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The basic problem

In Calculus of variations one is given a fixed C2-function F (t, x, u),
for t ∈ [t0, t1] and x, u ∈ R, and the problem is to maximise (or min-
imise) the functional

J(x) =

∫ t1

t0

F (t, x(t), ẋ(t)) dt (1)

that acts on functions x : [t0, t1] → R fulfilling

x(t0) = x0, x(t1) = x1. (2)

Hereby x0 , x1 are given numbers; and any C1-function1 x(t) satisfying
these two boundary conditions is said to be admissible.

Example 1 (Ramsey 1928). In economics it is a task to determine
the amount of capital K(t), say in a country, such that, when f(K(t))
denotes the gross domestic product created by having the capital K(t),
one has

max

∫ T

0

U(f(K(t))− K̇(t))e−ρt dt, K(0) = K0, K(T ) = KT .

(3)
Here f(K)− K̇ is the consumption and U is a utility function, fixed so
that U ′ > 0 > U ′′ on ]0,∞[ . The factor e−ρt , ρ > 0, gives a discount
of future consumption in order to give priority to consumption in the
near future. K0 and KT are given initial and terminal values of the
available capital. By maximising the integral, the country is envisaged
to benefit as much as possible from the change in capital from K0 to
KT .

The problem above can be seen as an optimisation problem in infin-
itely many variables (one for each t ∈ [t0, t1]). But fortunately the pos-
sible minimising and maximising functions x(t) can be found among
the solutions to a certain ordinary differential equation. This is the
content of the following famous result:

1Recall that a function f(t) is said to be a Ck -function on an interval [t0, t1]
if all derivatives dmf

dtm with 0 ≤ m ≤ k exist and are continous on [t0, t1]. The
analogous definition applies to functions of several variables, such as F (t, x, u).
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Theorem 2 (Euler–Lagrange equation). For an admissible function
x∗(t) to maximise or minimise

J(x) =

∫ t1

t0

F (t, x(t), ẋ(t)) dt, such that x(t0) = x0, x(t1) = x1

(4)
it is necessary that x∗(t) solves the ordinary differential equation

d
dt

(F ′
3(t, x(t), ẋ(t))) = F ′

2(t, x(t), ẋ(t)). (5)

To reveal the nature of the above differential equation, it is instruc-
tive to carry out the t-differentiation using the chain rule (this is al-
lowed at least if the solution x(t) is a C2-function):

F ′′
33(t, x(t), ẋ(t))ẍ(t) + F ′′

32(t, x(t), ẋ(t))ẋ(t)− F ′
2(t, x(t), ẋ(t)) = 0. (6)

This is a homogeneous second order differential equation, which is said
to be quasi-linear because the coefficients depend on the solution and
its lower order derivatives.

To illustrate the usefulness of Theorem 2, one can take the simple

Example 3. Consider

J(x) =

∫ 1

0

(x(t)2 + ẋ(t)2) dt; x(0) = 0, x(1) = e2 − 1.

Here F (x, u) = x2 + u2 so the Euler–Lagrange equation is

0 = d
dt

(2ẋ)− 2x = 2(ẍ− x).

The complete solution to this is given by the functions x(t) = Aet +
Be−1 . Invoking the boundary conditions it is seen that x(t) is admis-
sible precisely for A = e = −B , so the only candidate for a minimiser
or maximiser is

x∗(t) = e1+t − e1−t.

However, x∗ is not a maximising function (J(x) can be seen to take on
arbitrarily large values), but it will follow later from sufficient condi-
tions that x∗ is a minimiser.

Proof of the Euler–Lagrange equation. The point of departure
is to show what is known as the fundamental lemma of calculus of
variations :

Lemma 4. Let f : [t0, t1] → R be a continuous function with the prop-

erty that
∫ t1

t0
f(t)µ(t) dt = 0 for every C2-function µ(t) on [t0, t1] such

that µ(t0) = 0 = µ(t1). Then f(t) = 0 for every t.

Proof. Suppose f(s) 6= 0, say f(s) > 0. By continuity there is some
interval I = ]a, b[ on which f(t) > 0 and t0 < a < b < t1 . On I one
can then define µ(t) as µ(t) = (t − a)3(b − t3) > 0, and let µ(t) = 0
outside I ; the zeroes at a and b have so high order that this µ is C2 .
Now 0 =

∫ t1
t0

f(t)µ(t) dt =
∫

I
f(t)µ(t) dt > 0, which is a contradiction;

hence f ≡ 0. �
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The lemma above is exploited by forming a so-called variation of the
given solution,

x(t, α) = x∗(t) + αµ(t). (7)

Here α ∈ R is just a parameter, while µ is an arbitrary C2-function
on [t0, t1] such that µ(t0) = 0 = µ(t1); clearly t 7→ x(t, α) is then
admissible for every fixed α.

As a convenient notation, let

I(α) = J(x(t, α)) =

∫ t1

t0

F (t, x(t, α), ∂x(t,α)
∂t

) dt. (8)

For simplicity the proof continues with the case of a maximum at x∗

(the case of a minimum is similar). This means that I(α) ≤ I(0) for
all α, whence

I ′(0) = 0. (9)

This is, of course, under the tacit assumption that α 7→ I(α) is differ-
entiable; it is furthermore assumed that I ′(α) is obtained by differen-
tiating under the integral sign above (this is proved later).

Proceeding from this, one arrives at

I ′(0) =

∫ t1

t0

(F ′
2(t, x

∗, ẋ∗) ∂x
∂α

(t, 0) + F ′
3(t, x

∗, ẋ∗) ∂2x
∂t∂α

(t, 0)) dt

=

∫ t1

t0

(F ′
2(t, x

∗, ẋ∗)µ(t) + F ′
3(t, x

∗, ẋ∗)µ̇(t)) dt.

(10)

Since µ vanishes at the end points, an integration by parts gives

0 = I ′(0) =

∫ t1

t0

µ(t)(F ′
2(t, x

∗, ẋ∗)− d
dt

F ′
3(t, x

∗, ẋ∗)) dt. (11)

Since µ is an arbitrary C2-function vanishing at the end points, it
follows from the above Lemma 4 that the function in the parenthesis is
0 for every t. This means that the Euler–Lagrange equation is satisfied
by x∗(t).

Now it only remains to account for the statements in the next lemma.

Lemma 5. The function I(α) is differentiable at α = 0 and I ′(0) =∫ t1
t0

∂
∂α

F (t, x(t, α), ∂x
∂t

(t, α))
∣∣
α=0

dt.

Proof. Clearly

I(α)− I(0) =

∫ t1

t0

(F (t, x(t, α), ∂x(t,α)
∂t

)− F (t, x∗, ẋ∗)) dt. (12)
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Keeping t fixed in the interval, one can calculate the integrand as
follows:

[F (t, x(t, sα), ∂x
∂t

(t, sα))]s=1
s=0 =

∫ 1

0

∂
∂s

F (t, x(t, sα), ∂x
∂t

(t, sα)) ds

=

∫ 1

0

(F ′
2(t, x(t, sα), ∂x

∂t
(t, sα))αµ(t)

+ F ′
3(t, x(t, sα), ∂x

∂t
(t, sα))αµ̇(t)) ds. (13)

Reading α = − ∂
∂s

(α− αs), and introducing the short-hand

G(α, s, t) = µ(t)F ′
2(t, x(sα, t), ∂x

∂t
(sα, t)) + µ̇(t)F ′

3(t, x(sα, t), ∂x
∂t

(sα, t)),
(14)

an integration by parts therefore shows that the above expression equals∫ 1

0

α(1− s) ∂
∂s

G(α, s, t) ds−
[
α(1− s)G(α, s, t)

]s=1

s=0
. (15)

Clearly the contribution for s = 1 vanishes, while for s = 0 one obtains
the functions x∗(t) and ẋ∗(t). So by calculating the s-derivatives, the
above formulae lead to the fact that

0 ≤ | 1
α
(I(α)− I(0))−

∫ t1

t0

(µF ′
2(t, x

∗, ẋ∗) + µ̇F ′
3(t, x

∗, ẋ∗)) dt|

≤
∫ t1

t0

∫ 1

0

|α||1− s|
∣∣µ2F ′′

22(t, x(sα, t), ∂x
∂t

(sα, t))

+ 2µµ̇F ′′
23(t, x(sα, t), ∂x

∂t
(sα, t))

+ µ̇2F ′′
33(t, x(sα, t), ∂x

∂t
(sα, t))

∣∣ dsdt

≤ Cα → 0 for α → 0. (16)

In fact, it is straightforward to see that the constant C can be taken
as

C = |t1 − t0|max
[t0,t1]

(|µ|+ |µ̇|)2 max
B

(|F ′′
22|, |F ′′

23|, |F ′′
33|). (17)

Hereby the set B denotes the range of

Φ(α, s, t) = (t, x∗(t) + sαµ(t), ẋ∗(t) + sαµ̇(t)) (18)

which is a continuous map Φ: [−1, 1]× [0, 1]× [t0, t1] → R3 . Since the
domain of Φ is a compact set, so is necessarily its range B . Conse-
quently the functions F ′′

22 , F ′′
23 and F ′′

33 are all bounded on B (they are
continuous because F itself was assumed to be C2), whence C < ∞.

Altogether (16) accounts for both the differentiability of I(α) at
α = 0 and that the derivatives can be calculated under the integral
sign. �
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Further necessary conditions. Sometimes the following necessary
condition is also useful.

Theorem 6 (Legendre). If F is a C2-function, it is a necessary condi-

tion for the functional J(x) =
∫ t1

t0
F (t, x(t), ẋ(t)) dt to have an extreme

value at an admissible function x∗(t) that

F ′′
33(t, x

∗(t), ẋ∗(t)) ≤ 0 in case x∗ maximises, (19)

F ′′
33(t, x

∗(t), ẋ∗(t)) ≥ 0 in case x∗ minimises. (20)

(These inequalities are required to hold for all t ∈ [t0, t1].)

The Legendre condition is often useful, when one wants to show
that a solution candidate is not a maximiser (or a minimiser). This is
elucidated by the next example.

Example 7. In the above Example 3 where J(x) =
∫ 1

0
(x2 + ẋ2) dt one

finds at once that F ′′
33 = 2 > 0, and this rules out that the admissible

function x∗ = e1+t− e1−t can be a maximiser. (It is still open whether
x∗ is a minimiser; this cannot be concluded from the fact that F ′′

33 > 2.)

One of the possible complications in practice is that there, for good
reasons, are further constraints on the admissible functions. This can
e.g. leave us with the problems of finding a C1-function x : [t0, t1] → R
such that

max

∫ t1

t0

F (t, x, ẋ) dt; x(t0) = x0, x(t1) = x1; (21)

h(t, x(t), ẋ(t)) > 0 for all t ∈ [t0, t1]. (22)

Hereby h is a suitable C1-function defining the constraint. However,
one can show that the Euler–Lagrange and Legendre conditions are
necessary also for such problems. The next example shows how such
constraints can appear.

Example 8. In the above Example 1 from macro economics, one has
the integrand F (t,K(t), K̇(t)) = U(f(K(t))− K̇(t))e−ρt . But the util-
ity function U is typically only a C2-function on ]0,∞[ ; for example

U(·) =
√

(·) meets the requirements that U ′ > 0 > U ′′ . So here it is
natural to impose the constraint that

h(t,K(t), K̇(t)) := f(K(t))− K̇(t) > 0.

This is not just a kind of mathematical obstruction (as U ′ → ∞ at
0, already a C1-extension of U to the whole axis R is impossible), for
negative values of the consumption f(K(t))−K̇(t) may not make sense
in the model at all.
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Problems with general terminal conditions

A more radical change is met, if one considers the problem of having

max

∫ t1

t0

F (t, x(t), ẋ(t)) dt, x(0) = x0, (23)

together with one of the following terminal conditions:

(i) x(t1) free (t1 given);
(ii) x(t1) ≥ x1 (t1 and x1 given);
(iii) x(t1) = g(t1) (t1 free, but g a given C1-function).

Correspondingly the admissible functions are now required to be C1-
functions that fulfill the stated initial and terminal conditions. It is
clear that a maximising function x∗ still fulfills the Euler–Lagrange
equations, for x∗ also maximises among the admissible functions that
satisfy x(t1) = x∗(t1). But one has to add some transversality condi-
tions :

Theorem 9. If x∗(t) is an admissible function solving the above max-
imisation problem, then x∗ solves the Euler–Lagrange equation and the
corresponding transversality condition,

(i) F ′
3(t1, x

∗(t1), ẋ
∗(t1)) = 0;

(ii) F ′
3(t1, x

∗(t1), ẋ
∗(t1)) ≤ 0 (and = 0 holds if x∗(t1) > x1);

(iii) F (t1, x
∗(t1), ẋ

∗(t1))− (ġ(t1)− ẋ∗(t1))F
′
3(t1, x

∗(t1), ẋ
∗(t1)) = 0.

In case (ii) the inequality is reversed if x∗ solves the minimisation
problem.

Proof. Set y1 = x∗(t1). Since x∗ maximises J , the inequality J(x∗) ≥
J(y) holds in particular for all admissible functions y(t) that satisfy
y(t1) = y1 . Therefore x∗ is also a solution of the basic problem on
the fixed time interval [t0, t1] and with data x0 , y1 . Consequently x∗

satisfies the Euler–Lagrange equation.
The transversality condition (i) can be proved as a continuation of

the proof of Theorem 2: since the terminal value x(t1) is not fixed in
this context, it is possible that the variation µ(t) is such that µ(t1) 6= 0
(but µ(t0) = 0 is still required); again it is seen that I ′(0) = 0. Since it
is already known that x∗ solves the Euler–Lagrange equation, it follows
from the integration by parts leading to (11) that

µ(t1)F
′
3(t1, x

∗(t1), ẋ
∗(t1)) = 0. (24)

Taking µ such that µ(t1) = 1 the conclusion in (i) follows. With a
little more effort also (ii) can be obtained along these lines. However,
(iii) requires the implicit function theorem and a longer argument, so
details are skipped here.

�



NOTES ON CALCULUS OF VARIATIONS 7

Sufficient conditions for solutions

Finally, a result on sufficient conditions for a solution is given. How-
ever, it holds only in case the basic function F (t, x, u) is concave with
respect to (x, u). This means that the Hessian matrix is negative semi-

definite at all points, i.e. ( ∂2F
∂x∂u

) ≤ 0; that is, for all t, x, u, this matrix
has eigenvalues λ1 , λ2 in ]−∞, 0].

Theorem 10. Suppose F (t, x, u) is concave with respect to (x, u), and
that x∗(t) fulfils the Euler–Lagrange equation and one of the terminal
conditions a) x(t1) = x1, b) x(t1) ≥ x1, or c) x(t1) free, together with
the corresponding transversality condition b) F ′

3(t1, x
∗(t1), ẋ

∗(t1)) ≤ 0
(and = 0 if x∗(t1) > x1), respectively c) F ′

3(t1, x
∗(t1), ẋ

∗(t1)) = 0.
Then x∗ is a global maximiser, i.e. for every other admissible function
x(t) it holds true that∫ t1

t0

F (t, x(t), ẋ(t)) dt ≤
∫ t1

t0

F (t, x∗(t), ẋ∗(t)) dt. (25)

Since minimisation of
∫

F (t, x, ẋ) dt is achieved by maximising for
−F , one has the analogous minimisation result for convex functions.

Example 11. Since F (x, u) = x2 + u2 is convex in Example 3, the
solution x∗(t) = e1+t − e1−t actually minimises the functional J(x) =∫ 1

0
(x(t)2+ẋ(t)2) dt subject to the conditions x(0) = 0 and x(1) = e2−1.

(As was claimed earlier.)

Exercises

Exercise 1 (i) Calculate the value of J(x) =
∫ 1

0
(x2 + ẋ2) dt in the cases

(a) x(t) = (e2 − 1)t,
(b) x(t) = e2t − 1,
(c) x(t) = e1+t − e1−t ,
(d) x(t) = at2 + (e2 − 1− a)t.
(They all go through (0, 0) and (1, e2−1), hence are admissible.)

(ii) Let a →∞ and conclude that J(x) has no maximum on
the curves joining (0, 0) to (1, e2 − 1).

Exercise 2 Let J(x) =
∫ 2

1
t−2ẋ(t)2 dt and consider the boundary conditions

x(1) = 1, x(2) = 2.
(i) Find the admissible solutions to the Euler–Lagrange equa-

tion.
(ii) Show that the maximisation problem for J has no solution.

(Try x(t) = at2(1− 3a)t + 2a.)
(iii) Does the above imply that the solution in (i) minimises

J(x) ?
Exercise 3 Consider the problem

min

∫ 1

0

(t + x)4 dt, x(0) = 0, x(1) = a.
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Find the solution of the Euler–Lagrange equation and determine
the value of a for which this solution is admissible. For this
value of a, find the solution of the problem.

Exercise 4 The length of the graph of a C1-function x(t) which connects
(t0, x

0) to (t1, x
1) is given by

L(x) =

∫ t1

t0

√
1 + ẋ(t)2 dt.

Prove that L(x) attains its minimum over the admissible func-
tions exactly when x(t) has a straight line as its graph.

Exercise 5 Let A(t) denote the assets (or wealth) of a person at time t, let
w be the constant wage, and suppose money can be borrowed
at the fixed interest rate r; thus the consumption at time t is
modelled as C(t) = rA(t) + w − Ȧ(t).

Suppose the person wants to maximise consumption from
now until the expected death date T ,∫ T

0

U(C(t))e−ρt dt.

Hereby U is a certain utility function, U ′ > 0 > U ′′ , and ρ is a
discount factor. While the present assests are A0 , the purpose
is also to leave at least the amount AT to the heirs, i.e. to have
A(T ) ≥ AT .

Apply the necessary conditions to this case. Show in partic-
ular that A(t) is only optimal if A(T ) = AT . (Is this under-
standable?)

Solve Euler equation if U(C) = a − e−bC for constants a,
b > 0.

Exercise 6 Investigate what the Euler–Lagrange equations give in the spe-
cial cases when

– F = F (t, x),
– F = F (t, ẋ),
– F = F (x, ẋ). Prove that here

d
dt

F ′
3(x, ẋ) = F ′

2(x, ẋ) (26)

=⇒ F (x, ẋ)− ẋF ′
3(x, ẋ) is constant (27)

=⇒ ẋ = 0 or d
dt

F ′
3(x, ẋ) = F ′

2(x, ẋ). (28)
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Problems in Optimal control theory:

Exercise 1 Let M = ( 1 0
0 1 ) and N = ( 0

1 ). Find the controllability matrix
G. Is the system ẋ = Mx + Nu controllable ?

Is there an obvious reason for this ?
Exercise 2 Consider M = ( 0 θ

0 0 ) for θ > 0; and N = ( 0
1 ). Find the control-

lability matrix G. Is the system ẋ = Mx + Nu controllable ?
Is the answer surprising in comparison with exercise 1 ?

Exercise 3 Suppose that x0 ∈ C , is it then also possible to pick the control
α(·) such that 0 is steered to x0 in finite time ?

Exercise 4 For problems with A = Rm , show that the controllable set C is
a linear subspace of Rn .

Show moreover that rank G = n ⇐⇒ C = Rn . (Hint x ⊥ C
holds if and only if GT x = 0.)

Exercise 5 Consider the railroad rocket car problem; i.e. Example 5 p.9–12.
(I) Write this problem down as a control problem, using our

formalism: find P (α), the ODE and A.
Recall why this system is controllable (hint p.22). What
does Theorem 3.1 tell us about the problem ?

(II) Write down explicitly the consequences of Theorem 3.3,
the Maximum Principle.

(III) Compute etM for this system, and find hT X(t)−1N .
(IV) Use hT X(t)−1Na to show that the optimal control α∗(t)

switches once between +1 and −1.
Was the solution sketched on p.10–12 correct ?

(V) Is the value of h = (h1, h2) important ?
Exercise 6 Consider again the rocket car governed by(

ẋ1(t)
ẋ2(t)

)
=

(
0 1
0 0

) (
x1(t)
x2(t)

)
+

(
0
1

)
α(t).

(I) Find the Hamiltonian function H(x, p, a) as a function of(
x1

x2

)
and

(
p1

p2

)
in R2 ; cf. Theorem 3.4.

(II) Write down the conclusions from Theorem 3.4.
(III) Show that ṗ∗(t)T = −p∗(t)T M and determine p∗(t).

Does this way of attack provide us with a natural candidate
for the vector h in Theorem 3.3 ?

Exercise 7 Formulate the problem in calculus of variations as a control
problem with α(t) = ẋ(t). Analyse it by means of Pontryagin’s
maximum principle, and deduce the Euler–Lagrange equation.

Exercise 8 Continue from the maximum principle in exercise 7 and derive
Legendre’s necessary conditions by inspecting the second order
derivatives of H .

Exercise 9 As a simple example, apply the maximum principle to the prob-
lem of maximising

∫ 1

0
x(t) dt, when ẋ(t) = x(t) + α(t) and

x(0) = x0 with x(1) free; hereby −1 ≤ α(t) ≤ 1 for all t.
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Show first that p(t) = e1−t − 1, then that α∗(t) ≡ 1. (Is this
surprising ?)

Exercise 10 Consider an arbitrary control problem of maximising∫ T

0

r(t, x(t), α(t)) dt

subject to α(t) ∈ [0, β] and

ẋ(t) = α(t), x(0) = x0, x(T ) ≥ x1.

Show that if x1 − x0 = βT then α∗(t) ≡ β is the only solution.
What is the situation if x1 − x0 > βT ?
What is “wrong” in this problem ?

Exercise 11 If the problem is to maximise
∫ 1

0
(α(t) − 2β(t)) dt when ẋ =

(α − β)2 and x(0) = 0 = x(1) and both controls α(t) and
β(t) belong to [−1, 1], show directly that any admissible control
must satisfy α(t) = β(t). Deduce then that α∗(t) = β∗(t) ≡ −1
is the solution.

Consequently the conclusions of Pontryagin’s maximum prin-
ciple are valid for these α∗ and β∗ . Show that this problem is
abnormal in the sense that p0 = 0.

Exercise 12 Consider the maximisation of
∫ 1

0
(x(t)+α(t)) dt when ẋ = −x+

α + t, x(0) = 1 and x(1) is free; 0 ≤ α ≤ 1. Use the maximum
principle to find a unique candidate for p∗ , u∗ and x∗ .

Confirm that you have found the solution. (Hint: The solu-
tion formula applies directly to the differential equation.)


