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THE BASIC PROBLEM

In Calculus of variations one is given a fixed C?-function F(t,z,u),
for t € [ty,t1] and z,u € R, and the problem is to maximise (or min-
imise) the functional

J(z) = / 1F(t,x(zﬁ),x’(t))dt (1)

to

that acts on functions x: [to,t;] — R fulfilling
x(t) = 2°, z(t) = 2. (2)

Hereby 2°, 2! are given numbers; and any C*-function® z(¢) satisfying
these two boundary conditions is said to be admassible.

Example 1 (Ramsey 1928). In economics it is a task to determine
the amount of capital K (t), say in a country, such that, when f(K(¢))
denotes the gross domestic product created by having the capital K (t),
one has

max /OT U(f(K(t) — K(t))e *tdt, K(0) =K, K(T)=Kr.
(3)

Here f(K)— K is the consumption and U is a utility function, fixed so
that U’ > 0 > U"” on ]0,00[. The factor e #, p > 0, gives a discount
of future consumption in order to give priority to consumption in the
near future. Ky and K are given initial and terminal values of the
available capital. By maximising the integral, the country is envisaged
to benefit as much as possible from the change in capital from K to
Kr.

The problem above can be seen as an optimisation problem in infin-
itely many variables (one for each t € [ty, t1]). But fortunately the pos-
sible minimising and maximising functions x(¢) can be found among
the solutions to a certain ordinary differential equation. This is the
content of the following famous result:

'Recall that a function f(t) is said to be a C*-function on an interval [to, ]

if all derivatives ‘;:f with 0 < m < k exist and are continous on [tg,t1]. The

analogous definition applies to functions of several variables, such as F(t,z,u).
1
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Theorem 2 (Euler-Lagrange equation). For an admissible function
x*(t) to maximise or minimise

J(z) = /tlF(t,a:(t),jc(t))dt, such that  z(te) = 2%, a(ty) = 2
° (4)

it is necessary that x*(t) solves the ordinary differential equation

s (Fa(t,a(t), (1) = Fy(t,x(t), &(t)). (5)
To reveal the nature of the above differential equation, it is instruc-

tive to carry out the ¢-differentiation using the chain rule (this is al-
lowed at least if the solution z(t) is a C?-function):

Fg(t, (1), #(4))E(t) + Fp(t, @(8), ()@ (t) — Fy(t, x(t), £(t)) = 0. (6)
This is a homogeneous second order differential equation, which is said
to be quasi-linear because the coefficients depend on the solution and

its lower order derivatives.
To illustrate the usefulness of Theorem 2, one can take the simple

Example 3. Consider

J(:p):/o(w(t)2+:t(t)2)dt; 20) =0, (1) =e—1.

Here F(z,u) = x* + u* so the Euler-Lagrange equation is
0=4(2%) — 20 = 2(i — ).

The complete solution to this is given by the functions z(t) = Ae’ +
Be~!'. Invoking the boundary conditions it is seen that z(t) is admis-
sible precisely for A = e = —B, so the only candidate for a minimiser
or maximiser is
x*(t) — el-i—t _ 61_t.

However, z* is not a maximising function (J(z) can be seen to take on
arbitrarily large values), but it will follow later from sufficient condi-
tions that z* is a minimiser.

Proof of the Euler—Lagrange equation. The point of departure
is to show what is known as the fundamental lemma of calculus of
variations:

Lemma 4. Let f: [to,t1] — R be a continuous function with the prop-
erty that ftil f()u(t)dt =0 for every C*-function u(t) on [to,t1] such
that p(to) = 0= u(ty). Then f(t) =0 for every t.

Proof. Suppose f(s) # 0, say f(s) > 0. By continuity there is some
interval I =]a,b[ on which f(¢) > 0 and ¢y < a < b < t;. On I one
can then define p(t) as p(t) = (t —a)*(b—t*) > 0, and let p(t) =0
outside I; the zeroes at a and b have so high order that this u is C?.
Now 0 = til f)u(t)dt = [, f(t)u(t)dt > 0, which is a contradiction;
hence f =0. U
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The lemma above is exploited by forming a so-called variation of the
given solution,

z(t, o) = 2" (t) + ap(t). (7)

Here o € R is just a parameter, while p is an arbitrary C?-function
on [to,t1] such that u(ty) = 0 = p(ty); clearly ¢t — xz(t,«) is then
admissible for every fixed «.

As a convenient notation, let

I(a) = J(z(t, ) = / Pt (t, o), 22020 gy, (8)

to

For simplicity the proof continues with the case of a maximum at z*
(the case of a minimum is similar). This means that I(«) < I(0) for
all a, whence

I'(0) = 0. (9)

This is, of course, under the tacit assumption that o — I(«) is differ-

entiable; it is furthermore assumed that I’(«) is obtained by differen-

tiating under the integral sign above (this is proved later).
Proceeding from this, one arrives at

1’(0):/1(1? (2%, &%) 22 (2,0) + Fi(t, 2", &%) 22 (t,0)) dt
. (10)

_ / (Bt 2t ) lt) + FUt, 27, a7 )lt)) dt.

to
Since p vanishes at the end points, an integration by parts gives
t1
0= I'0) :/ W()(FYt " 37) — SEN(t o, d%)) dt. (1)
to

Since p is an arbitrary C2-function vanishing at the end points, it
follows from the above Lemma 4 that the function in the parenthesis is
0 for every t. This means that the Euler-Lagrange equation is satisfied
by z*(t).

Now it only remains to account for the statements in the next lemma.

Lemma 5. The function I(a) is differentiable at o« = 0 and I'(0) =
S E Pt a), 2t )|, _, dt.

Proof. Clearly

1<a)—1(0):/I(F(t,x@,a),%)—F(t,x*,g'c*))dt. (12)
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Keeping t fixed in the interval, one can calculate the integrand as
follows:

[F(t, x(t, sat), S (¢, sa))]3Z = /0 L F(t, x(t, sa), 2 (¢, sav)) ds

1
= [ Bttt s0). Byt soantt
Ryt a(t, s0), 2 (t, sa))aj(t) ds. (13)
Reading o = — £ (a — as), and introducing the short-hand

Gla,s,t) = p(t)Fy(t, (s, t), Z (s, t) + u(t) Fa(t, z(sa, t), Z(sa, 1)),

(14)
an integration by parts therefore shows that the above expression equals

5

/0 a(l - 8)2G(a,s,t)ds — [a(l - s)G(a,s,1)]",.  (15)

Clearly the contribution for s = 1 vanishes, while for s = 0 one obtains
the functions z*(t) and #*(¢). So by calculating the s-derivatives, the
above formulae lead to the fact that

0< |1(I(a) —1(0))—/t1(ﬂF/(m ) + GFL(E 2, 7)) di|

/ / laf|1 = s|[p?Fay(t, 2(sa, t), Z(sa,t))

+ 20 Fy (¢, w(sat), 5 (s, t))
+ [P F(t, x (s, t), Z(sa, t))| dsdt
<Ca—0 for a—0. (16)

In fact, it is straightforward to see that the constant C' can be taken
as

= |t — to| max(lu| + |l)* max(|Fol, [Fogl, [ o)) (17)
Hereby the set B denotes the range of
D(a, 5,1) = (t, 27 (t) + sapu(t), &"(t) + sa(t)) (18)

which is a continuous map ®: [—1,1] x [0,1] x [tg, t1] — R3. Since the
domain of ® is a compact set, so is necessarily its range B. Conse-
quently the functions Fy,, Fyy and Fi; are all bounded on B (they are
continuous because F itself was assumed to be C?), whence C < occ.
Altogether (16) accounts for both the differentiability of I(«) at
a = 0 and that the derivatives can be calculated under the integral
sign. U
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Further necessary conditions. Sometimes the following necessary
condition is also useful.

Theorem 6 (Legendre). If F is a C?-function, it is a necessary condi-
tion for the functional J(x) = til F(t,xz(t),&(t)) dt to have an extreme
value at an admissible function x*(t) that

Fi(t,x*(t),2*(t)) <0 in case * mazimises, (19)

Fis(t,a*(t),2%(t)) > 0 in case x* minimises. (20)
(These inequalities are required to hold for all t € [to,t1].)

The Legendre condition is often useful, when one wants to show
that a solution candidate is not a maximiser (or a minimiser). This is
elucidated by the next example.

Example 7. In the above Example 3 where J(x) = fol(an'2 + %) dt one
finds at once that Fj5 = 2 > 0, and this rules out that the admissible
function z* = et — !~ can be a maximiser. (It is still open whether

x* is a minimiser; this cannot be concluded from the fact that Fj; > 2.)

One of the possible complications in practice is that there, for good
reasons, are further constraints on the admissible functions. This can
e.g. leave us with the problems of finding a C'-function z: [ty, ;] — R
such that

t1
max/ F(t,x, o) dt; x(t) = 2°, x(ty) = a’; (21)

to

ht,z(t),(t) >0 forall t€ [ty t]. (22)

Hereby h is a suitable C'-function defining the constraint. However,
one can show that the Euler-Lagrange and Legendre conditions are
necessary also for such problems. The next example shows how such
constraints can appear.

Example 8. In the above Example 1 from macro economics, one has
the integrand F(t, K(t), K(t)) = U(f(K(t)) — K(t))e . But the util-
ity function U is typically only a C2-function on ]0, 00l ; for example
U(-) = 1/(-) meets the requirements that U’ > 0 > U”. So here it is
natural to impose the constraint that

ht, K(t), K(t)) == f(K(t)) — K(t) > 0.

This is not just a kind of mathematical obstruction (as U’ — oo at
0, already a C'-extension of U to the whole axis R is impossible), for
negative values of the consumption f(K (t))— K () may not make sense
in the model at all.



6 JON JOHNSEN

PROBLEMS WITH GENERAL TERMINAL CONDITIONS

A more radical change is met, if one considers the problem of having

max / R, a0 dt w(0) = 2, (23)

to
together with one of the following terminal conditions:

(i) z(ty) free (t; given);
(i) z(t;) > o' (t; and x' given);
(iii) z(t1) = g(t1) (¢; free, but g a given C'-function).

Correspondingly the admissible functions are now required to be C*-
functions that fulfill the stated initial and terminal conditions. It is
clear that a maximising function z* still fulfills the Euler-Lagrange
equations, for x* also maximises among the admissible functions that
satisfy x(t1) = 2*(¢t;). But one has to add some transversality condi-
tions:

Theorem 9. If z*(t) is an admissible function solving the above maz-
imisation problem, then x* solves the Euler—Lagrange equation and the
corresponding transversality condition,

(i) Fy(tr, 2" (t1), 3" (t2)) = 0;
(il) Fj§(t1,x*(t1),2%(t1)) <0 (and =0 holds if z*(t1) > x');
(ili) F(ty, 2" (t1), 3" (t1)) — (g(t1) — & (t1)) F5(tr, z* (t1), 8% (t1)) = 0.

In case (ii) the inequality is reversed if x* solves the minimisation
problem.

Proof. Set y' = x*(t;). Since z* maximises J, the inequality J(z*) >
J(y) holds in particular for all admissible functions y(t) that satisfy
y(t;) = y'. Therefore z* is also a solution of the basic problem on
the fixed time interval [to,?;] and with data 2%, y'. Consequently z*
satisfies the Euler-Lagrange equation.

The transversality condition (i) can be proved as a continuation of
the proof of Theorem 2: since the terminal value x(¢;) is not fixed in
this context, it is possible that the variation p(t) is such that p(t;) # 0
(but u(ty) = 0 is still required); again it is seen that I’(0) = 0. Since it
is already known that x* solves the Euler-Lagrange equation, it follows
from the integration by parts leading to (11) that

pty) Fy(ty, @™ (t), 2" (t1)) = 0. (24)

Taking p such that p(t;) = 1 the conclusion in (i) follows. With a
little more effort also (ii) can be obtained along these lines. However,
(iii) requires the implicit function theorem and a longer argument, so
details are skipped here.

O
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SUFFICIENT CONDITIONS FOR SOLUTIONS

Finally, a result on sufficient conditions for a solution is given. How-
ever, it holds only in case the basic function F(t,x,u) is concave with
respect to (x,u). This means that the Hessian matrix is negative semi-
definite at all points, i.e. ((9 52) < 0; that is, for all ¢, x, u, this matrix
has eigenvalues A1, Ay in | — 00, 0].

Theorem 10. Suppose F(t,x,u) is concave with respect to (z,u), and
that x*(t) fulfils the Fuler—Lagrange equation and one of the terminal
conditions a) x(t;) = x', b) x(t1) > a', or ¢) x(ty) free, together with
the corresponding transversality condition b) Fj(ty,x*(t1),2*(t1)) < 0
(and = 0 if z*(t1) > z'), respectively c) Fj(ty,z*(t1),2*(t1)) = 0.
Then z* s a global mazimiser, i.e. for every other admissible function
x(t) it holds true that

/t " R a(t), #(0) dt < /t " Rt (1), 6 (0) d. (25)

Since minimisation of [ F(t,z,4)dt is achieved by maximising for
—F', one has the analogous minimisation result for convex functions.

Example 11. Since F(z,u) = 2? + u? is conver in Example 3, the

solution x (t) el — e!=" actually minimises the functional J(z) =
fo t)?) dt subject to the conditions z(0) = 0 and z(1) = e*—1.
(As was clalmed earlier.)
EXERCISES
Exercise 1 (i) Calculate the value of J(x fo z? + %) dt in the cases

(a) =(t) = (¢* = 1)t,

(b) x(t) = 62t -1,

() a(t) = et — i,

(d) =(t )—at2+(62—1—a)t.

(They all go through (0, 0) and (1,e*—1), hence are admissible.)
(ii) Let @ — oo and conclude that J(z) has no maximum on
the curves joining (O 0) to (1,e? —1).
Exercise 2 Let J(z f1 t722(t)* dt and consider the boundary conditions
z(1) = 1 z(2) = 2.
(i) Find the admissible solutions to the Euler-Lagrange equa-
tion.
(ii) Show that the maximisation problem for J has no solution.
(Try z(t) = at*(1 — 3a)t + 2a.)
(iii) Does the above imply that the solution in (i) minimises
J(z) ?
Exercise 3 Consider the problem

min /1(t + x)*dt, z(0)=0, =z(1)=a.
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Find the solution of the Euler-Lagrange equation and determine
the value of a for which this solution is admissible. For this
value of a, find the solution of the problem.

Exercise 4 The length of the graph of a C*'-function z(¢) which connects
(to, 2°) to (t1, ') is given by

L(z) = /ttl VI+ a2t

Prove that L(x) attains its minimum over the admissible func-
tions exactly when z(t) has a straight line as its graph.
Exercise 5 Let A(t) denote the assets (or wealth) of a person at time ¢, let
w be the constant wage, and suppose money can be borrowed
at the fixed interest rate r; thus the consumption at time t is
modelled as C(t) = rA(t) +w — A(t).
Suppose the person wants to maximise consumption from
now until the expected death date T,

/TU«Xﬂkﬂ%w

Hereby U is a certain utility function, U’ > 0 > U”, and p is a
discount factor. While the present assests are Ag, the purpose
is also to leave at least the amount A7 to the heirs, i.e. to have
A(T) > Ar.

Apply the necessary conditions to this case. Show in partic-
ular that A(t) is only optimal if A(T) = Ap. (Is this under-
standable?)

Solve Euler equation if U(C) = a — e7* for constants a,
b>0.

Exercise 6 Investigate what the Euler-Lagrange equations give in the spe-
cial cases when

- F=F(tx),
— F=F(tq),
— F = F(x,%). Prove that here
a3, @) = Fy(x, &) (26)
= F(z,2) — ©F3(z,2) is constant (27)

= =0 or 4LFj(z,&)=Fj(z,). (28)
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PROBLEMS IN OPTIMAL CONTROL THEORY:

Exercise 1 Let M = ({9) and N = (). Find the controllability matrix
G. Is the system © = Mx + Nu controllable ?
Is there an obvious reason for this 7
Exercise 2 Consider M = (3§) for § > 0; and N = (9). Find the control-
lability matrix G. Is the system & = Mz + Nu controllable ?
Is the answer surprising in comparison with exercise 1 ?
Exercise 3 Suppose that 2° € C, is it then also possible to pick the control
a(+) such that 0 is steered to z° in finite time ?
Exercise 4 For problems with A = R™, show that the controllable set C is
a linear subspace of R™.
Show moreover that rankG =n <= C =R". (Hint v L C
holds if and only if GTz = 0.)
Exercise 5 Consider the railroad rocket car problem; i.e. Example 5 p.9-12.
(I) Write this problem down as a control problem, using our
formalism: find P(«a), the ODE and A.
Recall why this system is controllable (hint p.22). What
does Theorem 3.1 tell us about the problem ?
(IT) Write down explicitly the consequences of Theorem 3.3,
the Maximum Principle.
(IIT) Compute €™ for this system, and find A7 X (¢)"1N.
(IV) Use WX (t)"'Na to show that the optimal control a*(t)
switches once between +1 and —1.
Was the solution sketched on p.10-12 correct ?
(V) Is the value of h = (hy, he) important ?
Exercise 6 Consider again the rocket car governed by

(20 = (0 ) (50) + (2) e

(I) Find the Hamiltonian function H(z,p,a) as a function of
(;é) and (g;) in R?; cf. Theorem 3.4.

(IT) Write down the conclusions from Theorem 3.4.
(ITT) Show that p*(¢)T = —p*(t)" M and determine p*(t).
Does this way of attack provide us with a natural candidate
for the vector h in Theorem 3.3 7
Exercise 7 Formulate the problem in calculus of variations as a control
problem with a(t) = 4(t). Analyse it by means of Pontryagin’s
maximum principle, and deduce the Euler-Lagrange equation.
Exercise 8 Continue from the maximum principle in exercise 7 and derive
Legendre’s necessary conditions by inspecting the second order
derivatives of H.
Exercise 9 As a simple example, apply the maximum principle to the prob-
lem of maximising folx(t) dt, when #(t) = z(t) + a(t) and
z(0) = 2° with z(1) free; hereby —1 < a(t) < 1 for all ¢.
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Exercise 10

Exercise 11

Exercise 12

JON JOHNSEN

Show first that p(t) = e!~* — 1, then that a*(t) = 1. (Is this
surprising )
Consider an arbitrary control problem of maximising

/0 r(t,x(t), at)) dt

subject to a(t) € [0, 3] and
i(t) = alt), x(0)=2° z(T)> "

Show that if #* — 2% = BT then a*(t) = 8 is the only solution.

What is the situation if 2! — 2° > T ?

What is “wrong” in this problem ?

If the problem is to maximise fol(oz(t) — 206(t))dt when & =
(o« — B)* and z(0) = 0 = z(1) and both controls «(t) and
B(t) belong to [—1, 1], show directly that any admissible control
must satisfy a(t) = B(t). Deduce then that o*(t) = *(t) = —1
is the solution.

Consequently the conclusions of Pontryagin’s maximum prin-
ciple are valid for these a* and (*. Show that this problem is
abnormal in the sense that py = 0.

Consider the maximisation of fol (x(t)+a(t)) dt when & = —x+
a+t, z(0) =1 and z(1) is free; 0 < o < 1. Use the maximum
principle to find a unique candidate for p*, u* and z*.

Confirm that you have found the solution. (Hint: The solu-

tion formula applies directly to the differential equation.)



