Repetition. Kurver. 20. September 2016 M. Ranssens slides, bearbeijdet af L. Fajstrup.

(Re)-parametrizations - Definitions

parametrized curve: $\gamma : I \to \mathbb{R}^n C^\infty$, *I* an open interval regular parametrization: $\dot{\gamma}(t) \neq \mathbf{0}$ for all $t \in I$ unit-speed parametrization: $||\dot{\gamma}(s)|| = 1$ for all $s \in I$ reparametrization: $\bar{\gamma} = \gamma \circ \varphi$, $\varphi : \bar{I} \to I$ a bijective diffeomorphism. Arc length function: $s(t) = \int_{t_0}^t ||\dot{\gamma}(u)| |du$ $R_{t} = S(t)$

(Unit) tangent vectors for regular curves

• $\dot{\gamma}(t) = v(t)\mathbf{t}(t)$ is tangent to the curve at $\gamma(t)$; v(t) is the speed at time *t*; $\mathbf{t}(t)$ is the unit tangent vector at $\gamma(t)$.

i $\dot{\mathbf{t}}(s) \cdot \mathbf{t}(s) = \mathbf{0}$ for all *s* for a unit speed curve.

When does the solution of an equation $f(x, y) = 0, f \in C^{\infty}(U, \mathbf{R}), U \subseteq \mathbf{R}^2$ open, describe a regular curve?

Theorem

- Suppose $f(x_0, y_0) = 0$ and $\nabla f(x_0, y_0) \neq \mathbf{0}$. Then there exists a regular parametrized curve $\gamma(t)$ on an interval $(-\varepsilon, \varepsilon) \rightarrow U$ such that $\gamma(0) = (x_0, y_0)$ and such that $f(\gamma(t)) = \mathbf{0}$.
- Given a regular parametrized plane curve γ on *I*. For every $t_0 \in I$, there is an open set $U \subset \mathbb{R}^2$ containing $\gamma(t_0)$, a smooth function $f: U \to \mathbb{R}^2$ and $\delta > 0$ such that $f(\gamma(t)) = 0$ for all $t_0 - \delta < t < t_0 + \delta$.

Concepts

 $\gamma: I \rightarrow \mathbf{R}^n$, n = 2, 3, a unit-speed parametrization. Unit tangent $\mathbf{t}(s) = \dot{\gamma}(s)$ (Principal) normal $\mathbf{n}(s) = \begin{cases} \mathbf{\hat{t}}(s) & n = 2\\ \mathbf{\underline{\dot{t}}}(s) & n = 3, \mathbf{\dot{t}}(s) \neq \mathbf{0} \end{cases}$ Curvature Definition: $\dot{\mathbf{t}}(s) = \kappa(s)\mathbf{n}(s)$ Inflection point $\kappa(s) = 0 \Leftrightarrow \dot{\mathbf{t}}(s) = 0$ OBS. Only altimed when X(S) = 0 and only in R³ Binormal $\mathbf{b}(s) = \mathbf{t}(s) \times \mathbf{n}(s)$ Torsion Definition; $\dot{\mathbf{b}}(s) = -\tau(s)\mathbf{n}(s)$ GNeed: b(S) 11 m(s). We appre à proof of that

Frenet-Serret equations

- Frenet matrix F = [t n b] ∈ SO(3) moving frame (function of s in matrix form)
- Its derivative 3 × 3-matrix F = [t n b] connected to F by the matrix equation F = FA
- A is a 3 × 3 skew-symmetric matrix of the form $A(s) = \begin{bmatrix} 0 & -\kappa(s) & 0 \\ \kappa(s) & 0 & -\tau(s) \\ 0 & \tau(s) & 0 \end{bmatrix}.$ $A(s) = \begin{bmatrix} 0 & -\kappa(s) & 0 \\ \kappa(s) & 0 & -\tau(s) \\ 0 & \tau(s) & 0 \end{bmatrix}.$

FS-equations

 $\dot{\mathbf{t}} = \kappa \mathbf{n}$ $\dot{\mathbf{n}} = -\kappa \mathbf{t} + \tau \mathbf{b}$ $\dot{\mathbf{b}} = -\tau \mathbf{n}$

Let
$$\gamma : I \to \mathbf{R}^3$$
 denote a regular parametrization.Then
Moving frame $\mathbf{t}(t) = \frac{\dot{\gamma}(t)}{||\dot{\gamma}(t)||}, \mathbf{b}(t) = \frac{\dot{\gamma}(t) \times \ddot{\gamma}(t)}{||\dot{\gamma}(t) \times \ddot{\gamma}(t)||}, \mathbf{n}(t) = \mathbf{b}(t) \times \mathbf{t}(t).$
Curvature $\kappa(t) = \frac{||\dot{\gamma}(t) \times \ddot{\gamma}(t)||}{||\dot{\gamma}(t)||^3};$
plane: $\kappa(t) = \frac{\det[\dot{\gamma}(t) \ \ddot{\gamma}(t)]}{||\dot{\gamma}(t)||^3}.$
Torsion $\tau(t) = \frac{\det[\dot{\gamma}(t) \ \ddot{\gamma}(t)]}{||\dot{\gamma}(t) \times \ddot{\gamma}(t)||^2}$

Proof relies on:

$$\dot{\gamma} = v\mathbf{t} \qquad v(t) = \dot{\delta}(t)$$
$$\dot{\gamma} = \dot{v}\mathbf{t} + v^2\kappa\mathbf{n}$$

$$\begin{split} \dot{\gamma} \times \ddot{\gamma} &= \mathbf{v}^{3} \kappa \mathbf{b} \\ \mathbf{b} \cdot \ddot{\gamma} &= \mathbf{0} \Rightarrow \mathbf{v} \dot{\mathbf{b}} \cdot \ddot{\gamma} + \mathbf{b} \cdot \overleftarrow{\gamma} = \mathbf{0} \\ (\dot{\gamma} \times \ddot{\gamma}) \cdot \overleftarrow{\gamma} &= \mathbf{v}^{3} \kappa \mathbf{b} \cdot \overleftarrow{\gamma} = -\mathbf{v}^{4} \kappa \dot{\mathbf{b}} \cdot \ddot{\gamma} = \mathbf{v}^{4} \kappa \tau \mathbf{n} \cdot \ddot{\gamma} = \mathbf{v}^{6} \kappa^{2} \tau = ||\dot{\gamma} \times \ddot{\gamma}||^{2} \tau. \end{split}$$

- Plane 1. Existence: For every smooth function $k : I \to \mathbf{R}$ there exists a unit-speed curve $\gamma : I \to \mathbf{R}^2$ with curvature function $\kappa(s) = k(s)$.
 - 2. "Uniqueness": Two unit-speed curves $\gamma_1, \gamma_2 : I \to \mathbf{R}^2$ have the same curvature functions $\kappa_1(s) = \kappa_2(s)$ if and only if there exists a directed isometry $S \in Iso_+(2)$ such that $\gamma_2 = S \circ \gamma_1$.

Space

- 1. Existence: For every pair of smooth functions $k: I \rightarrow]0, \infty[, t: I \rightarrow \mathbf{R}$, there exists a unit-speed curve $\gamma: I \rightarrow \mathbf{R}^3$ with curvature function $\kappa(s) = k(s)$ and torsion function $\tau(s) = t(s)$.
- 2. "Uniqueness": Two unit-speed curves $\gamma_1, \gamma_2 : I \to \mathbf{R}^3$ without inflection point have the same curvature functions $\kappa_1(s) = \kappa_2(s)$ and same torsion functions $\tau_1(s) = \tau_2(s)$ if and only if there exists a direct isometry $S \in Iso_+(3)$ such that $\gamma_2 = S \circ \gamma_1$.