### Schedule

Type 3

- 8:15 9:30 Short repetition and lecture
- **9:30 12:00** Exercise session in group rooms; some help from the lecturer available.

# **Repetition.** Perspectives

Compact surfaces, triangulations.

Euler characteristic as a topological invariant.

Gauss-Bonnet theorem for curvilinear polygons and for compact surfaces.

## Lecture

Which compact surfaces can the Gauss-Bonnet theorem be applied to? Orientable compact surfaces can be classified up to diffeomorphism by their *genus*, loosely speaking the number of "holes" in such a surface. To make that definition rigorous is not that easy and beyond the scope of the course. But it is easy to construct a surface  $T_g$  of a given genus g:

 $T_0$  is the 2-sphere  $S^2$ ,  $T_1$  is the torus, and  $T_g$ ,  $g \ge 1$ , is obtained by joining g tori/torusses together.



A triangulation of  $T_3$ 

How about the Euler characteristics? By exhibiting a particular triangulation, one determines that  $\chi(T_g) = 2 - 2g$ ; and by the Gauss-Bonnet theorem, the total curvature of  $T_g$  is equal to  $4\pi(1-g)$  – positive for a spherelike surface, 0 for a torus-like surface, and negative for all others.

The lecture will end with a few indications concerning

- hyperbolic geometry
- minimal surfaces (with mean curvature *H* = 0)
- differential geometry in higher dimensions

### References

**AP** A. Pressley, *Elementary Differential Geometry*, ch. 13.2 –4.

Wikipedia Gauss-Bonnet theorem

Wikipedia Euler characteristic

Wikipedia Genus

DEPT. MATH. SCI. Aalborg University MATH5

### Exercises

**Leftovers** from previous exercise sessions

**Geodesic 2-gons** Let *S* be an orientable surface of negative or zero Gaussian curvature. Show that two geodesics  $\gamma_1, \gamma_2$  which start at some point  $p \in S$  cannot meet again at a point  $q \in S$  in such a say that the traces of  $\gamma_1$  and  $\gamma_2$  together form a 2-gon that constitutes the boundary of a simple region of *S*.

#### Geodesics on an elliptic surface Show:

Two simple closed geodesics  $\gamma_1, \gamma_2$ 

on a compact surface of positive Gaussian curvature must intersect.  $^{\rm 1}$ 

### Next activity

- **Question Session** Time and place to be announced. (Monday Jan. 16 is suggested)
- **Oral Exam** Tuesdag January 17 Here is a document specifying the curriculum, focus areas for presentations and a description of the schedule for each exam.

<sup>&</sup>lt;sup>1</sup>Use that the surface is homeomorphic to a sphere. What do two non-intersecting closed curves on a sphere bound, together?