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The Banach fixed point theorem

Mon, 23.11., 9 – 12

Lectures

Aims and Content

You may recall Newton’s method to find a root of a (sufficiently “nice”) func-
tion f : [a, b] → R. We make an initial guess x0 ∈ [a, b] (preferably close to the
root) and then we find the root as the limit of the recurrence

xn+1 = xn −
f (xn)
f ′(xn)

.

The success of this and many other iteration procedures can be made certain if
the requirements of the Banach fixed point (also called the contraction) theo-
rem are satisfied. A fixed point for a map f : X → X is a point p ∈ X satisfying
f (p) = p. The proof of the Banach fixed point is surprisingly simple, its ap-
plications vast. A contraction is a map f : X → X, with X a complete metric
space, such that for some constant 0 < s < 1

d( f (x), f (y)) ≤ sd(x, y) for all x, y ∈ X.

Theorem. Any contraction on a complete metric space has a unique fixed point
in X. This fixed point is the limit of the sequence x0, f (x0), f ( f (x0)),. . . for
every choice of x0 ∈ X.

Examples of applications are the proof for the existence and uniqueness
of solutions of ordinary differential equations (and the construction of the so-
lution by the Picard-Lindelöf method), and the construction of fractals from
iterated function systems. In this session we will study Newton’s method in
some detail. In the afternoon session, we will use the fixed-point theorem to
study existence and uniqueness of solutions of ordinary differential equations.
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References

M. Nielsen: A note on Banach’s fixed-point theorem. Available for download
from the course homepage.

Exercises

1. Find the fixed point(s) of p : R → R defined by p(x) = x2 − 4x + 4.
What about q(x) = x2 − 2x + 4?

2. Show by counterexamples that the fixed-point theorem for contractions
need not hold if either (a) the underlying space is not complete, or (b) the
contraction constant α ≥ 1.

3. Let X be a complete metric space, and let f : X → X. Suppose g = f ◦ f
is a contraction on X. Show that f has a unique fixed point.

4. Let X → X be a function from a metric space (X, ρ) into itself such that

ρ( f (x), f (y)) < ρ(x, y), x, y ∈ X, x 6= y.

Show that f has at most one fixed-point, and give an example of such an
f with no fixed-point.

The Banach fixed point theorem and differential equa-
tions

Mon, 23.11, 12:30–16:00 .

Lecture

Aims and Content

At first, it is not obvious that the Banach fixed point theorem can be used to
study solutions of initial value problems of the type

dx
dt

= f (t, x), x(t0) = x0, (1)

where f : U → Rn is a continuous function on an open subset U of Rn+1, and
(t0, x0) ∈ U. To make the connection we rewrite the initial value problem as
an equivalent integral equation,

x(t) = x0 +
∫ t

t0

f (s, x(s)) ds.
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A solution x(t) of this integral equation is also a fixed point for the mapping

K(x)(t) := x0 +
∫ t

t0

f (s, x(s)) ds,

which can be shown to be a contraction on a certain space of bounded contin-
uous functions, provided f satisfies the Lipshitz condition

| f (t, x)− f (t, y)| ≤ L|x− y|, (t, x), (t, y) ∈ U, (2)

for some finite constant L. We can then apply the fixed point theorem to con-
clude that there exists a unique local solution of (1).
There are many other examples of fixed point theorems: The Brouwer fixed
point theorem says that a continuous maps from a closed ball in Euclidean
space to itself has at least one fixed point. This is used to proove existence
of equilibria in game theory. Fixed point theorems for partially ordered sets
(lattices in fact) are used in theoretical computer science.

References

• Sections 2.1-2.2 of the lecture notes (243 pages, so you may not want to
print the full document),

http://www.mat.univie.ac.at/˜gerald/ftp/book-ode/index.html

Exercises

• Which of the following functions f : R2 → R satisfies a Lipschitz condi-
tion on some open set containing the origin?

1. f (t, x) = 1
1−x2 .

2. f (t, x) = | x|α for α ∈ (0, 1].

3. f (t, x) = x2 sin(1/x).

• Consider the initial value problem dx
dt = x with x(0) = 1. Let x0 = 1

and calculate xn(t) = Kn(x0)(t). Evaluate limn→∞ xn(t). Do you get the
expected result? This type of iteration process is called Picard iteration.
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Differentiability.

Wednesday, 25.11, 9 – 12

Startup

Discussion of topics related to Monday:

• your questions related to the lectures

• problems with exercises

Lecture

Aims and Content

After having emphasized continuity, we now get to differentiability, a concept
that cannot be defined on general topological spaces, or on metric spaces. One
needs more structure. The Frechet derivative, which is used in calculus of
variations, is defined for functions on open subset of a Banach space, but we
will restrict our attention to open subsets of Euclidean space (or spaces built
out of those):

From the ”Basis” year and also from math in high school, you already
know about many differentiable functions – and you can certainly calculate
the derivative or the partial derivatives of many functions. You have seen a
definition of differentiability of a function f : R → R, and you have perhaps
been working with the Jacobi matrix for functions f : Rn → Rm. For a function
like f (x) = sin(x), everything is clear, but what about

f (x) =
{

x sin(1/x) for x > 0
0 for x ≤ 0

For this function your definition of differentiability from high school will tell
you what to do, but what about functions of more than one variable? The
function

f (x, y) =

{
xy2

x2+y4 for (x, y) 6= (0, 0)
0 for (x, y) = (0, 0)

has derivatives in all directions – in particular it has all its partial derivatives,
but it is not even continuous at (0, 0)! Differentiable functions ought to be con-
tinuous, at least, and thus the right definition requires more than the existence
of partial and directional derivatives.

The aim of this part of the course is to give the right definition of differen-
tiability. We will emphasize an interpretation via approximations by linear maps
or linear tangent spaces to the graph of the function.
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References

W Chapter 11.1-11.4, not the part on partial integration

Exercises

W 11.2.1, 11.2.8, 11.2.10, 11.2.9

Complex differentiability. Higher order derivatives.

Wed, 25.11., 12:30 – 16

Lecture

Aims and Content

A Complex differentiable function

f (z) = u(x, y) + iv(x, y), z = x + iy,

enjoys especially nice properties. In particular, the real and imaginary parts
have to satisfy the Cauchy-Riemann differential equations

∂u
∂x

=
∂v
∂y

and
∂v
∂x

= −∂u
∂y

.

The converse is also true in the sense that if u and v are differentiable at a point
c and they satisfy the Cauchy-Riemann differential equations, then f is complex
differentiable at c.

The partial derivatives of a function may be differentiable and thus give
rise to higher order derivatives. Under which conditions is the result indepen-
dent of the order of differentiation? And how can one use the 1st and higher
order derivatives for approximation purposes? The answer is given by Taylor1’s
formula for (approximation by a multivariate polynomial of a given degree) and
an estimation of the remainder term. An important tool in the proof is the
mean value theorem in one and in several variables, which is interesting for
other purposes, as well.

References

• Apostol: Mathematical Analysis (Sections 5.15-5.16 & 12.6). A scanned
copy will be sent to you by email.

• W, Section 11.5.
1http://www-groups.dcs.st-and.ac.uk/̃history/Mathematicians/Taylor.html
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Exercises

1. Show: There is no C2-function f : R3 → R such that ∇ f (x, y, z) =
(y2z, 2xyz, xy2 + y).

2. Apostol (see the scanned notes page 126): Exercise 5.36.

3. Apostol: Exercise 5.35.

The implicit and inverse function theorem and some
consequences.

Fri, 27.11, 9:00-12:00 .

Lecture

Aims and Content

The differential D fp of a function f : Rn → Rn at p ∈ Rn is a linear approx-
imation to the function. If f is a diffeomorphism, the chain rule implies that
D fp ◦ D( f−1) f (p) = D( f−1) f (p) ◦ D fp = I, the identity map. In particular, the
differential D fp is a linear isomorphism. This is not very surprising, but did you
know that there is a (partial) converse? Let f : Rn → Rn be a Cl function
(l ≥ 1) such that D fp is a linear isomorphism. Then there is a neighbourhood
X of p such that f : X → f (X) is a bijection. Moreover, the inverse is a Cl

function. This is the inverse function theorem. We will sketch a proof of this
theorem as an application of the Banach fixed point theorem, where the Mean
Value Theorem is used to show that a certain map is a contraction. (Wade’s
proof is a bit different.)

The implicit function theorem is a consequence of the inverse function the-
orem. It is a statement about the set of solutions of a system of differentiable
equations: Let f : Rn+k → Rn be a Cl function and let a ∈ Rn be a regular value.
Then f−1(a) = {x ∈ Rn+k| f (x) = a} – the set of solutions of the n equations
in (n + k) indeterminates given by f – is a k-dimensional Cl submanifold of
Rn+k. More precisely: For each point in the solution set, p ∈ f−1(a) there is
a neighborhood Vp, open in Rn+k such that Vp ∩ f−1(a) can be written as the
graph of a Cl-function g : Up → Rn, where Up is an open subset of Rk and
Vp ∩ f−1(a) = {g(y), y)|y ∈ Up}

There are lots of applications of these theorems. Here are a few:
There is a bijection between the set of all nxn real matrices Mn(R) and Rn2

.
The determinant function Det : Mn(R) → R is then a smooth function from
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Rn2
to R with 1 as a regular value. Hence, SL(n) = {A ∈ Mn(R)|Det(A) = 1}

is a smooth manifold, i.e., it looks like a graph locally.
Another example: The set of orthogonal matrices O(n) – important in classi-

cal physics and in robotics – is a smooth submanifold of Mn(R). It is the kernel
of the map S : Mn(R) → Symn, S(A) = AAT, into the space of all symmetric

n× n matrices, which we can think of as R
n(n+1)

2 .

References

• Serge Lang: Real Analysis, Addison Wesley,1973. I will send you this.

W The Inverse and implicit function theorems are in 11.6. I will stress the
examples.

The statement of the Implicit Function theorem is not very precise in
Wade. I prefer (on p.431) to say. There is an open set U ⊂ V with
(x0, t0) ∈ U an open W ⊂ Rp and a continuously differentiable func-
tion g : W → Rn such that F−1(0) ∩ U = {(g(t), t)|t ∈ W}. In other
words, F−1(0) ∩U is the graph of g.

Exercises

1. Let F(x, y, z) be a C1 function from R3 → R. At some points p =
(x0, y0, z0), the equation F(x, y, z) = a defines z as a C1 function of (x, y)
in a neighbourhood of p. Apply the implicit function theorem to state
conditions. When these conditions hold – prove that ∂z

∂x = −DxF
DzF and

give a formula for ∂z
∂y under the corresponding condition.

2. For which values of a is {(x, y, z) ∈ R3|x2 + y2− z2 = a} locally a graph?
Draw the graph for a = 1 and a = −1. What “goes wrong” for a = 0?
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Optimization: Lagrange2 Multiplier and Kuhn-Tucker
methods

Fri, 27.11., 12.30 – 16

Lecture

Aims and Content

Optimization of some function - the cost, the energy, ... with respect to bound-
ary conditions is used in economics, in engineering etc. As a consequence of
the implicit function theorem, we get the Lagrange method for optimization
with side conditions. It provides necessary conditions for a point to be an ex-
treme point for the restriction of a function f to a subset, if this subset S is
defined in terms of some equations gi(x1, x2, . . . , xn) = 0.

In case the subset S is defined by equations and inequalities, the Kuhn-
Tucker method yields necessary conditions for extreme points of f with respect
to S.

References

• W, Section 11.7.

• http://are.berkeley.edu/courses/ARE211/currentYear/
lecture_notes/mathNPP1-09-draft.pdf

Exercises

1. W: 11.7.3 a) & c).

2. Let A denote a symmetric n× n matrix. Prove that

µ := max{x ·Ax| ‖ x ‖ = 1}

is an eigenvalue of A, i.e., there is a vector y ∈ Rn such that Ay = µy. In
particular, every symmetric matrix has real eigenvalues.
(Hint: The Lagrange multiplier condition on the maximum of the func-
tion f : Rn → Rn, f (x) = x ·Ax under the side condition x · x = 1. The
symmetry of A yields a simple expression for D f .)

3. Find the maximum of (x1x2 · · · xn)2 under the restriction

x2
1 + x2

2 + · · ·+ x2
n = 1.

2http://www-groups.dcs.st-and.ac.uk/̃history/Mathematicians/Lagrange.html
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Course Evaluation

The present course

Please, give us your comments and proposals (for another try) about

• the form of the course (lectures, exercises etc.)

• the literature

• the accessibility and the workload

• the relevance

• etc

Demands for other math courses at the Ph.D.-level

All sorts of math courses that you have always dreamt about but never dared
to ask for...

Bye-bye

Finally, we would like to thank you for your kind and active participation.

Best regards,

Lisbeth and Morten.
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