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Examples of metric spaces. Uniform Convergence

Mon. 7/11, 9 – 12

Startup

Discussion of topics related to the 1. block:

• your questions related to the lectures

• problems with exercises

Lectures

Aims and Content

Some of you have asked where metric spaces and convergence etc. come up in
engineering sciences. Convergence properties are actually used in most of the
tools which use a computer program to solve a (big enough) problem. Many such
tools do, what computers are really good at: The same thing over and over again.
Often, an initial guess of a solution (a constant function for instance) is fed into
a loop, where, hopefully, the outcome is closer to the real solution than the first
guess. This outcome is then fed back to the loop etc. until the program stops -
perhaps because the output of the loop resembles the input, and one concludes
that it is close to the true solution.

An example of a widely used metric is the Hamming distance between strings
(binary strings, words, ...) The distance is the number of places, where the strings
differ. This is used in for instance coding theory, and also for some optimization
algorithms. Other distances between strings are used: The Levenshtein metric
measures the number of edit operations, it takes to get from one string to the
other - editing is insertion, deletion and substitution. Various metrics between
strings are used in search algorithms.
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In image compression, the compression is designed in such a way that the
image after decompression is within a small enough ball around the original image
- so that the human eye cannot tell the difference. This requires a mtric on images.

In control theory for a robot arm,the arm is restricted to move not in R
3 but

on another geometric object - depending on the number of joints on the arm.
Control theory then uses a metric on the geometric object to decide stability.

Moreover, metric spaces provide a nice example of a mathematical area, where
one can get quite far from a few simple definitions - this should allow you to focus
on the logical arguments and hence you should be able to learn something about
how such arguments should proceed - even in more complicated situations such
as your own projects.

Uniform Convergence Different metrics give rise to different convergence
criteria. A quite natural criterion for convergence for a sequence of real functions
{fk : S → T}k∈N may be, that each sequence of values fk(x) converge, i.e.,
that they converge pointwise. However, a sequence of continuous real functions
fk : I → R, may converge pointwise to a function f , fn(x) → f(x) for all x ∈ I,
without the limit function being continuous. If, however, a sequence of functions
converge uniformly, then the limit function is continuous. For bounded functions,
fn ∈ B(I, R), uniform convergence means convergence in the supremum metric.

We will see in the exercises, that if an increasing sequence of functions fn :
K → R on a compact K converges pointwise, then it converges uniformly. This
fact (Dini’s1 theorem) is very useful in integration theory.

References

[A] 9.1-9.5

Exercises

A 9.5

• This exercise takes you through a proof of Dini’s theorem: Let fn : K → R

n ∈ N be continuous functions on a compact set K and suppose that the
sequence is increasing: fk(x) ≤ fk+1(x) for all x ∈ K and all k ∈ N. If
fn(x) → f(x) for all x ∈ K and if f is continuous, then fn → f uniformly.

1. Let gn = f − fn. Prove that gn ≥ gn+1 ≥ 0 for all n ∈ N and that
gn(x) → 0 for al x ∈ K

2. Let ε > 0. Prove that for any x ∈ K there is an Nx such that
gn(x) < ε/2 whenever n ≥ Nx.

1http://www-groups.dcs.st-and.ac.uk/̃history/Mathematicians/Dini.html
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3. Prove that there is a δx > 0 such that

y ∈ B(x, δx) ⇒ |gNx
(y) − gNx

(x)| < ε/2

and consequently (why?)

n ≥ Nx, y ∈ B(x, δx) ⇒ gn(y) < ε

4. Let U =
⋃

x∈K
B(x, δx). Use compactness to refine this cover of K to

get B(x1, δx1
), B(x2, δx2

), . . . , B(xk, δxk
).

Let N = max{Nxi
, i = 1, . . . , k} and conclude:

For n ≥ N gn(y) < ε for all y ∈ K.

5. Now you proved the theorem – can you see that?

Topological Spaces

Mon, 7/11, 12.30 – 15

Lectures

Aims and Content

Topological spaces are more general and more flexible than metric spaces; ne-
vertheless, they share many common features with the latter. Surprisingly, it is
sometimes easier to show certain properties within the topological rather than in
the metric framework. The topology of a space X is defined as the set of open
subsets of X which has to be closed under unions and finite intersections. The
same underlying space can thus have many different topologies most of them with
no interest at all. Metric spaces come equipped with a natural metric topology;
note that different metrics can give rise to the same topology.

Some basic vocabulary concerning topological spaces will be explained and has
to be digested: closed sets, interior points of a subset; the interior Y o ⊂ Y and
the closure Ȳ ⊃ Y . As for metric spaces, we use continuous maps to relate two
topological spaces. The definition (Def. 2.2.1 in [BV]) is not easy to understand
rightaway; it uses the concept pre-image of a subset, defined as follows: For a
map f : X → Y and a subset V ⊂ Y , let

f−1(V ) := {x ∈ X : |f(x) ∈ V } ⊂ X.

Note that this definition does not require the original map to have an inverse!
Other phrasings of the definition (all of them useful) are given in Prop. 2.2.3/4.
Note the ease with which one can show that the composition of two (or more)
continuous maps is continuous (Prop. 2.2.6)! We will try to complement the
lecture notes with a range of examples as well.
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References

[BV] Ch. 2.1 & 2.2, pp. 17–23. Please, have a look at these sections prior to the
lecture.

Exercises

• Verify carefully that a metric spaces is a topological space. Hint: Use hand-
in from last time.

• Let X = {a, b, c, d},

F1 = {∅, {a}, {b}, {a, b}, {a, b, c}, {a, b, d}, X}

F2 = {∅, {a}, {a, b}, {a, c}, {a, b, c}, X}.

Verify that F1 and F2 are topologies on X.

• Let F1 and F2 be topologies on a set X. Show that the identify map I :
(X,F1) → (X,F2) is continuous if and only if F2 ⊆ F1 (we say, F1 is
stronger than F2 when F2 ⊆ F1).

• BV Ex. 2.1.15.

The fixed point theorem

Tue, 8.11., 9 – 12

Lectures

Aims and Content

You may recall Newton’s method to find a root of a (sufficiently “nice”) function
f : [a, b] → R. We make an initial guess x0 ∈ [a, b] (preferably close to the root)
and then we find the root as the limit of the recurrence

xn+1 = xn −
f(xn)

f ′(xn)
.

The success of this and many other iteration procedures can be made sure if the
requirements of the Banach fixed point or contraction theorem are satisfied. A
fixed point for a map f : X → X is a point p ∈ X satisfying f(p) = p. The
proof of the Banach fixed point is surprisingly simple, its applications vast. A
contraction is a map f : X → X, with X a complete metric space, such that for
some constant 0 < s < 1

d(f(x), f(y)) ≤ sd(x, y) for all x, y ∈ X.
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Theorem. Any contraction has a unique fixed point in X. This fixed point is the
limit of the sequence x0, f(x0), f(f(x0)),. . . for every choice of x0 ∈ X.

Examples of applications are the proof for the existence and uniqueness of
solutions of ordinary differential equations (and the construction of the solution
by the Picard-Lindelöf method), and the construction of fractals from iterated
function systems. In this session we will study Newton’s method in some detail.
In the 3rd block, we will use the fixed-point theorem to study existence and
uniqueness of solutions of ordinary differential equations.

References

[A] 4.21.

Exercises

1. Find the fixed point(s) of p : R → R defined by p(x) = x2 − 4x + 4. What
about q(x) = x2 − 2x + 4?

2. A, ex. 4.69.

3. Let X be a complete metric space, and let f : X → X. Suppose g = f ◦ f
is a contraction on X. Show that f has a unique fixed point.

4. A, ex. 4.71.(a).

Approximation: The Stone-Weierstrass Theorem

Tue, 9.11., 12.30–15.00

Lecture

Aims and Content

General continuous functions are often difficult to describe and to handle. Is it
always possible to approximate them by simpler functions, e.g., by polynomials?
Certainly not always, since a polynomial tends to either ∞ or −∞ for numerically
large values. Hence, polynomials cannot approximate bounded functions (like sin)
on the reals.

But a famous theorem of Karl Weierstrass2 tells us, that every continuous
function on a compact interval can be uniformly approximated by polynomials,
cf. Apostol, Thm. 11.17. We want to present a slick proof for this fact, that allows
many generalisations. In this version, it goes back to Marshall Stone3, and it is

2http://www-groups.dcs.st-and.ac.uk/̃history/Mathematicians/Weierstrass.html
3http://www-groups.dcs.st-and.ac.uk/̃history/Mathematicians/Stone.html
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called the Stone-Weierstrass theorem: Certain algebras of continuous functions
on a compact set are dense in the space of all continuous functions on this set
wrt. the sup-norm. For the proof, one has essentially to show that the function
f(t) = |t| can be arbitrarily well approximated by polynomials on the interval
[−1, 1]. The rest of the proof is almost algebraic in nature.

As one of the applications, one obtains that every periodic continuous function
can be uniformly approximated by trigonometric functions (Fourier polynomials).
This result is first of all abstract and does not provide you with a method to
detect a sequence of polynomials converging uniformly to a given continuous
functions. There are concrete algorithms, e.g., using Bernstein4 polynomials as
approximations of continuous functions on an interval.

References

1. A Sect. 11.15, p. 322 (using a result of Fejér)

2. S. Lang, Real Analysis, Addison-Wesley, Sect. III.1, pp. 47 – 51. We will
send this note to you.

3. W. Rudin, Principles of Mathematical Analysis, McGraw-Hill, pp. 159 –
165

4. More about the Stone-Weierstrass theorem than you probably wanted to k-

now, www.math.rutgers.edu/courses/501/501-f99/stnw 502.pdf

Exercises

1. Apostol p. 102 ex. 4.67. Make sure, you understand the statement in exercise
4.66

2. exercises from earlier that you did not finish yet.

Evaluation

Please work in groups of two or three on the exercise 4.68 in Apostol p. 102 and
hand in a solution no later than Monday, November 21.

Plan for the 3. block

Date: 28./30.11.2005

• Differentiability for functions defined on opens subsets of Rn

4http://www-groups.dcs.st-and.ac.uk/̃history/Mathematicians/Bernstein Sergi.html

Fredrik Bajersvej 7G
9220 Aalborg Øst

9635 8848
9635 9984

fajstrup@math.aau.dk
mnielsen@math.aau.dk



Aalborg University
Doctoral School
Technology and Science

Mathematics
Analysis and Topology

2. block

Lisbeth Fajstrup
Morten Nielsen

7/11-8/11-05

• The differential

• Linear approximation

• Taylor’s formula for multivariate functions

• Differentiability of complex functions

• The inverse and implicit function theorem and some consequences

• Lagrange and Kuhn Tucker optimization.

• Existence and uniqueness of solutions of ordinary differential equations.
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