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Abstract. This note collects some basic facts on convex functions
in one or several variables, with elementary proofs.

1. Convex sets

In these notes, Rn denotes the Euclidean space of dimension n ≥ 1.

1.1. Basics. By definition, a subset U ⊂ Rn is said to be convex, if
for any two points x, y ∈ U the line segment connecting x and y is
contained in U , which means that

x+ θ(y − x) ∈ U for all θ ∈ [0, 1]. (1.1)

Equivalently this can be written as

(1− θ)x+ θy ∈ U for all θ ∈ [0, 1]. (1.2)

Or, in an even more symmetric manner, that

θ0x+ θ1y ∈ U when

θ0 + θ1 = 1, θ0 ≥ 0, θ1 ≥ 0.
(1.3)

Anyhow, it is enough to check one of these conditions for x 6= y, and
to do so eg for 0 < θ < 1, for otherwise there is nothing to show.

As examples of convex sets, there are open and closed balls B(x, r)
and B̄(x, r); and in R3 ellipsoids such as

(
x

a
)2 + (

y

b
)2 + (

z

c
)2 ≤ 1 (1.4)

and other barrel-shaped objects.
By definition a set K ⊂ Rn is said to be concave when its comple-

ment Rn \K is a convex set. The unit sphere

Sn−1 =
{
x ∈ Rn

∣∣ ‖x‖ = 1
}

(1.5)

is neither, but its complement Rn \ Sn−1 has two components of which
the unbounded is concave.
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1.2. Elementary results. From the definition above it follows at once
that

∀i ∈ I : Ui is convex =⇒
⋂
i∈I

Ui is convex. (1.6)

One can now introduce the convex hull, written ch(A), of an arbitrary
set A ⊂ Rn as

ch(A) =
⋂{

U ⊂ Rn
∣∣ U is convex , A ⊂ U

}
. (1.7)

This is by (1.6) convex and A ⊂ ch(A); therefore ch(A) is one of the
sets in the intersection, hence the smallest convex subset containing A.

As a preparation it is recalled that the boundary of a set M ⊂ Rn

is defined in terms of its interior M◦ and exterior M e = Rn \ M̄ as

∂M = Rn \ (M◦ ∪M e). (1.8)

It follows at once that ∂M = M̄ \M◦ . In general it holds true that

∂(M̄) ⊂ ∂M. (1.9)

For convex sets there is always equality here, that is ∂(Ū) = ∂U . This
can be shown by using the next result (cf Exercise 1.1).

As expected, every point in the closure of a convex set can always be
reached along a line segment in the interior U◦ , if this is non-empty:

Lemma 1.1. Let U be convex with given points x ∈ U◦ and y ∈ Ū .
Then (1− θ)x+ θy belongs to U◦ whenever 0 ≤ θ < 1.

Proof. For such x, y, θ, it suffices to show that, when ε > 0 is suitably
chosen, then v = (1 − θ)x + θy + z belongs to U for all z ∈ B(0, ε).
Now

v = (1− θ)(x+ (1− θ)−1z) + θy, (1.10)

where the vector in parenthesis is contained in U◦ for ε > 0 so small
that B(x, 2ε

1−θ ) ⊂ U . So in case y ∈ U convexity yields v ∈ U .

For general y ∈ Ū there is some w ∈ B(y, ε) ∩ U , and one may in
(1.10) replace θy by θw and z by z+θ(y−w). Since the latter belongs
to B(0, 2ε), the first part of the proof yields v ∈ U . �

Using the lemma, one finds the next result (cf Exercise 1.2), which
shows that convexity plays well together with topological notions:

Proposition 1.2. If U ⊂ Rn is convex, so are U◦ and Ū .

Furthermore, a convex set U cannot have isolated points, unless it
is a singleton; ie unless U = {x} for some x ∈ Rn .



CONVEX FUNCTIONS, AN ELEMENTARY APPROACH 3

1.3. Enveloping halfspaces. As a remarkable general property, it is
observed that convex sets share the following property:

A non-trivial convex set U is contained in a half-space.

Whilst this is geometrically obvious (U lies “on one side” of each
boundary point), a formal proof will be given below.

Recall first that the plane P in R3 through the point x0 = (x01, x
0
2, x

0
3),

and having the normal vector ~n = (a, b, c), consists of the points
x = (x1, x2, x3) in R3 that fulfil the equation ~n · (x− x0) = 0; that is,

a(x1 − x01) + b(x2 − x02) + c(x3 − x03) = 0. (1.11)

The half-space Hx0,~n associated with P is therefore introduced as the
set of points x = (x1, x2, x3) lying on the positive side of P in the sense
that ~n · (x− x0) ≥ 0. More precisely,

Hx0,~n =
{

(x1, x2, x3) ∈ R3
∣∣ a(x1 − x01) + b(x2 − x02) + c(x3 − x03) ≥ 0

}
.

(1.12)
In analogy, a half-space is in Rn , n ≥ 1, defined in terms of a point
x0 ∈ Rn and a normal vector ~n ∈ Rn as

Hx0,~n =
{
x ∈ Rn

∣∣ ~n · (x− x0) ≥ 0
}
. (1.13)

Another preparation concerns the well-known distance from a point
y to a given set M ⊂ Rn :

d(y,M) = inf{ d(y, x) | x ∈M }. (1.14)

Lemma 1.3. If a point y0 ∈ Rn lies outside a closed subset F , then
the distance d(y0, F ) is a minimum attained at some x0 in F . Ie there
exists some x0 ∈ F such that

‖x0 − y0‖ ≤ ‖x− y0‖ for all x ∈ F . (1.15)

Moreover, x0 belongs to the boundary of F ; that is, x0 ∈ F \ F ◦.

Proof. If F is compact continuity of x 7→ ‖x− y0‖ yields the existence
of x0 . Else F ∩ B̄(y0, N) is compact, say for N = 2d(y0, F ), and has a
point x0 of minimal distance.

Had x0 been an inner point, say B(x0, ε) ⊂ F , then the function
t 7→ y0 + t(x0 − y0) =: xt would have an open preimage of B(x0, ε), so
that for some δ > 0 it would hold that xt ∈ F for all t ∈ ]1− δ, 1 + δ[ ,
whence ‖xt−y0‖ = t‖x0−y0‖ would not attain a minimum at t = 1. �

Now it is easy to verify a weak version of the claim on the half-space:

Proposition 1.4. When a convex subset U ⊂ Rn is proper, then U is
contained in a closed half-space H .

Proof. Convexity and the property that U 6= Rn are both inherited by
Ū (cf Exercise 1.3). Hence U may be assumed closed.
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By assumption a point y0 ∈ Rn \ U may be fixed; since U is closed,
d(y0, U) is attained at some x0 ∈ U by Lemma 1.3. Writing x = x0 + z
for arbitrary x ∈ U , and squaring the inequality of the lemma,

0 ≤ ‖z‖2 + 2z · (x0 − y0). (1.16)

Since U is convex, every x0 + θz with θ ∈ [0, 1] belongs to U , which
by substitution into the above (as we may) gives

0 ≤ θ · (θ‖z‖2 + 2z · (x0 − y0)). (1.17)

Because the factor in parenthesis after θ must remain non-negative for
θ → 0+ , this implies z · (x0 − y0) ≥ 0. Setting ~n = x0 − y0 this means
that (x−x0) ·~n ≥ 0 for all x ∈ U , thence the inclusion U ⊂ Hx0,~n . �

The proof above gave more than stated, for the point x0 entering
the half-space Hx0,~n is obviously a boundary point of Hx0,~n as well as
in ∂U according to Lemma 1.3.

In fact, Hx0,~n can be so chosen, that x0 equals any given boundary
point of U . This sharpening will now be proved using a compactness
argument.

Theorem 1.5. For every boundary point x0 of a convex set U ⊂ Rn

there is an inclusion
U ⊂ H (1.18)

into the closed halfspace H = Hx0,~n determined by x0 and a suitable
unit vector ~n.

Proof. Since x0 is also a boundary point of Ū , cf (1.9), there is for
each k ∈ N a point yk ∈ B(x0, 1/k) \ Ū .

From the remarks after the proof of Proposition 1.4, it is seen that
each distance d(yk, Ū) is attained at a point xk ∈ ∂(Ū). These xk
converge to x0 since

0 ≤ ‖xk − x0‖ ≤ ‖xk − yk‖ + ‖yk − x0‖ ≤ 2‖yk − x0‖ ↘ 0. (1.19)

Associated with these points there are (as xk 6= yk) unit vectors

~nk =
xk − yk
‖xk − yk‖

∈ Sn−1. (1.20)

Since ~nk ∈ Sn−1 for each k (cf (1.5)), it may by the compactness of
Sn−1 be assumed that for a suitable ~n0 ∈ Sn−1 there is convergence

~nk → ~n0 for k →∞. (1.21)

(Otherwise one may extract a convergent subsequence ~nkm that along
with xkm can replace ~nk , xk in the rest of the proof.)

Now it only remains to show that the half-space Hx0,~n0 contains U
as claimed. However, by the construction of ~nk it is seen from the
previous proof that U ⊂ Hxk,~nk

. So for any given x ∈ U ,

0 ≤ ~nk · (x− xk) for all k ∈ N. (1.22)
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When combined with (1.19) and (1.21), continuity of the inner product
therefore yields 0 ≤ ~n0 · (x− x0), as was to be shown. �

The normal vector ~n0 of the halfspace H in the theorem is in general
not uniquely determined. This is geometrically obvious, eg by taking
for U a square in R2 and x0 as a cornerpoint. In the proof above it is
also clear that (~nk) might have several accumulation points.

However, one can of course let N(x0) denote the set of unit vectors
~n for which U ⊂ Hx0,~n holds true. Then one has the following result
for a closed convex set U :

U =
⋂

x0∈∂U

⋂
~n∈N(x0)

Hx0,~n. (1.23)

Indeed, the inclusion from the left to the right is obvious; and it cannot
be strict, for when y0 belongs to Rn \ U , one may as in the proof of
Proposition 1.4 minimise the distance from y0 to U at some point
x0 ∈ ∂U , which gives U ⊂ Hx0,~n for ~n equal to (x0− y0)/‖x0− y0‖ , so
that (y0 − x0) · ~n = −‖x0 − y0‖ < 0 implies y0 /∈ Hx0,~n .

Because of (1.23), a closed convex set U is always enveloped in the
halfspaces containing it.

Exercise 1.1. Show that the inclusion ∂(M̄) ⊂ ∂M may be strict.
Verify that equality holds for convex M . (Hint: reduce to the case
M◦ 6= ∅ and obtain a contradiction by using Lemma 1.1 twice.)

Exercise 1.2. Give a proof of Proposition 1.2. (Hint: use Lemma 1.1.)

Exercise 1.3. Show that if U is convex and U 6= Rn , then Ū 6= Rn .
(Hint: Prolong the line segment in Lemma 1.1, and twist it).

Exercise 1.4. Find a set K which does not fulfil (1.23).

2. Convex and concave functions

Let U ⊂ Rn denote a fixed convex set in the following. The main
subjects of these lecture notes are collected in

Definition 2.1. 1◦ A function f : U → R is convex if for all x, y ∈ U
and 0 ≤ θ ≤ 1,

f((1− θ)x+ θy) ≤ (1− θ)f(x) + θf(y). (2.1)

If the inequality is strict when x 6= y and 0 < θ < 1, then f said to be
strictly convex.

2◦ f is called (strictly) concave, if −f is (strictly) convex.

Obviously (2.1) is equivalent to

f(x+ θ(y − x)) ≤ f(x) + θ(f(y)− f(x)). (2.2)

Again it suffices to check this only for x 6= y and for 0 < θ < 1.
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As examples, it is clear that linear maps and affine maps Rn → R are
both convex and concave, as (2.1) holds with equality. Consequently
such functions are never strictly convex/concave.

Geometrically condition (2.1) means for n = 1 or n = 2 that the line
segment Lx,y that joins two arbitrary points (x, f(x)) and (y, f(y)) on
the graph of f lies entirely above the graph. Indeed, this segment
consists of the points[

x
f(x)

]
+ θ

[
y − x

f(y)− f(x)

]
for 0 ≤ θ ≤ 1, (2.3)

each of which is above the corresponding point on the graph of f(x),
ie above (x+ θ(y − x), f(x+ θ(y − x)), because of (2.2).

For general n ≥ 1 it is more meaningful to say that Lx,y is contained
in the so-called epigraph of f :

E(f) =
{

(x, y) ∈ U × R
∣∣ y ≥ f(x)

}
. (2.4)

Using the definitions, one finds a classical characterisation of convexity:

Proposition 2.2. A function f : U → R is convex if, and only if, its
epigraph E(f) is a convex set.

This geometric description shows that | · |, (·)2 , exp and exp(−·) are
convex on R; while log and

√
· are concave on ]0,∞[ (the latter even

on [0,∞[ ). Whereas cos and sin are neither.

For later reference, it is convenient to observe that in dimension
n ≥ 2 a function f : U → R is convex if and only if it holds for all
x, y ∈ U that the auxiliary function

gx,y(t) = f(x+ t(y − x)) (2.5)

is convex for t ∈ [0, 1], ie is convex as a function of one variable.

Exercise 2.1. Find the subintervals of R on which sin is convex.

Exercise 2.2. Deduce that when f : I → R is convex for some interval
I ⊂ R, and when x < y in (2.1), then one has for the intermediate
point z = (1− θ)x+ θy that θ = z−x

y−x and 1− θ = y−z
y−x , hence

f(z) ≤ y − z
y − x

f(x) +
z − x
y − x

f(y) for x < z < y. (2.6)

Conversely, does this property imply that f is convex on I ?

Exercise 2.3. Prove that when g : R→ R is monotone increasing and
convex, then g ◦ f is convex on U ⊂ Rn if f is so.

When will concavity of f carry over to g ◦ f ?

Exercise 2.4. Show that if f is strictly convex with a local minimum at
x ∈ U , then f(y) > f(x) for every y 6= x; ie x is uniquely determined.
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Exercise 2.5. Suppose f : [a, b] → R is convex on the open interval
]a, b[ and continuous at x = a and x = b. Show that f is convex on the
closed interval [a, b]. Proceed to prove the same result for strict con-
vexity. (Hint: Consider first the endpoint y = b, and use monotonicity
of the slope function in (3.3) below.)

Exercise 2.6. Sketch E(f) and explain why convexity of f follows if
E(f) is convex. Then deduce the converse; ie prove Proposition 2.2.

Exercise 2.7. Show that if ϕ is convex on U , then ϕ(θ0x + θ1y) ≤
θ0ϕ(x) + θ1ϕ(y) when θ0, θ1 ≥ 0 fulfil θ0 + θ1 = 1. Generalise this to
finite families xν ∈ U and numbers aν ≥ 0:

ϕ

(∑
aνxν∑
aν

)
5

∑
aνϕ(xν)∑
aν

. (2.7)

This is J.L.W.V. Jensen’s inequality for convex functions (1906)—for
decades used in the letter head of the Mathematics Department of
Copenhagen University.

3. Geometry of Convex Epigraphs

3.1. The one-dimensional case. When graphing a convex function
in dimension n = 1, one expects at once that the slope of the secant
between two points on the graph is increasing, as expressed by the
inequality (3.1) below.

Indeed, this property is a classical characterisation of convex func-
tions:

Proposition 3.1. For a function f : I → R on an interval I ⊂ R,
convexity is equivalent to the property that

f(x)− f(y)

x− y
≤ f(z)− f(x)

z − x
whenever y < x < z. (3.1)

The strict inequality holds for all y < x < z if and only f is strictly
convex.

Proof. For elements y < x < z in I it is clear that

f(x)− f(y)

x− y
≤ f(z)− f(x)

z − x
⇐⇒ (y − z)f(x) ≥ (x− z)f(y) + (y − x)f(z)

⇐⇒ f(x) ≤ z − x
z − y

f(y) +
x− y
z − y

f(z).

(3.2)

The last inequality follows from convexity of f , since θ0 := z−x
z−y > 0,

θ1 := x−y
z−y > 0, θ0 + θ1 = 1 and x = z−x

z−yy + x−y
z−y z . Conversely the last

inequality also implies convexity. Sharp inequalities above are similarly
seen to be equivalent to strict convexity. �
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In general it is convenient to introduce the slope function

S(x, y) =
f(y)− f(x)

y − x
for x 6= y. (3.3)

This is clearly symmetric, that is S(x, y) = S(y, x), so for example it
is an increasing function of x if and only if it is increasing with respect
to y. In fact, its monotonicity characterises the convexity etc. of f :

Proposition 3.2. A given function f : I → R on an interval I ⊂ R
is convex (respectively strictly convex) if and only if the slope function
S is (strictly) monotone increasing in one of its arguments.

Proof. By the symmetry of S , it is enough to show that convexity
of f is equivalent to the property that S(x, y) ≤ S(x, z) for y ≤ z
and x /∈ {y, z}. The case y < x < z was covered in the proof of
Proposition 3.1. The two other cases, ie x < y < z and y < z < x, can
be treated analogously (do it!). �

The well-known fact that convex functions always are left- and right-
d̃ifferentiable can be shown by a nice application of Proposition 3.1–3.2.

Indeed, the left-hand side of (3.1) equals S(x, y) hence is an increas-
ing function of y; denoted S(x, ·). Since S(x, ·) is bounded from above
by the right-hand side of (3.1), its supremum is necessarily a limit for
y → x− . By definition this limit is the left-derivative f ′−(x) of f at x,
and for z > x it fulfils

f ′−(x) ≤ f(z)− f(x)

z − x
. (3.4)

Repeating the argument, it follows from this inequality that the right-
hand side has (its infimum as) a limit f ′+(x) for z → x+ and that

f ′−(x) ≤ f ′+(x). (3.5)

Therefore we have proved

Proposition 3.3. A convex function f : I → R on an interval I ⊂ R
is differentiable both from the left and the right at every interior point
x in I and (3.5) holds.

As an addendum to this proposition, it also follows from the proof
of the existence of the one-sided derivatives that

f(z) ≥ f(x) + f ′+(x)(z − x) for all z ≥ x in I, (3.6)

f(y) ≥ f(x) + f ′−(x)(y − x) for all y ≤ x in I. (3.7)

Moreover, since (f(z)−f(x))/(z−x) equals f ′+(x)+o(1), and similarly
for f ′−(y),

f(z) = f(x) + f ′+(x)(z − x) + o(z − x) for x ≤ z (3.8)

f(y) = f(x) + f ′−(x)(y − x) + o(y − x) for y ≤ x. (3.9)
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Therefore the graph of f has left and right half-tangents T± (at every
inner point x), namely the graphs of

y 7→ f(x) + f ′±(x)(y − x) for y ≷ x. (3.10)

The geometric meaning of (3.6)–(3.7) is then that the graph of f lies
entirely above T− and T+ . Cf examples like e|x| .

To combine (3.6)–(3.7) into a single inequality valid for all y ∈ I , we
may multiply (3.5) by y− x ≥ 0 and by y− x < 0, respectively, to see
that both a = f ′+(x) and a = f ′−(x) fulfil that

f(y) ≥ f(x) + a(y − x) for every y ∈ I . (3.11)

Because of the inequality here, every a ∈ R with this property is called
a subgradient of f at x; cf. Section 3.2.

Whenever a function f has a subgradient at x, i.e. fulfils (3.11) for
some a, then f is called subdifferentiable at x. In the affirmative case,
the set of all the possible subgradients a of f at x is usually denoted
by ∂f(x); it is the so-called subdifferential of f at x.

The above deduction of (3.11) shows that convex functions always
are subdifferentiable in the interior of their domains.

It is straightforward to show from (3.11) that the subdifferential, as a
subset ∂f(x) ⊂ R, is always closed and convex. When f is convex , then
the subdifferential ∂f(x) is therefore a non-empty interval containing
both a = f ′±(x), and in fact

∂f(x) = [f ′−(x), f ′+(x)]. (3.12)

Hence ∂f(x) = f ′(x) at each point x of differentiability of convex f .
As an appetizing example, consider f(x) = |x| for x ∈ R. At x0 = 0,

the subdifferential is simply determined from (3.12) as

∂f(x0) = [−1, 1]. (3.13)

Although f is not differentiable at x0 = 0 (so that f ′(x) = 0 cannot
be solved for x0 . . . ), this convex function f has a minimum at x0 = 0
precisely because 0 ∈ [−1, 1] !

3.2. Subgradients in higher dimensions. Let f denote a fixed con-
vex function on a convex set U ⊂ Rn in this section.

As a definition, a vector a ∈ Rn is called a subgradient of f at x ∈ U
if

f(y) ≥ f(x) + a · (y − x) for all y ∈ U . (3.14)

It is a general result that f has a subgradient a for each interior point
x of U . (Notice that a = ∇f(x) is possible when f is differentiable at
x; cf Theorem 5.1.)

First of all Proposition 3.3 generalises to directional derivatives:
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Proposition 3.4. A convex function f : U → R has at every interior
point x ∈ U a one-sided directional derivative f ′v(x) along any unit
vector v, which is given by

f ′v(x) = Df(x; v) = lim
t→0+

f(x+ tv)− f(x)

t
. (3.15)

Proof. As x is an interior point, g(t) = f(x + tv) is at least defined
on an open interval ] − δ, δ[ containing 0. Since g is convex, it has
by Proposition 3.3 a derivative from the right at t = 0, namely g′+(0).
But this is given by the same limit as the one defining Df(x; v). �

As a sharpening of the proof above, note that L(t) = x+ tv is linear,
so the pre-image of U◦ is a set J ⊂ R, which is necessarily convex;
hence J is an open interval on which the above g(t) is defined; 0 ∈ J .
So for t ∈ J it follows from (3.11) that

g(t) ≥ g(0) + g′+(0)t. (3.16)

Returning to f itself, one has for every y ∈ U of the form y = x+ tv,
since t = tv · v = (y − x) · v, that

f(y) ≥ f(x) + f ′v(x)v · (y − x) for y = x+ tv, y ∈ U . (3.17)

This strongly suggests that the one-sided directional derivatives give
rise to the possible subgradients of f at x. However, this will not be
pursued here.

Instead we proceed directly to the following main result:

Theorem 3.5. When f : U → R is a convex function, then f is sub-
differentiable at every interior point x0 of U . That is, to each x0 ∈ U◦
there exists some a ∈ Rn such that

f(x)− f(x0) ≥ a · (x− x0) for all x ∈ U. (3.18)

Proof. For the convex set E(f) ⊂ Rn+1 the element (x0, f(x0)) is not
an inner point, hence lies at the boundary. So according to Theorem 1.5
there is a unit vector ~n ∈ Rn+1 such that

E(f) ⊂ H(x0,f(x0)),~n. (3.19)

Here ~n may be written in the form ~n = (−v, s) 6= (0, 0) with v ∈ Rn ,
s ∈ R. In particular the inclusion gives that for every (x, f(x)) with
x ∈ U ,

(−v, s) · ((x, f(x))− (x0, f(x0))) ≥ 0, (3.20)

which clearly is equivalent to

s(f(x)− f(x0))) ≥ v · (x− x0). (3.21)

It now suffices to show that s > 0, for then the claim holds with a = 1
s
v.

It is clear that s = 0 is impossible, for else v 6= 0 so that the resulting
inequality 0 ≥ v · (x − x0) must be false for some x ∈ U , because x0
is an interior point of U : some r > 0 fulfils B(x0, r) ⊂ U , and then
x = x0 + tv belongs to this ball for a suitably small t > 0 (ie x − x0
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points in the same direction as v) which results in the contradiction
0 ≥ tv · v.

Similarly s < 0 can be ruled out. However, the simpler way is to
make full use of the above inclusion, which instead of (3.21) means
that for every (x, y) in E(f), ie for every x ∈ U and y ≥ f(x),

s(y − f(x0))) ≥ v · (x− x0). (3.22)

Hence ~n = (−v, s) cannot hold for s < 0, for in case v = 0 a contra-
diction results by inserting (x, y) ∈ E(f) with x = x0 and y > f(x0);
if v 6= 0 one can modify by taking first x ∈ U such that the right-hand
side of (3.22) is positive (cf the treatment of s = 0), and then some
y > max(f(x0), f(x)); clearly (x, y) ∈ E(f), whence (3.22) yields the
contradiction s ≥ 0. �

For a concave function g : U → R, it is obvious from the above
theorem that −g has a subgradient a ∈ Rn at every interior point
x0 ∈ U . The vector b = −a therefore fulfils

g(x) ≤ g(x0) + b · (x− x0) for every x ∈ U. (3.23)

Because of this inequality, b is said to be a supergradient of g at x0 .

Exercise 3.1. Find convex functions f(x) on R for which the half-
tangents T± are not parallel at some point.

Exercise 3.2. Complete the last part of the proof of Proposition 3.2.

Exercise 3.3. Prove for a convex function f on an open interval I
that both f ′±(x) are increasing. Is it even true that y < z implies
f ′+(y) < f ′−(z)?

Exercise 3.4. Show that the set of subgradients, ie ∂f(x), is convex
and closed. Prove for n = 1 that ∂f(x) for convex f equals the interval
[f ′−(x), f ′+(x)]. (Hint: Why is (3.11) impossible for a > f ′+(x)?)

Exercise 3.5. Show for n = 1 that the subdifferential of a convex
function f on an open interval is a singleton, say ∂f(x) = {a} if and
only if f is differentiable at x with f ′(x) = a.

Exercise 3.6. Verify the claims on |x| and its subdifferential made
above. (Hint: Read on in Section 5 below to see how the subgradient
may be exploited.)

4. Convexity and Continuity

Continuity of a convex function f : I → R will not in general hold
on the boundary of I : defining f(x) = 1 for x > 0 while f(0) = 2,
clearly f is convex on I = [0,∞[ , but discontinuous at x = 0.

But a convex function is automatically continuous on the interior of
its domain. In dimension n = 1, this follows easily by using the slope
function to invoke a ‘sandwich trick’:
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Proposition 4.1. When f : I → R is convex on an interval I ⊂ R,
then f is continuous at every inner point x ∈ I◦.

Proof. To show continuity at a given inner point x, one may fix z > 0
so that x± z ∈ I . For 0 < θ ≤ 1 one insert y = x± z and θ into (2.2),
which yields

f(x+ θz)− f(x) ≤ θ(f(x+ z)− f(x)) (4.1)

f(x− θz)− f(x) ≤ θ(f(x− z)− f(x)). (4.2)

Dividing these inequalities by θz and −θz , respectively, and using that
the slope function is increasing, cf Proposition 3.2, it follows that

f(x)− f(x− z) ≤ f(x)− f(x− θz)

θ

≤ f(x+ θz)− f(x)

θ
≤ f(x+ z)− f(x).

(4.3)

Substituting h = θ or h = −θ this entails

f(x)− f(x− z) ≤ f(x+ hz)− f(x)

h
≤ f(x+ z)− f(x). (4.4)

Now, by setting M = max(|f(x± z)− f(x)|), the above yields

0 ≤ |f(x+ hz)− f(x)| ≤M |h| for −1 ≤ h ≤ 1, (4.5)

so f(x+ h)→ f(x) for h→ 0. Thence continuity of f at x. �

An extension of the proof to dimensions n ≥ 2 is not immediate, for
if B(x, ε) ⊂ U , the corresponding M will be a supremum over infinitely
many z-dependent constants as z runs through the sphere |z| = ε.

But the corresponding result is true for all n ≥ 1. To circumvent
the difficulties in dimension n ≥ 2, one can use the banal observation
that, for a convex function g on an interval I ⊂ R,

g((1− θ)x+ θy) ≤ max(g(x), g(y)). (4.6)

In n dimensions this applies on a cube Q = x + [−δ, δ]n as follows,
when y denotes an arbitrary point in Q,

f(y) ≤ max f(x1 ± δ, y2, . . . , yn)

≤ max f(x1 ± δ, x2 ± δ, y3, . . . , yn)

≤ . . .

≤ max f(x1 ± δ, . . . , xn ± δ) =: Mx.

(4.7)

Therefore f is bounded from above on every closed cube Q ⊂ U . In
fact, this even shows that f attains its maximum on every such cube.

Thus prepared one can give an elementary proof of

Theorem 4.2. When f : U → R is a convex function on a convex set
U ⊂ Rn, then f is continuous at every inner point of U .



CONVEX FUNCTIONS, AN ELEMENTARY APPROACH 13

Proof. Given an inner point x ∈ U , one may fix δ ∈ ]0, 1[ so small that
Q = x+ [−δ, δ]n is contained in U . Then B(x, δ/

√
n) ⊂ U too.

Now one has whenever |z| = δ/
√
n and 0 ≤ |h| ≤ 1 that

|f(x+ hz)− f(x)| ≤ |h|(Mx + |f(x)|). (4.8)

This may be seen by following the proof of Proposition 4.1, where
the argument based on the slope function now applies to the convex
auxiliary function g(t) = f(x + tz), resulting in (4.4) in the present
situation. But by using (4.7),

f(x+ z)− f(x) ≤Mx + |f(x)| (4.9)

f(x)− f(x− z) ≥ −Mx − |f(x)|. (4.10)

Hence (4.8) follows from (4.4). So continuity of f at x is immediate. �

Exercise 4.1. Derive from Theorem 4.2 and its proof that a convex
function f : U → R is locally Lipschitz continuous. Give examples in
which “locally” cannot be omitted.

Exercise 4.2. Prove that E(f) is closed in U×R whenever f : U → R
is convex and the convex set U ⊂ Rn is open. Is E(f) closed in Rn×R ?
(Hint: f is continuous.)

5. Convexity and Differentiability

In addition to the geometric property in (3.1), one should envisage
that the graph of a convex function must lie above each of its tangents.
This is confirmed in

Theorem 5.1. If f : U → R is convex and differentiable at some point
x ∈ U◦, then

f(y) ≥ f(x) +∇f(x) · (y − x) for all y ∈ U. (5.1)

When f is strictly convex, this inequality is strict for every y 6= x.

Proof. There is only something to show in (5.1) when y 6= x. Convexity
implies that for 0 < θ ≤ 1,

1
θ
(f(x+ θ(y − x))− f(x)) ≤ f(y)− f(x), (5.2)

and differentiability at x shows that the left-hand side equals

∇f(x) · (y − x) +
o(‖θ(y − x)‖)
θ‖y − x‖

‖y − x‖. (5.3)

By definition of o, the second term tends to 0 for θ → 0, so the left-
hand side of (5.2) tends to ∇f(x) · (y − x). This gives (5.1).

When (5.1) is an identity for some y0 6= x, and y0 ∈ U , then a
successive application of (5.1), (5.2) and the property of y0 gives

∇f(x) · θ(y0 − x) ≤ f(x+ θ(y0 − x))− f(x)

≤ θ(f(y0)− f(x)) = θ∇f(x) · (y0 − x).
(5.4)
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Obviously this implies that f(x+θ(y0−x)) = f(x)+θ∇f(x) · (y0−x).
This means that f behaves linearly along the line segment from x to
y0 . Hence f is not strictly convex, when such y0 exists. �

From the above theorem one can read off a result, which makes it
easy to find extrema of convex functions:

Corollary 5.2. When a convex function f : U → R is differentiable at
an interior critical point x∗, i.e. ∇f(x∗) = 0 for some x∗ ∈ U◦, then
the point x∗ is a global minimum of f .

If f is strictly convex, a local minimum x∗ ∈ U is global and unique.

Proof. When ∇f(x∗) = 0 at some interior point, then (5.1) reduces to
the inequality

f(y) ≥ f(x∗) for all y ∈ U , (5.5)

which means that x∗ is a global minimum. See also Exercise 2.4. �

The corresponding result is valid for concave functions, of course,
though their critical points are necessarily maxima.

In addition to the geometric property stated prior to Theorem 5.1,
differentiable convex functions have for n = 1 a closely related analytic
property:

Theorem 5.3. A differentiable function f : I → R on an open interval
I ⊂ R is convex if and only if f ′(x) is monotone increasing on I .

Proof. When f ′ exists and is monotone increasing on I , then the in-
equality (3.1) follows at once from the Mean Value Theorem, which
reduces it to the statement that f ′(s) ≤ f ′(t) for some s ∈ ]y, x[ and
t ∈ ]x, z[ (as is true by assumption on f ′).

Conversely, if f is a given differentiable convex function and y < z
for y, z ∈ I , Proposition 3.2 implies that the numbers

ak :=
f(y + 1/k)− f(y)

1/k
,

f(z)− f(z − 1/k)

1/k
=: bk, (5.6)

considered for k so large that 1
k
< (z − y)/2, always fulfil

ak = S(y, y + 1/k) ≤ S(y, z) ≤ S(z − 1/k, z) = bk. (5.7)

In the limit k → ∞ one has ak → f ′(y) while bk → f ′(z), so the
inequality f ′(y) ≤ f ′(z) results. �

Exercise 5.1. Can you prove for a differentiable function f : U → R
on an open convex set U ⊂ Rn that convexity of f is equivalent to
validity of (5.1) at every x ∈ U ? (Hint: Try first for n = 1.)
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6. Convexity and Hessian Matrices

It was seen above that when f is convex and C2 on an interval, then
f ′ is monotone increasing. Therefore f ′′(x) ≥ 0 follows from convexity.
This is actually a characterisation (for C2-functions):

Theorem 6.1. When f ∈ C2(I,R), for an open interval I ⊂ R, then
f ′′(x) ≥ 0 holds for all x ∈ I if and only if f is a convex function.

If f ′′ > 0 on I , then f is strictly convex.

Proof. That convexity implies the positivity of f ′′ was seen prior to
the theorem. To prove sufficiency of f ′′ ≥ 0, consider first a function
g ∈ C1(I,R). The fundamental theorem of calculus gives, for z ≥ 0 so
small that both x and x+ z are in I ,

g(x+ z)− g(x) =

∫ 1

0

d
dt
g(x+ tz) dt = z

∫ 1

0

g′(x+ tz) dt.

If g′ ≥ 0 on I the integral is positive, so then g is monotone increasing.
For g = f ′ this gives that f ′(x+ z) ≥ f ′(x), hence that f ′ is increas-

ing, and from the above with g = f ,

(f(x+ z)− f(x))/z =

∫ 1

0

f ′(x+ tz) dt, z > 0.

Here the right-hand side is an increasing function of z , for the integrand
is so, as just shown; whence the left-hand side is increasing with respect
to z . Since tz ≤ z for t ≤ 1 this gives that, for z ≥ 0 and x, x+ z ∈ I ,

f(x+ tz)− f(x) ≤ t(f(x+ z)− f(x)) for 0 ≤ t ≤ 1.

Since eg x+ tz = (1− t)x+ t(x+ z), the choice t = θ, y = x+ z proves
(2.1) for points x < y in I . Now, x < y can be assumed without loss
of generality in (2.1), so this proves the convexity.

When f ′′(x) > 0 for all x ∈ I , then f ′ is strictly increasing so that
also the above integral is strictly increasing with respect to z ; hence
the inequality above is strict for 0 < t < 1, z > 0. Therefore (2.1) is a
strict inequality for x 6= y and 0 < θ < 1, so that f is strictly convex.
The proof is complete. �

According to the theorem strict positivity always suffices for strict
convexity. But this implication cannot be reversed: f(x) = x4 is
strictly convex on R, yet f ′′(x) = 0 holds for x = 0.

In dimensions n ≥ 1 there are similar results, which characterises the
convex C2-functions f as those for which the Hessian matrix Hf(x)
is positive semidefinite for all x. This should be evident from the fact
Hf(x) gives rise to the quadratic form given on y ∈ Rn by

yTHf(x)y =
n∑

j,k=1

∂2f

∂xj∂xk
(x)yjyk. (6.1)
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Theorem 6.2. When f ∈ C2(U,R), for an open, convex set U ⊂ Rn,
then f is convex if and only if it holds true for every x ∈ U that

0 ≤
n∑

j,k=1

∂2f

∂xj∂xk
(x)yjyk for all y ∈ Rn . (6.2)

If this inequality is strict for all y 6= 0 and x ∈ U , then f is strictly
convex.

Proof. When x, x+ y ∈ U , then (6.2) implies via the chain rule that

d2f(x+ ty)

dt2
≥ 0 for t ∈ ]− δ, 1 + δ[ , (6.3)

for some δ > 0 since U is open. Conversely, if this is true whenever x,
x+y ∈ U , it is seen for t = 0 that (6.2) holds for y with ‖y‖ < ε when
B(x, ε) ⊂ U ; but then (6.2) also holds for every y ∈ Rn by scaling.

Now, (6.3) is equivalent to convexity of g(t) = f(x + ty) on the
interval ]− δ, 1 + δ[ , according to Theorem 6.1. However, convexity of
g immediately implies (2.2), hence that f is convex; in fact,

f(x+ty) = g(t) ≤ g(0)+t(g(1)−g(0)) = f(x)+t(f(x+y)−f(x)). (6.4)

Conversely, it is geometrically clear that g is convex if f is so.
When (6.2) is strict for each y 6= 0, then (6.3) is so; whence g

is strictly convex by Theorem 6.1. Therefore the above inequality is
strict for 0 < t < 1, so f is strictly convex. �

Notice that, according to the last part of the theorem, when the
Hessian Hf(x) is positive definite for all x, then f is strictly convex.

Since Hf(x) is symmetric for every C2-function f , it has n real
eigenvalues λ1, . . . , λn (counted with multiplicity) by the Spectral The-
orem. Diagonalisation of the quadratic form in (6.1) therefore yields

Corollary 6.3. When f ∈ C2(U,R), for an open, convex set U ⊂ Rn,
then f is convex if and only if the Hessian matrix Hf(x) for every
x ∈ U fulfils the eigenvalue condition

λ1 ≥ 0, . . . , λn ≥ 0. (6.5)

If these inequalities are all strict, then f is strictly convex.

Exercise 6.1. Give an analytical proof, by means of inequalities, that
g inherits convexity from f in the proof of Theorem 6.2.

Exercise 6.2. Prove Corollary 6.3 in details.

7. Other Notions

Sometimes only a part of the properties of convex or concave func-
tions are needed. It is therefore convenient to introduce the following
generalisation:



CONVEX FUNCTIONS, AN ELEMENTARY APPROACH 17

Definition 7.1. A quasi-concave function f : U → R on a convex set
U ⊂ Rn is a function with the property that for all x, y ∈ U

f(y) ≥ f(x) =⇒ ∀θ ∈ [0, 1] : f(x+ θ(y − x)) ≥ f(x). (7.1)

First of all, every concave function f on U is quasi-concave; this
follows at once from the opposite inequality of (2.2) that holds for
concave functions.

Secondly, it should be noted that the condition for quasi-concavity
simply means that whenever f(y) is larger than f(x), then f should be
larger than f(x) on the entire line segment between x and y. Therefore
one has that

• ex and x2 are quasi-concave on R (although they are convex!);
• the function f : [0,∞]→ R given by

f(x) =

{
x2 for 0 ≤ x < 1

2 +
√
x− 1 for 1 ≤ x <∞

(7.2)

is quasi-concave (though pieced together of a convex and a con-
cave function, with a discontinuity at x = 1!).

It is therefore clear that quasi-concave functions constitute a much
more general class than, say concave functions.

Quasi-concavity can also be expressed in terms of the gradient, when
it exists:

Theorem 7.2. When f is quasi-concave on U and differentiable at
x ∈ U , then it holds for all y ∈ U that

f(y) ≥ f(x) =⇒ ∇f(x) · (y − x) ≥ 0. (7.3)

Proof. Given that f(y) ≥ f(x), then f(z) − f(x) ≥ 0 for every z =
x+ θ(y − x) with θ ∈ [0, 1]. Therefore

(∇f(x) · z − x
‖z − x‖

+ o(1))‖z − x‖ ≥ 0 (7.4)

For z in a small neighbourhood of x this shows that ∇f(x) · z−x
‖z−x‖ < 0

is impossible. Since U is convex, it is then seen by scaling that the
claimed inequality holds. �

Exercise 7.1. Find functions f : R→ R which are not quasi-concave.

8. Final remarks

The subject of convex functions is classical, and it has been analysed
much further in the literature. Cf the elegant, but rather abstract expo-
sition in R. T. Rockafellar’s classic text [Roc97], for example. A rather
more elementary and illustrated presentation is available in the lecture
notes of E. Christensen [Chr04]. An easily read account of classical
convexity as well as the many related notions, and their applications,
can be found in the book [NP06] of C. Niculescu and L.-E. Persson.
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