AALBORG UNIVERSITY MATHEMATICS LISBETH FAJSTRUP
DOCTORAL SCHOOL ANALYSIS AND TOPOLOGY MORTEN NIELSEN
TECHNOLOGY AND SCIENCE 3. block 28.-30/11-05

Location: Nov. 28 in Kroghstraede 3 room 1115. Nov. 29.
and 30. in Kroghstraede 7 room 63.

Main References

A T. Apostol, Mathematical Analysis, Addison-Wesley.

Differentiability.

Mon, 29.11, 9 — 12

Startup

Discussion of topics related to the 2. block:
e your questions related to the lectures

e problems with exercises

Lecture
Aims and Content

After having emphasized continuity, we now get to differentiability, a concept
that cannot be defined on general topological spaces, but only on open subsets
of Euclidean space (or spaces built out of those):

From the basic year and also from math in high school, you already know
about many differentiable functions — and you can certainly calculate the deri-
vative or the partial derivatives of many functions. You have seen a definition of
differentiability of a function f : R — R, and you have perhaps been working with
the Jacobi matrix for functions f : R" — R™. For a function like f(x) = sin(x),
everything is clear, but what about

fz) =

For this function your definition of differentiability from high school will tell you
what to do, but what about functions of more than one variable? The function

zsin(l/x) forz >0
0 for x <0

_ | # for (ay) #(0,0)
flay) = { 0 for (z,y) = (0,0)

has derivatives in all directions — in particular it has all its partial derivatives, but
it is not even continuous at (0, 0)! Differentiable functions ought to be continuous,
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at least, and thus the right definition requires more than the existence of partial
and directional derivatives.

The aim of this part of the course is to give the right definition of differentia-
bility. We will emphasize an interpretation via approrimations by linear maps or
linear tangent spaces to the graph of the function.

References

A Chapter 12.1-12.5 and 12.7-12.10

Exercises

1. In Apostol p. 345, the function

B % for (z,y) # (0,0)
flz,y) = { 0 for (z,y) = (0,0)

is studied. Prove, or convince yourself, that you understand Apostols proof,
that this function has all directional derivatives, and that it is not conti-
nuous at (0,0).

A 12.4,12.5, 12.7.

Complex differentiability. Higher order derivatives.

Mon, 28.11., 12:30 — 15

Lecture
Aims and Content

A Compler differentiable function

f(z) =ulz,y) +iv(z,y),  z=z+iy,

enjoys especially nice properties. In particular, the real and imaginary parts have
to satisfy the Cauchy-Riemann differential equations

ou  Ov ov ou

— = and — =—7.

oxr 0Oy ox dy

The converse is also true in the sense that if © and v are differentiable at a point
¢ and they satisfy the Cauchy-Riemann differential equations, then f is complex
differentiable at c.
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Can one ensure differentiability of a function of several variables by inspections
of its partial derivatives? Yes, there is a sufficient (but not necessary) condition,
using the continuity of the partial derivatives. An important tool in the proof is
the mean value theorem in one and in several variables, which is interesting for
other purposes, as well.

References

A Sections 5.15-5.16, 12.11 — 12.13 & 12.6.

Exercises

1. Show: There is no C?-function f : R3> — R such that Vf(z,y,2) =
(y°2, 2zyz, 2y° +y).

2. A 12.20 (interpret the result by a drawing); 12.27
3. A 5.36.
4. A 5.35.

The implicit and inverse function theorem and so-
me consequences.

Tue, 29.11, 9:00-12:00 .

Lecture
Aims and Content

The differential Df, of a function f : R" — R" at p € R" is a linear approxi-
mation to the function. If f is a diffeomorphism, the chain rule implies that
Df,oD(f Y¢w = D(f Ysp o Df, = I, the identity map. In particular, the
differential Df, is a linear isomorphism. This is not very surprising, but did you
know that there is a (partial) converse? Let f : R" — R" be a C! function (I > 1)
such that Df, is a linear isomorphism. Then there is a neighbourhood X of p
such that f : X — f(X) is a bijection. Moreover, the inverse is a C' function.
This is the inverse function theorem. We will prove this theorem as an application
of the Banach fixed point theorem, where the Mean Value Theorem is used to
show that a certain map is a contraction. (Apostol’s proof is a bit different.)
The implicit function theorem is a consequence of the inverse function the-
orem. It is a statement about the set of solutions of a system of differentiable
equations: Let f : R"* — R"™ be a C! function and let a € R" be a regular

FREDRIK BAJERSVEJ 7G 9635 8848 FAJSTRUPQMATH.AAU.DK
9220 AALBORG ST 9635 9984 MNIELSENQ@QMATH.AAU.DK



AALBORG UNIVERSITY MATHEMATICS LISBETH FAJSTRUP
DOCTORAL SCHOOL ANALYSIS AND TOPOLOGY MORTEN NIELSEN
TECHNOLOGY AND SCIENCE 3. block 28.-30/11-05

value. Then f~(a) = {x € R"™|f(2) = a} — the set of solutions of the n equa-
tions in (n + k) indeterminates given by f — is a k-dimensional C! submanifold
of R™™. More precisely: For each point in the solution set, p € f~'(a) there is
a neighborhood V},, open in R™* such that V, N f~!(a) can be written as the
graph of a C'-function g : U, — R", where U, is an open subset of R* and
VonfHa) = {9(y),y)ly € Up}

There are lots of applications of these theorems. Here are a few:

There is a bijection between the set of all nxn real matrices M, (R) and R™.
The determinant function Det : M, (R) — R is then a smooth function from R™
to R with 1 as a regular value. Hence, SL(n) = {A € M,(R)|Det(A) = 1} is a
smooth manifold, i.e., it looks like a graph locally.

Another example: The set of orthogonal matrices O(n) — important in classical
physics and in robotics — is a smooth submanifold of M, (R). It is the kernel of
the map S : M,(R) — Sym,, S(A) = AAT, into the space of all symmetric n xn

. . . n(n+1)
matrices, which we can think of as R™ 2

References

e Serge Lang: Real Analysis, Addison Wesley,1973. T will send you this on
Monday.

A 13.1-13.4 With the following corrections: On page 372 line 12, the section
beginning with “Let B be an n-ball”... and ending below the figure with
“and (d).” should be replaced by: Since fp(,) is open, Y = f(B(a)) is open
and g = f~! is continuous.

In the statement of the implicit function theorem, p.374, add condition d):
There is an open set X C S, s.t. (z,t) € X N f71(0) = x = g(¢) and s.t.
(g(t),t) € X for all t € Tj.

In the last line on p.374, replace X = F~1(Y) by Y = F(X).

The very last lines of the proof (on p.375): Use the condition d) to prove
uniqueness. The set X in the added condition d), is the set X in the proof.

Exercises

1. Let F(x,y, z) be a C* function from R®* — R. At some points p = (2o, ¥o, 20),
the equation F(x,y,2) = a defines z as a C' function of (z,y) in a neig-
hbourhood of p. Apply the implicit function theorem to state conditions.
When these conditions hold — prove that % = —gz? and give a formula
for g—; under the corresponding condition.

2. For which values of a is {(z,y, z) € R*|z? + y? — 22 = a} locally a graph?
Draw the graph for a = 1 and a = —1. What “goes wrong” for a = 07
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Optimization: Lagrange' Multiplier and Kuhn-Tucker
methods

Tue, 29.11., 12.30 — 15

Lecture
Aims and Content

Optimization of some function - the cost, the energy, ... with respect to boundary
conditions is used in economics, in engineering etc. As a consequence of the
implicit function theorem, we get the Lagrange method for optimization with
side conditions. It provides necessary conditions for a point to be an extreme
point for the restriction of a function f to a subset, if this subset S is defined in
terms of some equations g;(z1,z3,...,z,) = 0.

In case the subset S is defined by equations and inequalities, the Kuhn-Tucker
method yields necessary conditions for extreme points of f with respect to S.

References
A 13.5-13.7.

e http://are.berkeley.edu/courses/ARE211/currentYear/lecture_notes/
mathNPP2-05.pdf

Exercises
A 13.12, 13.14.
1. Let A denote a symmetric n X n matrix. Prove that
p = max{x - Az| || x|=1}

is an eigenvalue of A, i.e., there is a vector y € R" such that Ay = uy. In
particular, every symmetric matrix has real eigenvalues.

(Hint: The Lagrange multiplier condition on the maximum of the function
f:R" = R" f(x) = x-Ax under the side condition x - x = 1. The
symmetry of A yields a simple expression for Df.)

Banach fixed point theorem and differential equa-
tions

Wed, 30.11, 9:00-12:00 .

http://www-groups.dcs.st-and.ac.uk/history/Mathematicians/Lagrange.html
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Lecture

Aims and Content

At first, it is not obvious that the Banach fixed point theorem can be used to
study solutions of initial value problems of the type

dx
pri f(t, x), x(tg) = wo, (1)

where f : U — R"™ is a continuous function on an open subset U of R"*! and

(to,z0) € U. To make the connection we rewrite the initial value problem as an
equivalent integral equation,

z(t) = o +/t f(s,x(s))ds.

A solution z(t) of this integral equation is also a fixed point for the mapping

K(x)(t) := zo —I—/t f(s,z(s))ds,

which can be shown to be a contraction on a certain space of bounded continuous
functions, provided f satisfies the Lipshitz condition

|f(t,ZL‘)—f(t,y)| §L|$_y|v (t,l’),(t,y)EU, (2)

for some finite constant L. We can then apply the fixed point theorem to conclude
that there exists a unique local solution of (1).
References

e Sections 2.1-2.3 of the lecture notes (243 pages, so you may not want to

print the full document),

http://www.mat.univie.ac.at/"gerald/ftp/book-ode/ode.ps

Exercises

e Suppose G C R? is open and that f : G — R is a continuous function
having a continuous partial derivative f, on G. Prove that f(t,z) satisfies
the Lipshitz condition (2) on any bounded open subset G; C G satisfying
G C G.

e Which of the following functions f : R? — R satisfies a Lipschitz condition
on some open set containing the origin?
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L f(t,z) = -

2. f(t,x) = \x\o‘ for o € (0, 1].

3. f(t,z) = 2*sin(1/x).

e Consider the initial value problem % = z with 2(0) = 1. Let 2y = 1

and calculate x,(t) = K"(x)(t). Evaluate lim,,_ z,(t). Do you get the
expected result? This type of iteration process is called Picard iteration.

More on differential equations

Wed, 30.11, 12:30-15:00.

Lecture
Aims and Content

We study the initial value problem

W fta), ) =0,

in more detail. We will use Gronwall’s inequality to study the dependence of
solutions on the initial conditions.

We conclude by considering examples that show why one needs to impose a
Lipschitz condition on f(¢,z) to ensure convergence of the Picard iteration and
to insure local uniqueness of the solution.

If time permits, solutions to selected exercises will be given.

References

e Section 2.3 of the lecture notes

http://www.mat.univie.ac.at/"gerald/ftp/book-ode/ode.ps

Exercises

e Consider the function

0, fort <0

2t fort >0and x <0
o(t,x) = 4z 2

2t — =F fort>0and 0 <z <t

—2t for t > 0 and x > 2.

Convince yourself that ¢(t,z) is continuous, and show that ¢ does not
satisfy a Lipschitz condition on any open set containing the origin. Can you
find (or perhaps guess) a solution of the IVP: 2/(t) = ¢(t, z), (0) = 07
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e Find a solution of the IVP,

dyx
dys
dr = —Y1, 92(0) =0.

e Rewrite each second order differential equation

d?y d?y d?y

dy
a) —5=y, b —EHdA3y=cosz), o) -5 =Flyy)
as a system of first order differential equations. Hint: Let y;(x) = y(x) and
— dy
ya(e) = g1

e Old problems.

Course Evaluation

The present course

Please, give us your comments and proposals (for another try) about
e the form of the course (lectures, exercises etc.)

the literature

the accessibility and the workload

the relevance

e etc

Demands for other math courses at the Ph.D.-level

All sorts of math courses that you have always dreamt about but never dared to
ask for...
Bye-bye
Finally, we would like to thank you for your kind and active participation.
Best regards,

Lisbeth and Morten.
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