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Introduction

This note concerns a general approach to theorems of “Weierstrass type”. Convergence of Bernstein
polynomials and many other classical approximation algorithms can be deduced from Korovkin’s theo-
rem below.

We consider the familyC(A) of (real- or complex-valued) continuous function on a compact Haus-
dorff spaceA. A map U : C(A) → C(A) is called linear if U(αf + βg) = αU(f) + βU(g) for
f, g ∈ C(A) and arbitrary scalarsα, β. U : C(A) → C(A) is calledpositive if U(f) ≥ 0 whenever
f ≥ 0. Notice that a linear positive mapU : C(A) → C(A) satisfiesU(f) ≤ U(g) if f ≤ g and
consequently

|U(f)| ≤ U(|f |) ≤ U(‖f‖ · 1) = ‖f‖U(1) ≤ ‖f‖ · ‖U(1)‖,

with ‖f‖ := maxx∈A |f(x)|.

Korovkin’s Theorem

Korovkin has shown1 that for a sequence{Un} of linear positive mapsUn : C(A) → C(A), in many
cases, uniform convergenceUn(f) → f follows for all f ∈ C(A), if it holds for a suitable finite collec-
tion of “test functions”. His result is

Theorem. Assume that there exist continuous real functionsai(y) onA, i = 1, 2, . . . ,m, such that

Py(x) =
m

∑

i=1

ai(y)gi(x) ≥ 0 (1)

for all x, y ∈ A and thatPy(x) = 0 if and only if x = y. Then for a sequence{Un} of linear positive
maps onC(A), the (uniform) convergence

Un(gi) → gi, n → ∞, i = 1, 2, . . . ,m (2)

implies that
Un(f) → f, (uniformly), n → ∞, ∀f ∈ C(A). (3)

Proof. First we fix a functionP ∗(x) := Py1
(x) + Py2

(x), with y1 6= y2, and notice thatP ∗ > 0

1Korovkin, P. P. (1957) On convergence of linear positive operators in the space of continuous functions. Dokl. Akad. Nauk
SSSR (N.S.)114, 961-964; Ch. 1–8.
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on A. We consider some properties of the “polynomials”P (x) =
∑m

i=1 aigi(x). From (2) we have
Un(P, x) → P (x) uniformly in x onA. We also have

Un(Py, y) =

m
∑

i=1

ai(y)Un(gi, y) →

m
∑

i=1

ai(y)gi(y) = Py(y) = 0 (4)

uniformly in y since eachai(x) is bounded onA. Finally, notice that

0 ≤ Un(1, x) ≤ γUn(P ∗, x) → γP ∗(x), (uniformly),

with γ = 1/minx∈A P ∗(x) < ∞. Therefore there existsM0 < ∞, satisfyingsupn ‖Un(1, y)‖ ≤ M0.
We need the following fact. Letfy ∈ C(A), y ∈ A, be a family of functions for whichfy(x) is a

continuous function of(x, y) ∈ A × A, andfy(y) = 0 for all y ∈ A. Then

Un(fy, y) → 0, uniformly in y, n → ∞. (5)

To prove this, letB = {(y, y) : y ∈ A}, and letε > 0 be given. By continuity offy(x) on A × A,
each pointp ∈ B has an open neighbourhoodVp in A × A satisfying|fy(x)| < ε if (x, y) ∈ Vp. Then
G = ∪p∈BVp is open inA × A, and the complementF = A × A\G is closed and thus compact. Let

a = min
(x,y)∈F

Py(x) > 0, and b = max
(x,y)∈F

fy(x).

Notice that

|fy(x)| ≤ ε +
b

a
Py(x), ∀x, y ∈ A. (6)

From (6) we deduce that

|Un(fy, y)| ≤ Un

(

ε · 1 +
b

a
Py(x), y

)

≤ εUn(1, y) +
b

a
Un(Py, y) ≤ εM0 +

b

a
Un(Py, y).

However, by (4), there existsN such thatn ≥ N implies that|Un(fy, y)| ≤ ε(M0 + 1). This proves the
claim.

Now, the proof of the theorem follows easily. Iff ∈ C(A) we define

fy(x) = f(x) −
f(y)

P ∗(y)
P ∗(x).

By (5),

Un(fy, y) = Un(f, y) −
f(y)

P ∗(y)
Un(P ∗, y) → 0, (7)

uniformly in y. We have

|Un(f, y) − f(y)| ≤

∣

∣

∣

∣

Un(f, y) −
f(y)

P ∗(y)
Un(P ∗, y)

∣

∣

∣

∣

+

∣

∣

∣

∣

f(y)

P ∗(y)
Un(P ∗, y) − f(y)

∣

∣

∣

∣

=

∣

∣

∣

∣

Un(f, y) −
f(y)

P ∗(y)
Un(P ∗, y)

∣

∣

∣

∣

+
|f(y)|

|P ∗(y)|

∣

∣

∣

∣

Un(P ∗, y) − P ∗(y)

∣

∣

∣

∣

≤

∣

∣
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∣

Un(f, y) −
f(y)

P ∗(y)
Un(P ∗, y)

∣

∣

∣

∣

+ γ‖f‖

∣

∣

∣

∣

Un(P ∗, y) − P ∗(y)

∣

∣

∣

∣

Using (7) and the fact thatUn(P ∗, y) → P ∗(y), uniformly, the theorem follows. �
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Applications

Bernstein polynomials

Consider the operatorBn : C([0, 1]) → C([0, 1]) generating the Bernstein polynomial

f 7→ Bn(f)(x) =
n

∑

k=0

(

n

k

)

xk(1 − x)n−kf

(

k

n

)

, n = 1, 2, . . .

Clearly eachBn is linear and positive. Also notice thatBn(1) = 1, Bn(t)(x) = x, andBn(t2)(x) =

x2 + x(1−x)
n

. We can therefore use

Py(x) = (x − y)2 = x2 − 2yx + y2 := x2g1(y) − 2xg2(y) + g3(y)

in Korovkin’s theorem to conclude thatBn(f) → f uniformly for all f ∈ C([0, 1]).

Trigonometric sums

Consider the Féjer mapsσn : C(T) → C(T) given by

f 7→ σn(f)(x) =
1

π

∫ π

−π

f(t)Fn(x − t) dt, Fn(α) =
1

2(n + 1)

sin2 (n+1)α
2

sin2(α/2)
.

Using certain well-known trigonometric identities, one can verify that

σn(f) =
s0(f) + s1(f) + · · · + sn(f)

n + 1
,

wheresk(f) is thek’th partial sum of the Fourier series off :

sk(f) =
a0

2
+

k
∑

j=1

(

aj cos jx + bj sin jx
)

,

with

aj :=
1

π

∫ π

−π

f(t) cos kt dt, and bj :=
1

π

∫ π

−π

f(t) sin kt dt.

Notice thatσn is linear and positive. One easily verifies that forn ≥ 1; σn(1) = 1, σn(cos) =
n

n+1 cos x, andσn(sin) = n
n+1 sin x. Thus, Korovkin’s Theorem applies with

Py(x) = 1 − cos(x − y) = 1 − cos(y) cos(x) − sin(y) sin(x),

andσn(f) → f uniformly for everyf ∈ C(T).
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