1 \to U_2$$

is smooth at q.

f is called smooth if it is smooth at all $p \in S_1$.

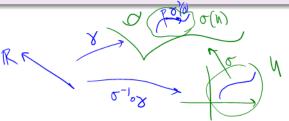
This definition is independent of the choice of patches: Transition functions! 5×7

Tangent planes

Smooth curves on a smooth surface S

Definition

- A smooth space curve with parametrization $\gamma : I \to \mathbb{R}^3$ is a curve on S if $\gamma(t) \in S$ for all $t \in S$.
- The tangent plane T_pS consists of the velocity vectors γ
 ⁽⁰⁾ for all curves γ on S with γ(0) = p.



Theorem

Let $\sigma: U \to V \cap S$ denote a coordinate patch with $\sigma(\mathbf{q}) = \mathbf{p}$.

For a smooth curve γ : I → S ⊂ R³ with γ(t₀) = p there exists an interval J ⊂ I, t₀ ∈ J, and a smooth curve δ : J → U such that γ = σ ∘ δ. δ(t) = σ⁻¹ ∘ ∀(t) (All curves come locally from a smooth curve on a patch.)

•
$$D_{\mathbf{q}}\sigma: \mathbf{R}^2 o T_{\mathbf{p}}S$$
 is a linear isomorphism.

• T_pS is a 2-dimensional linear subspace of \mathbb{R}^3 .

$$D_{q}\sigma:\mathbb{R}^{2} \longrightarrow \mathbb{R}^{3}$$
$$D_{q}\sigma(\mathbb{R}^{2}) = T_{p}S$$

$$D_{f}\sigma: \mathbb{R}^{2} \to \overline{T_{p}}S$$

$$(D_{f}\sigma)^{-1}: \overline{T_{p}}S \to \mathbb{R}^{2}$$

$$W = \mathcal{X}(G) \quad (D_{f}\sigma)^{-1}(W) = (\sigma^{-1}(\mathcal{X})^{2}(G)$$

$$W = \mathcal{X}(G) \quad (D_{f}\sigma)^{-1}(W) = (\sigma^{-1}(\mathcal{X})^{2}(G)$$

$$W = \mathcal{X}(G) \quad (D_{f}\sigma)^{-1}(W) = (\sigma^{-1}(\mathcal{X})^{2}(G)$$

The differential of a smooth map

Definition (Differential $D_pf: T_pS_1 \rightarrow T_{f(p)}S_2$ of a smooth map f at $p \in S$)

Represent a tangent vector $\mathbf{w} = \dot{\gamma}(0)$, γ a smooth curve on S_1 , $\gamma(0) = p$. $D_p(f)(\mathbf{w}) = (f \circ \gamma)(0)$ – the tangent to the image curve $(f \circ \gamma)$ at f(p).

Theorem

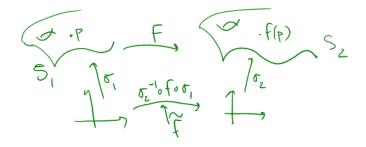
 The definition of D_p(f) does not depend on the particular choice of the curve γ, only on its tangent w = γ(0).

•
$$D_pf: T_pS_1 \to T_{f(p)}S_2$$
 is linear.

Proof.

Choose surface patches $\sigma_i : U_i \to S_i$ – as in the definition of a smooth map. Then $\gamma(t) = \sigma_1(\delta(t))$ for some smooth curve δ with $\delta(0) = q$. Hence, with $g = \sigma_2^{-1} \circ f \circ \sigma_1$, $D_p(f)(\mathbf{w}) = (f \circ \gamma)(0) = (f \circ \sigma_1 \circ \delta)(0) = (\sigma_2 \circ g \circ \delta)(0) = D_q(\sigma_2 \circ g)(\delta(0))$

depends only on δ(0) = (D_qσ₁)⁻¹(γ(0)) = (D_qσ₁)⁻¹(w).
 D_pf = D_{σ(q)}σ₂ ∘ D_qg ∘ (D_qσ₁)⁻¹ is linear.



4672 112 Der へえ R2

Normal vectors / Orientable Surfaces

$$\frac{Def:}{Def:} \quad S_{,a} \text{ regular surface, is orientable, if there is an Atlas on S_1 such that for $\sigma_{1,\sigma_{2}}$ in the atlas $\det(D_{q}(\sigma_{2}^{-1}\circ\sigma_{1})) > 0$ for all $q \in \sigma_{1}^{-1}(\sigma_{2}(u_{2}) n \sigma_{1}(u_{2}))$

$$\frac{Equivalently:}{I\sigma_{1u} \times \sigma_{1v}} (q) = \frac{\sigma_{2u} \times \sigma_{2v}}{I\sigma_{2u} \times \sigma_{2v}} (q)$$$$