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Schedule

Type 1

8:15 – 10:00 Short recap. Lectures.
G5-109.

10:00 – 12:00 Exercise session in group
rooms. Lecturer circulates.

Recap. Perspectives

The local Gauss-Bonnet Theorem:

• expressing geodesic curvature in lo-
cal orthonormal coordinates

• applying Hopf’s Umlaufsatz and
Green’s Theorem

• interpretation of the function to be in-
tegrated by way of the Gaussian cur-
vature

Lectures

Gauss-Bonnet for polygons

To piece results together from several coor-
dinate patches without overlap, it is prefer-
able to use curves with edges, so-called
curvilinear polygons. In this case, the pre-
vious Gauss- Bonnet result has to be mod-
ified: The angles between adjacent edges
meeting in a vertex of the polygon have to
be considered, as well. See Theorem 13.2.2
and its Corollary 13.2.3 for geodesic poly-
gons. In the case of geodesic polygons,
only these angles count! What does that
mean for, say, a spherical triangle made of
great circle arcs?

Integration on compact surfaces

While integration of a function defined
within a region covered by one surface
patch can be traced back to integration of a
related function on a related region in the
plane (2D), a little more thought is neces-
sary to get to a formally pleasing integral
over the entire surface.
One way to do that is to extend surface and
function to a small normal “collar” around
the surface, to apply 3D-integration along
the collar and to observe what happens to
the integrals when the collar gets smaller
and smaller.
Another way is to use so-called partitions
of unity functions – that add up to the con-
stant function 1 and with each of them hav-
ing support (values 6= 0) within a coordi-
nate patch.

Gauss-Bonnet for compact surfaces

The global Gauss-Bonnet theorem deals
with the total curvature along a compact
surface – without boundary; ie the integral
of Gaussian curvature over the entire sur-
face. Somehow surprisingly, it turns out
that the result does not depend on geo-
metric properties of the surface; only the
topology counts! In other words, however
crazily you might deform a surface con-
tinuously (without destroying it), this in-
tegral always yields the same result.

The integral may in fact be expressed
in terms of a triangulation of the sur-
face, a partition of the surface into regions
bounded by curvilinear polygons. It is not
that easy to show that such a triangula-
tion always exists, but we will take that for
granted.
A triangulation comes with a number V of
vertices, a number E of edges and a num-
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ber F of faces. These numbers depend, of
course, on the triangulation, but the Euler
characteristic χ(S) = V − E + F does not!

And the answer is:
∫

S KdA = 2πχ(S).
The proof proceeds by summing up the
contributions from each polygon in a tri-
angulation. The terms arising from (edge)
integrals of the geodesic curvature cancel
out two by two; the “angle terms” sum up
to 2πχ(S).

Interpretations and consequences

First of all, the theorem tells you that pok-
ing continuous bumps into a surface will
change the Gaussian curvature in such a
way that the areas in which Gaussian cur-
vature decreases will exactly balance out
the areas in which Gaussian curvature in-
creases (in terms of the integral over cur-
vature).

What kind of surfaces are we talking
about? It turns out that every compact ori-
entable surface is diffeomorphic to a surface
Tg “with g holes”, that you obtain by glue-
ing g tori (torusses) together (a sphere has
0 holes, a torus one).1

The integer g is called the genus of
that surface. It is not difficult to calculate
χ(Tg) = 2− 2g; in particular, the total cur-
vature is negative for g > 1. There are mod-
els of these surfaces with hyperbolic geome-
try, ie with constant negative Gaussian cur-
vature.
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1Everything becomes much more complicated for manifolds of a dimension bigger than 2.
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Exercises

AP, 13.2.1 Try again!

AP, 8.6 Read Chapter 8.6 on compact sur-
faces. Note in particular, that there

are elliptic points on every compact
surface.

AP, 13.4 13.4.1, 13.4.2 (Use Theorem 13.4.5
and 13.4.7).

Next activity

December 8, 8:15 – 12:00.
Type 3.

Applications of the Gauss-Bonnet theo-
rem.
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