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Schedule

Type 1.

8:15 – 10:00 Short recap and lecture in G5-
109.

10:00 – 12:00 Exercise session in group
rooms with assistance from the lec-
turer.

Recap. Perspectives

Arc length and first fundamental form.
(Local) isometries between surfaces.

Lecture

Gauss- and Weingarten map; the second
fundamental form

There are several curvature concepts de-
fined on a surface - curves in the surface
and their curvature give an indication, but
we have to be careful: A curve in a plane
may curve a lot or not at all. However,
a curve on a sphere has to have non-zero
curvature. Moreover, at each point, a sur-
face S may curve differently depending on
what direction is chosen, i.e., according to
a chosen tangent direction: A tangent vec-
tor t ∈ TpS and the normal N at the point
p span a normal plane intersecting the sur-
face in a (space) curve, the so-called nor-
mal section1. The (signed) curvature of that
plane curve defines the normal curvature in
the specified tangent direction t.

As so often, the geometric definition
and the intuition behind need to be recast
so that they can lead to a systematic under-
standing and also to calculations. The key

to understanding curvature is the variation
of the unit normal vector N, encrypted in
the Gauss map G : S → S2 – with the unit
2-sphere S2 as the codomain.2

Variation of a map is measured in terms
of its differential; here:
DpG : TpS → TG(p)S2. The latter tangent
space is perpendicular to Np and there-
fore equal to TpS. This makes the differ-
ential above to a linear self -map on the
(2-dimensional) vector space TpS; more-
over, it is self-adjoint. We will see later on,
that the eigenvalues of that map are key to
understand normal curvatures of S at p.
The spectral theorem from linear algebra
makes sure that the tangent space TpS has
an orthonormal eigenvector basis with as-
sociated real eigenvalues.

A change of signs translates the differ-
ential DpG into the Weingarten map
Wp = −DpG. The Weingarten map gives
rise to the second fundamental form on tan-
gent spaces < v, w >I I=< Wpv, w >I ; its
Gram matrix (with respect to the basis in-

herited from a chart σ) is given by
[

L M
M N

]
with
L = σuu ·N, M = σuv ·N, N = σvv ·N.3

1The definition of a normal section in the textbook on p. 169 is more restrictive than the one we use
here.

2Remark the analogy to the “turning tangent” map from an interval to the unit circle for curves.
3Many references use e, f , g instead of L, M, N.
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Normal and geodesic curvatures

The normal sections are not easy to get a
hold of, since they are implicitely defined
as an intersection. Hence, it turns out to
be a good idea to define the normal cur-
vature not only for normal sections but for
general curves on surfaces. At any point,
one projects the familiar curvature vector
γ̈ = κn (for a unit-speed parametrized
curve γ in 3D-space)

• to the normal line yielding the normal
curvature coefficient κnN;

• to the tangent plane yielding the
geodesic curvature coefficient
κg(N× t).

It turns out that the geodesic curvature
characterizes the particular curve. On the
other hand, the normal curvature

• depends only on the tangent direc-
tion

• agrees thus with the (signed) curva-
ture of the normal section in that di-

rection (which has geodesic curva-
ture 0 at this point)

• can be calculated as the value of the
second fundamental form evaluated
(twice) at t = γ̇: κn(t) =< t, t >I I .

References

AP Ch. 7.1 – 7.3

FR Ch. 5.2 – 5.5

Wikipedia 1 Second fundamental form

Wikipedia 2 Second fundamental form

Wikipedia 3 Gauss map

Wikipedia 4 Curvature of surfaces

Wikipedia 5 Geodesic curvature

Applet

Check out the Banchoff applets in Chapter
6.2 – 4.

Exercises

Plane and sphere For a plane and a
sphere of radius R, determine (at ev-
ery point/direction)

• the normal sections and their
curvatures (i.e., the normal cur-
vatures)

• the Gauss- and Weingarten
maps

Just think, no calculations are needed
in these cases!

AP p. 162, 165: 7.1.1, 7.2.14, 7.1.25

First fundamental form This is the same
exercise as (AP), 6.1.4(ii). Given two
overlapping surface patches σ1, σ2 on
a surface S and a transition function
F with σ1 = F ◦ σ2.

• Check that the Gram matrix
4Compare with applet 6.2.3
5Hint: Show that Nu = Nv = 0 everywhere.
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http://en.wikipedia.org/wiki/Second_fundamental_form
http://en.wikipedia.org/wiki/Shape_operator#Second_fundamental_form
http://en.wikipedia.org/wiki/Gauss_map
http://en.wikipedia.org/wiki/Curvature#Curves_on_surfaces
http://en.wikipedia.org/wiki/Geodesic_curvature
http://diffgeo.akpeters.com/Lovett6-ex.html
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[
E(u, v) F(u, v)
F(u, v) G(u, v)

]
of the first

fundamental form for σi at p ∈ S
with σi(u, v) = p is given by
(D(u,v)σi)

TD(u,v)σi. Express the
Gram matrix of the first funda-
mental form with respect to σ1
by a formula using the Gram

matrix of the first fundamental
form with respect to σ2 and the
Jacobian matrix D(u,v)F of the
transition function
F = σ2 ◦ σ−1

1 – for (u, v) in the
part of the chart corresponding
to the overlap6.

Next activity

Date Tuesday, October 11, 8:15 – 12:00.

Type 3

Content Gaussian and mean curvature;
principal curvatures; classification of
surface points.
(AP), Ch. 7.3, 8.1 – 8.2.

6This is differentiable “change of coordinates” for the first fundamental form
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