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Schedule

Type: 1

8:15 – 10:00: Short repetition and lecture.

10:00 – 12:00: Exercise session in group
rooms.

Repetition. Perspectives

Geodesics.
Geodesic differential equations: existence
and uniqueness of solutions.

Lecture

Isometries and geodesics

A (local) isometry leaves the first funda-
mental form invariant. Geodesics are so-
lutions of the geodesic differential equa-
tions that can be expressed in terms of the
first fundamental form and its derivatives;
geodesics are thus intrinsic1 entities.
Consequence: A (local) isometry maps
geodesics into geodesics. In particular, the
geodescics on a surface that is locally iso-
metric to the plane (a cylinder, a cone...)
can be found as images of lines on the
plane under the isometry.

The goal: Gauss’ Theorema egregium

An isometry will, in general, change nor-
mal and also principal curvatures. But the
Gaussian curvature is left invariant! In
other words, it is an intrinsic invariant. That
is the content of Gauss’ celebrated The-
orema egregium2. It has the immediate
consequence that a spherical surface is not

(locally) isometric to the plane: There are
no maps (projections) between sphere and
plane without distortion!3

The Mercator projection
preserves angles

not constant scale.

The Gaussian curvature is usually ex-
pressed by a formula involving both the
first and the second fundamental form. As
in the previous case – geodesics – the Theo-
rema Egregium can be proved if one is able
to express the Gaussian curvature by a for-
mula involving the first fundamental form
(and its partial derivatives) only.

Equations: Codazzi-Mainardi, Gauss

More generally speaking, what relations
are there between coefficients of the two
fundamental forms? Remember that the
Christoffel symbols Γi

jk can be expressed
in terms of the first fundamental form
and its derivatives. Hence, if it is pos-
sible to express the Gaussian curvature
by coefficients of the first fundamental
form, the Christoffel symbols and their
partial derivatives, the remarkable theo-
rem is proved. It turns out that this can be
done (mere magic, it seems!) exploiting the

1only dependent on the metric of the surface in terms of the first fundamental form, not on the way
the surface is embedded into ambient 3-space

2dansk: fremragende, bemærkelsesværdig
3Landkort har aldrig konstant målestoksforhold
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fact that one may permute the order of par-
tial derivatives of a local parametrization –
in this case of the third(!) order.

Along with the so-called Gauss equa-
tions, that allow one to express EK, FK
and GK in terms of Christoffel symbols
and their partial derivatives, there are also
relations between the coefficients of the
second fundamental form (their partial
derivatives) and the Christoffel symbols in
terms of the Codazzi-Mainardi equations. It
turns out, that these two sets of equations
together characterize pairs of forms that
arise as fundamental forms of surfaces –
unique up to direct isometry.

For some of the proofs, you might have

to wait until next time.

References

AP Ch. 9.2, pp. 224 – 226; Ch. 10.1 – 10.2
(only Theorem 10.2.1)

FR Ch. 6.4.

Wikipedia 1 Theorema Egregium

Wikipedia 2 Gauss-Codazzi equations

Applet

Check out the Banchoff applets in Chapter
7.

Exercises

AP First note that the definition of a nor-
mal section γ in the textbook on
p. 169 is far more restrictive than the
one given in the course. It requires
that the intersecting plane Π is per-
pendicular to the tangent plane at ev-
ery intersection point.

• Check Corollary 7.3.5 and its
consequence Proposition 9.1.6
for these very special normal
sections.

• Prove that the vector
u = u(s) = N(s) × γ̇(s) is the
constant normal vector to the in-
tersecting plane Π.

• Differentiate the equation

N(s) · u = 0; what can you infer
about Ṅ(s)?

• Prove that the tangent vector
t(s) = γ̇(s) is a principal vec-
tor for every s4. Hence γ is
a geodesic line of curvature (cf
definition in Execrcise 8.2.2 on
p. 195).

• Which normal sections are there
on a cylinder? (Perhaps you
have to wait until having solved
Exercise 9.2.1 or 9.2.3).

AP p. 221 – 222: Read and understand Ex-
ample 9.2.2 concerning geodesics on
the 2-sphere S2.

AP p. 226: 9.2.15 – 3.

4Show that γ̇(s) is an eigenvector of the Weingarten map
5Apply a local isometry from the plane to the cylinder
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Next activity

Friday, October 29(!), 8:15 – 12:00.
Type 3.

Equations: Codazzi-Mainardi, Gauss.
Theorema Egregium and some of its con-
sequences.
Text book: [AP], ch. 10.1-2.
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